JPS6386842A - Cobalt alloy for vapor deposition - Google Patents
Cobalt alloy for vapor depositionInfo
- Publication number
- JPS6386842A JPS6386842A JP22960086A JP22960086A JPS6386842A JP S6386842 A JPS6386842 A JP S6386842A JP 22960086 A JP22960086 A JP 22960086A JP 22960086 A JP22960086 A JP 22960086A JP S6386842 A JPS6386842 A JP S6386842A
- Authority
- JP
- Japan
- Prior art keywords
- vapor deposition
- alloy
- magnetic recording
- molten metal
- cobalt alloy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910000531 Co alloy Inorganic materials 0.000 title claims abstract description 17
- 238000007740 vapor deposition Methods 0.000 title abstract description 15
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 13
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 8
- 239000012535 impurity Substances 0.000 claims abstract description 3
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 12
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 11
- 239000010941 cobalt Substances 0.000 claims description 6
- 229910017052 cobalt Inorganic materials 0.000 claims description 6
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims description 6
- 230000008021 deposition Effects 0.000 claims 1
- 229910052751 metal Inorganic materials 0.000 abstract description 35
- 239000002184 metal Substances 0.000 abstract description 35
- 238000009835 boiling Methods 0.000 abstract description 10
- 238000010894 electron beam technology Methods 0.000 abstract description 7
- 238000010438 heat treatment Methods 0.000 abstract description 3
- 230000001105 regulatory effect Effects 0.000 abstract 1
- 239000000463 material Substances 0.000 description 20
- 239000010409 thin film Substances 0.000 description 16
- 238000000034 method Methods 0.000 description 8
- 238000004519 manufacturing process Methods 0.000 description 7
- 238000012360 testing method Methods 0.000 description 5
- 238000001704 evaporation Methods 0.000 description 4
- 239000010408 film Substances 0.000 description 4
- ZGDWHDKHJKZZIQ-UHFFFAOYSA-N cobalt nickel Chemical compound [Co].[Ni].[Ni].[Ni] ZGDWHDKHJKZZIQ-UHFFFAOYSA-N 0.000 description 3
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 239000000155 melt Substances 0.000 description 2
- 239000000523 sample Substances 0.000 description 2
- 238000001771 vacuum deposition Methods 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 229910000990 Ni alloy Inorganic materials 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 239000002923 metal particle Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 229920006267 polyester film Polymers 0.000 description 1
- 238000009497 press forging Methods 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 238000007738 vacuum evaporation Methods 0.000 description 1
- 238000005019 vapor deposition process Methods 0.000 description 1
- 238000009333 weeding Methods 0.000 description 1
Landscapes
- Physical Vapour Deposition (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、高密度の記録を可能にする磁気記録媒体とし
て、真空蒸着法による金属薄膜型の磁気記録媒体を生産
する場合に、蒸着材として供給されるコバルト・ニッケ
ル系の草着用コバルト合金に関する。Detailed Description of the Invention [Industrial Application Field] The present invention is directed to the production of metal thin film type magnetic recording media by vacuum evaporation as magnetic recording media that enable high-density recording. The present invention relates to a cobalt-nickel based cobalt alloy for weeding.
真人な情報を効率よく処理して行く為の手段として、磁
気記録方式が広く背反し、化学メッキ法、スパッタリン
グ法、イオンブレーティング法、真空蒸着法等による各
種の記録媒体が混在利用されている。Magnetic recording is widely used as a means to efficiently process real information, and various recording media such as chemical plating, sputtering, ion blating, and vacuum deposition are used in a mixed manner. .
この中にあって、真空蒸着法は他の方法による場合と比
べて成膜速度が格段に速く、生産性の面では最も優れた
方法として知られて居り、仄着用母材としては記録密度
、環境対応、等の面からコバルト・ニッケル系の合金が
広く利用されて居る。Among these, the vacuum deposition method has a much faster film formation speed than other methods, and is known as the most excellent method in terms of productivity. Cobalt-nickel based alloys are widely used from the viewpoint of environmental friendliness, etc.
蒸着用母材としてのコバルト・ニッケル系合金(以下コ
バルト合金という)のインボッ1−を溶製する場合には
、インゴットの健全性を保つと共に、溶湯の湯なかれ性
能を向上させる為に、インゴットに含まれる酸素含有量
を適当量に規制する事が必要である。When melting an ingot of a cobalt-nickel alloy (hereinafter referred to as cobalt alloy) as a base material for vapor deposition, it is necessary to make certain It is necessary to control the oxygen content to an appropriate amount.
この為従来蒸着材として溶製されたコバルト合金のイン
ゴットには、脱酸剤として添加された炭素が0.004
〜0.015重量シロ存在していた。For this reason, the cobalt alloy ingot conventionally produced as a vapor deposition material contains 0.004% carbon added as a deoxidizing agent.
~0.015 wt.
工業的規模に於いて金属薄膜形磁気記録媒体を製造する
に当り、蒸着材を利用する場合には、蒸着材に電子ビー
ムを当てて加熱溶融させた目的金属の溶湯に、更に電子
ビームを当て続ける事により金属薄膜を形成させる為に
必要な、目的金属を蒸発させる工程が含まれて居り、溶
湯温度は200゜°C以上にも上げなければならない。When manufacturing metal thin film magnetic recording media on an industrial scale, when using a vapor deposition material, the vapor deposition material is heated and melted with an electron beam, and then the target metal molten metal is heated and melted, and then an electron beam is applied to the molten metal. The process includes a step of evaporating the target metal, which is necessary to form a thin metal film by continuing the process, and the temperature of the molten metal must be raised to over 200°C.
この際、電子ビームによる加熱は金属溶湯の局所的加熱
を避けられず、電子ビームと金属溶湯との相対的な位置
変動から金属溶湯の揺動を生じる。At this time, heating by the electron beam cannot avoid local heating of the molten metal, and fluctuations of the molten metal occur due to relative positional fluctuations between the electron beam and the molten metal.
この場合、従来から金属薄膜形磁気記録媒体用に製造さ
れていたコバルト合金により溶製された金属溶湯は、時
として突発的な部分沸騰現象を示す事により、金属薄膜
を制作するに必要な粒子径を1かに超える巨大な金属粒
子を飛散させると共に、生産目的とされている金属薄膜
形磁気記録媒体層の膜厚不均一やテープの切断等をまね
き、操業の中途を止むなくする事が多く、その特性の改
善が望まれていた。In this case, the molten metal made from cobalt alloy, which has traditionally been produced for metal thin film magnetic recording media, sometimes exhibits a sudden partial boiling phenomenon, causing the particles necessary to produce the metal thin film to be produced. In addition to scattering gigantic metal particles exceeding the diameter of the magnetic recording medium, it also causes uneven film thickness of the metal thin film magnetic recording medium layer, which is the purpose of production, and cuts the tape, forcing the operation to stop midway. Many people have desired to improve its characteristics.
本発明は、長尺の金属薄膜形磁気記録媒体を安定して生
産する事を目的として、茎着材金属溶湯の突発的な部分
沸騰現象を生じない良質のコバルト合金を供給して、事
故を未然に防ごうと云つものである。本発明者等は鋭意
研究した結果、蒸着母材用コバルト合金を用いて蒸着工
程を進める場合にみられる金属溶湯の突発的な部分沸騰
現象は、材料中に含有された炭素量に大きく影響される
ものであることを突きとめ、ニッケルを10〜30重量
%含有し残部が炭素とコバルトおよび不可避不純物から
なる蒸着用母材としてのコバルト合金の炭素含有量を、
0.0005〜0.003重量%と規定する事により、
金属薄膜形磁気記録媒体を真空蒸着加工する場合に、金
属溶湯の突発的な部分沸騰現象の発生を防止して、均一
な膜厚の磁気記録媒体を長尺で安定して製造出来る様な
コバルト合金の蒸着材を提供せんとするものである。The present invention aims to stably produce long metal thin film magnetic recording media by supplying a high-quality cobalt alloy that does not cause sudden partial boiling of the molten metal used as a base bonding material, thereby preventing accidents. The idea is to prevent it from happening. As a result of extensive research, the present inventors have found that the sudden partial boiling phenomenon of molten metal that occurs when proceeding with the vapor deposition process using a cobalt alloy for vapor deposition base material is greatly influenced by the amount of carbon contained in the material. The carbon content of the cobalt alloy used as the base material for vapor deposition, which contains 10 to 30% by weight of nickel and the balance consists of carbon, cobalt, and unavoidable impurities, was determined by
By specifying 0.0005 to 0.003% by weight,
Cobalt is used to prevent sudden partial boiling of molten metal when vacuum evaporating metal thin film magnetic recording media, and to stably manufacture long magnetic recording media with uniform thickness. The purpose is to provide a vapor deposition material for alloys.
本発明でニッケルの含有量を10〜30重足%と規定し
たのは、コバルトを主成分とする金属薄膜形記録媒体に
あって、ニッケル含有量が10重世%未満では金属薄膜
の耐食性が劣り、記録媒体の経時変化や環境変化に対応
しにくくなる為であり、30重量%を超えると金属磁性
薄膜の残留磁力が大幅に低下し本来の目的である記録媒
体としての磁気特性を害う為である。The reason why the nickel content is defined as 10 to 30 weight percent in the present invention is because the metal thin film recording medium has cobalt as its main component, and if the nickel content is less than 10 weight percent, the corrosion resistance of the metal thin film will deteriorate. If it exceeds 30% by weight, the residual magnetic force of the metal magnetic thin film will decrease significantly and the magnetic properties as a recording medium, which is the original purpose, will be impaired. It is for this purpose.
又炭素を0.0005〜0.003重1%と規定したの
は、炭素がo、ooos重量%未満ではインゴット作成
時に材料の不健全性が避けられない為であり、0.00
3重世%を超えると電子ビームによる蒸着材金属溶湯の
突発的な部分沸騰現象が顧発しやすくなる為である。The reason why carbon is specified as 0.0005 to 0.003% by weight is that if the carbon content is less than o, ooos% by weight, unsoundness of the material is unavoidable when making an ingot.
This is because if the concentration exceeds 3%, sudden partial boiling of the molten metal to be deposited by the electron beam is likely to occur.
尚、本発明は蒸着用母材の主成分をコバルト、炭素及び
ニッケルに限定したが、磁気記録媒体としての金属薄膜
の耐食性を向上させる事を目的として、この合金に更に
アルミニウム、硅素、銅、モリブデン、チタニウム、希
土類元素からなる群の中から選ばれた一種以上の元素を
含有せしめた蒸着材についても、炭素含有量を0.00
05〜0.003重量%に規定する事により金属溶湯の
突発的な部分沸騰現象を防止する事が容易−こなる。In the present invention, the main components of the base material for vapor deposition are limited to cobalt, carbon, and nickel, but for the purpose of improving the corrosion resistance of the metal thin film used as a magnetic recording medium, aluminum, silicon, copper, Regarding vapor deposition materials containing one or more elements selected from the group consisting of molybdenum, titanium, and rare earth elements, the carbon content should be reduced to 0.00.
By setting the content to 0.05 to 0.003% by weight, sudden partial boiling of the molten metal can be easily prevented.
あらかしめ規定重量に秤量されていた電気コバルト及び
電気ニッケルを原料としてアルミナ坩堝中に投入し、真
空度10−’Torrにて高周波真空溶解し、1600
°Cの溶湯として後、脱酸並びに鋳造性を向上させるた
めの炭素添加を規定量で行い、さらに注湯温度を155
0℃する1 0−’Torrの真空上注湯を直径1’
80 +u、高さ400 mlの金型に対して行い、蒸
着用母材となる重it 90 kgの健全なコバルト合
金のインゴットを鋳造した。Electrolytic cobalt and electrolytic nickel, which had been weighed to a predetermined weight, were put into an alumina crucible as raw materials and melted under high frequency vacuum at a vacuum degree of 10-'Torr.
After the melt is heated to 155°C, a specified amount of carbon is added to improve deoxidation and castability, and the pouring temperature is increased to 155°C.
Pour the melt over a vacuum at 0℃ and 10-'Torr to a diameter of 1'.
This was carried out in a mold of 80 + U and height of 400 ml, and a sound cobalt alloy ingot with a weight of 90 kg was cast as a base material for vapor deposition.
次に、このインゴット表面から511を面削除去した後
、1180℃に1時間加熱して、この温度を保ったまま
大型のプレス鍛造機にて直径90mmまで鍛造した。Next, after removing 511 from the surface of this ingot, it was heated to 1180° C. for 1 hour, and while maintaining this temperature, it was forged to a diameter of 90 mm using a large press forging machine.
直径90u+に熱間鍛造された素材は更に加工工程を繰
り返した上、最終的には機械加工により直径2311、
高さ25鶴の円柱状の試料に成形され、磁気記録媒体と
しての金属薄膜を蒸着させる試験に供された。供試材の
組成と蒸着試験結果を第1表に示す。The material that was hot forged to a diameter of 90u+ was further processed and finally machined to a diameter of 2311mm.
A cylindrical sample with a height of 25 mm was formed, and a test was conducted to deposit a metal thin film as a magnetic recording medium. Table 1 shows the composition of the sample material and the vapor deposition test results.
試験した結果から明らかな如く、本発明によれば、金属
薄膜形磁気記録媒体を製造する場合の茂着材として、従
来材に比べて温かに優れた操業性を示し、金属溶湯の突
発的な部分沸騰現象を生ずる事なく、金属薄膜も均一な
厚さを長尺に亘って保証出来る事が証明された。As is clear from the test results, the present invention exhibits superior workability in warm temperatures compared to conventional materials when used as a bushing material in the production of metal thin film magnetic recording media, and is effective in preventing the sudden generation of molten metal. It has been proven that it is possible to guarantee a uniform thickness of a metal thin film over a long length without causing a partial boiling phenomenon.
尚、蒸着材試験の方法は直径23n+、裔さ25mmに
加工された蒸着材に対し5 X 10”’Torr以下
の′残圧下で電圧を10kV一定に保ったまま、300
mAまでの電流調料による電子ビームを照射し、0.
1μmの厚さの金属薄膜をポリエステルフィルム上に蒸
着させる工程を目視により観察したものである。The method for testing the evaporation material is to test the evaporation material processed to a diameter of 23n+ and a length of 25mm under a residual pressure of 5 x 10'' Torr or less, while keeping the voltage constant at 10 kV.
Irradiate with an electron beam with a current adjustment of up to 0.0 mA.
The process of depositing a metal thin film with a thickness of 1 μm on a polyester film was visually observed.
本発明のコバルト合金を蒸着用母材として使用する時に
は、金属薄膜形磁気記録媒体の製造に際して、従来材で
は大きな問題として取りあげられていた金属溶湯の突発
的な部分沸騰現象を容易に生じなくなり長尺製品を要求
する消費業界の意向に充分に対応する事が出来ると共に
製品の安定した磁性膜厚の保証へも寄与するところ大で
ある。When the cobalt alloy of the present invention is used as a base material for vapor deposition, the sudden partial boiling phenomenon of molten metal, which was a big problem with conventional materials, does not easily occur and can last for a long time when manufacturing metal thin film magnetic recording media. It is possible to fully meet the consumer industry's demand for thicker products, and it also greatly contributes to ensuring a stable magnetic film thickness for products.
Claims (1)
コバルトおよび不可避不純物からなるコバルト合金にお
いて、炭素の含有量が重量比で0.0005〜0.00
3%であることを特徴とする蒸着用コバルト合金。A cobalt alloy containing 10 to 30% nickel by weight and the remainder consisting of carbon, cobalt, and unavoidable impurities, with a carbon content of 0.0005 to 0.00 by weight.
3% cobalt alloy for deposition.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61229600A JPH062920B2 (en) | 1986-09-30 | 1986-09-30 | Cobalt alloy for vapor deposition |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61229600A JPH062920B2 (en) | 1986-09-30 | 1986-09-30 | Cobalt alloy for vapor deposition |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6386842A true JPS6386842A (en) | 1988-04-18 |
JPH062920B2 JPH062920B2 (en) | 1994-01-12 |
Family
ID=16894721
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61229600A Expired - Lifetime JPH062920B2 (en) | 1986-09-30 | 1986-09-30 | Cobalt alloy for vapor deposition |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH062920B2 (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5762505A (en) * | 1980-10-03 | 1982-04-15 | Matsushita Electric Ind Co Ltd | Magnetic material for vacuum evaporation |
JPS61153827A (en) * | 1984-11-13 | 1986-07-12 | Natl Res Inst For Metals | Production of film for magnetic recording medium |
-
1986
- 1986-09-30 JP JP61229600A patent/JPH062920B2/en not_active Expired - Lifetime
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5762505A (en) * | 1980-10-03 | 1982-04-15 | Matsushita Electric Ind Co Ltd | Magnetic material for vacuum evaporation |
JPS61153827A (en) * | 1984-11-13 | 1986-07-12 | Natl Res Inst For Metals | Production of film for magnetic recording medium |
Also Published As
Publication number | Publication date |
---|---|
JPH062920B2 (en) | 1994-01-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20080014109A1 (en) | Enhanced sputter target manufacturing method | |
JP2022500557A (en) | Nickel-based superalloy | |
JPH0336243A (en) | Amorphous alloy excellent in mechanical strength, corrosion resistance, and workability | |
US6458182B2 (en) | Process for producing high-purity Mn materials | |
US6090497A (en) | Wear-resistant coated member | |
IL167218A (en) | High temperature resistant niobium wire | |
AT13564U1 (en) | CU-GA-IN-NA Target | |
US4572750A (en) | Magnetic alloy for magnetic recording-reproducing head | |
JPH0234737A (en) | Corrosion-resistant and heat-resistant aluminum-base alloy thin film and its manufacture | |
US4440720A (en) | Magnet alloy useful for a magnetic recording and reproducing head and a method of manufacturing thereof | |
TW201631170A (en) | Cr-Ti alloy sputtering target material and method for producing same | |
JP4515596B2 (en) | Bulk amorphous alloy, method for producing bulk amorphous alloy, and high strength member | |
JPS6386842A (en) | Cobalt alloy for vapor deposition | |
JPS6270550A (en) | Material for target | |
JPS61501714A (en) | Heat resistant molybdenum alloy | |
JPH05247642A (en) | Target member and manufacture therefor | |
JP2003508628A (en) | Manufacturing method of bulk amorphous layer on bulk metal compact | |
JPS61113741A (en) | High strength corrosion resistant nickel base alloy and its production | |
EP1923480A2 (en) | Enhanced sputter target manufacturing method | |
JPH1096077A (en) | Functionally gradient thin coating and its production | |
JPH01247571A (en) | Rare earth metal-iron group metal target and its production | |
CN112941393A (en) | Quinary master alloy material and preparation method and application thereof | |
JPH04314855A (en) | Sputtering target made of co-cr-pt alloy and its manufacture | |
JPS628495B2 (en) | ||
JPH09227968A (en) | Manufacture of cobalt-base alloy for magnetic recording medium |