JPH09227968A - Manufacture of cobalt-base alloy for magnetic recording medium - Google Patents

Manufacture of cobalt-base alloy for magnetic recording medium

Info

Publication number
JPH09227968A
JPH09227968A JP8038426A JP3842696A JPH09227968A JP H09227968 A JPH09227968 A JP H09227968A JP 8038426 A JP8038426 A JP 8038426A JP 3842696 A JP3842696 A JP 3842696A JP H09227968 A JPH09227968 A JP H09227968A
Authority
JP
Japan
Prior art keywords
weight
magnetic recording
recording medium
vacuum
cobalt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8038426A
Other languages
Japanese (ja)
Inventor
Hiroyuki Yamada
博之 山田
Hideo Katagiri
英雄 片桐
Shinichiro Yahagi
慎一郎 矢萩
Hiroshi Teraoka
浩 寺岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP8038426A priority Critical patent/JPH09227968A/en
Publication of JPH09227968A publication Critical patent/JPH09227968A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Physical Vapour Deposition (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To produce a high efficiency magnetic recording medium free from bumping at the time of electron beam melting. SOLUTION: This method is a manufacturing method of a cobalt-base alloy having a composition consisting of, by weight, 5-25% Ni, <=0.005% C, 0.01-0.10% Mn, 0.002-0.01% Al, <=0.0050% O, <=0.0010% N, 0.001-0.005% of Ca and Mg, 0.01-0.10% Si, and the balance Co with inevitable impurities, which is used for a magnetic recording medium for film formation by vacuum deposition. In this method, vacuum arc remelting is performed in succession to vacuum induction melting.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、磁気記録媒体用
合金、特にコバルト基合金の製造方法に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an alloy for a magnetic recording medium, particularly a cobalt base alloy.

【0002】[0002]

【従来の技術とその課題】従来より、磁気記録媒体用材
料として、Niを15〜25重量%含有し、残部がCo
と不可避不純物から成る組織を有するCo−Ni合金が
その代表的なものとして知られており、原料成分を真空
溶解した後、鋳造して得られたインゴットを鍛伸し、切
断、研削などすることにより所定寸法の素材とし、この
ものを磁気ディスク、フロッピーディスク、オーディオ
用磁気テープの表面にスパッタリング法、真空蒸着法な
どの表面処理技術により、薄膜を形成するようにしてい
る。
2. Description of the Related Art Conventionally, as a material for a magnetic recording medium, Ni is contained in an amount of 15 to 25% by weight, and the balance is Co.
A Co-Ni alloy having a structure composed of unavoidable impurities is known as a typical one, and the raw material components are vacuum melted, and the ingot obtained by casting is forged, cut, and ground. A material having a predetermined size is formed on the surface of a magnetic disk, a floppy disk or an audio magnetic tape by a surface treatment technique such as a sputtering method or a vacuum deposition method.

【0003】しかしながら、このようなCo基合金は、
必要とされる特性を有する磁気記録媒体用の薄膜を形成
するためには、真空溶解により前記の素材を製造し、N
2 やO2 などのガスの発生を抑えられたものとすること
が必要である。それと言うのも、磁気記録媒体の製造に
おいて、特に真空蒸着時に前記合金を電子ビームにより
蒸発させる場合にガスが発生すると、磁性層の厚みむら
や、ピンホールなどの発生原因となるからである。特に
このようなガスの発生が多い時には、突沸現象が生じ、
真空蒸着装置が破損する恐れさえもある。
However, such Co-based alloys are
In order to form a thin film for a magnetic recording medium having the required characteristics, the above materials are manufactured by vacuum melting and N
It is necessary to suppress the generation of gases such as 2 and O 2 . This is because, in the production of a magnetic recording medium, if a gas is generated especially when the alloy is evaporated by an electron beam during vacuum evaporation, it may cause uneven thickness of the magnetic layer and pinholes. Especially when such gas is generated a lot, bumping phenomenon occurs,
There is even a risk that the vacuum deposition device will be damaged.

【0004】しかしながら、これまでの技術では、上記
のCo基合金を真空蒸着用の素材として使用しても、発
生するガス量が少なく、突沸現象の発生も無く、しか
も、製造価格を低下させることができる合金ターゲット
材として適している磁気記録媒体用Co基合金を得るこ
とには、必ずしも充分な効果が得られていないのが実情
である。
However, in the conventional techniques, even when the above Co-based alloy is used as a material for vacuum deposition, the amount of gas generated is small, the bumping phenomenon does not occur, and the manufacturing cost is reduced. In reality, it is not always possible to obtain a sufficient effect in obtaining a Co-based alloy for a magnetic recording medium that is suitable as an alloy target material that can be obtained.

【0005】そこで、この発明は、以下のとおりの従来
技術の課題を解消し、電子ビーム溶解時に突沸現象の発
生もなく、優れた磁気特性をも実現することのできる新
しい磁気記録媒体用のコバルト基合金の製造方法を提供
することを目的としている。
Therefore, the present invention solves the problems of the prior art as described below, does not cause the bumping phenomenon at the time of electron beam melting, and is a new cobalt for a magnetic recording medium capable of realizing excellent magnetic characteristics. It is intended to provide a method for producing a base alloy.

【0006】[0006]

【課題を解決するための手段】この発明は、上記の課題
を解決するものとして、真空蒸着により成膜する磁気記
録媒体用の次の組成;Ni:5〜25重量%、C:0.
005重量%以下、Mn:0.01〜0.10重量%、
Al:0.002〜0.01重量%、O:0.0050
重量%以下、N:0.0010重量%以下、Coおよび
不可避的不純物:残部を有するコバルト基合金の製造方
法であって、真空誘導溶解に続いて真空アーク再溶解を
行うことを特徴とする磁気記録媒体用コバルト基合金の
製造方法を提供する。
In order to solve the above-mentioned problems, the present invention has the following composition for a magnetic recording medium formed by vacuum evaporation; Ni: 5 to 25% by weight, C: 0.
005% by weight or less, Mn: 0.01 to 0.10% by weight,
Al: 0.002-0.01% by weight, O: 0.0050
A method for producing a cobalt-based alloy having a weight% or less, N: 0.0010% by weight or less, Co and inevitable impurities: the balance, characterized by performing vacuum arc remelting followed by vacuum arc remelting. A method for manufacturing a cobalt-based alloy for a recording medium is provided.

【0007】また、この発明は、上記の方法において、
CaおよびMgが、各々0.001〜0.005重量%
含有されていることや、Siが0.01〜0.10重量
%含有されていること等もその一つの態様として提供す
る。
The present invention also provides, in the above method,
Ca and Mg are 0.001 to 0.005% by weight, respectively
The inclusion of Si, 0.01 to 0.10 wt% of Si, and the like are also provided as one aspect thereof.

【0008】[0008]

【発明の実施の形態】この発明は、上記の構成を特徴と
しているが、このことは、この発明の発明者によって得
られた、真空誘導溶解(VIF)と、これに続く真空ア
ーク再溶解(VAR)とによって二重真空溶解を行うこ
とが、得られたコバルト基合金の電子ビーム溶解による
蒸着時の突沸現象を抑え、高特性の磁気記録媒体を得る
のに極めて有効であり、製造工程、価格の上からも有利
であるとの新しい知見に基づいている。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention is characterized by the above-mentioned structure, which is obtained by the inventor of the present invention by vacuum induction melting (VIF) followed by vacuum arc remelting (VIF). VAR) and double vacuum melting are extremely effective in suppressing the bumping phenomenon at the time of vapor deposition of the obtained cobalt-based alloy by electron beam melting and obtaining a magnetic recording medium with high characteristics. It is based on a new finding that it is advantageous in terms of price.

【0009】より詳しく説明すると、まず、この発明に
よる磁気記録媒体用Co基合金は、前記のような化学成
分を有するものであるが、各化学成分の組成範囲に限定
した理由は以下のとおりである。 C:0.005重量%を超過すると真空蒸着時の電子ビ
ーム溶解時に突沸現象を生ずるので、好ましくない。
More specifically, the Co-based alloy for magnetic recording media according to the present invention has the chemical components as described above, but the reason for limiting the composition range of each chemical component is as follows. is there. C: If it exceeds 0.005% by weight, a bumping phenomenon occurs during melting of the electron beam during vacuum deposition, which is not preferable.

【0010】Mn:0.01重量%未満の場合は突沸を
防止できない。0.1重量%を超過すると、浴面をスカ
ムが覆うので好ましくない。 Al:強力な脱酸剤であり、Mnと同様突沸現象を防止
するために必要である。また合金素材に残留すると、磁
気特性のむらが生じるので、0.002〜0.01重量
%が好ましい。
If Mn is less than 0.01% by weight, bumping cannot be prevented. If it exceeds 0.1% by weight, the scum covers the bath surface, which is not preferable. Al: It is a strong deoxidizer and is necessary to prevent the bumping phenomenon like Mn. Further, when it remains in the alloy material, uneven magnetic properties occur, so 0.002 to 0.01% by weight is preferable.

【0011】O(酸素):0.0050重量%を超える
と突沸現象を生じやすくなるので好ましくない。 N(窒素):0.0010重量%を超えると同様に突沸
現象を生じやすくなるので好ましくない。 また、この発明では、以下の限定も一つの態様としてい
る。
O (oxygen): If it exceeds 0.0050% by weight, the bumping phenomenon tends to occur, which is not preferable. N (nitrogen): If it exceeds 0.0010% by weight, the bumping phenomenon is likely to occur, which is not preferable. Further, in the present invention, the following limitation is also one aspect.

【0012】Ca、Mg:脱酸剤として使用されるもの
であり、0.001重量%未満では、突沸現象の抑制に
効果はなく、0.010重量%を超える場合には磁気特
性を損う原因となる。このため、0.001〜0.00
5重量%が好ましい範囲である。 Si:脱酸剤であり、同様の理由によって、0.01〜
0.10重量%とするのが好ましい。
Ca, Mg: Used as a deoxidizing agent. If less than 0.001% by weight, there is no effect in suppressing the bumping phenomenon, and if more than 0.010% by weight, the magnetic properties are impaired. Cause. Therefore, 0.001 to 0.00
A preferable range is 5% by weight. Si: a deoxidizer, and for the same reason, 0.01 to
It is preferably 0.10% by weight.

【0013】各化学成分は上記のような理由により決定
されたものであるが、これらの範囲を外れると、真空蒸
着上並びに磁気特性上に不都合が生ずる。そして、この
発明では、上記の組成となるように原料成分を配合し、
浴湯を真空誘導溶解(VIF)してCo−Niの配合を
調整し、均一な浴湯が得られた段階において、Mn、A
l等の脱酸元素を添加し、酸素と反応させてスカムとし
て除去し、インゴットを製造する。
Each chemical component is determined for the above reasons, but if it deviates from these ranges, problems occur in vacuum deposition and magnetic properties. And in this invention, the raw material components are blended so as to have the above composition,
At the stage where a uniform bath water was obtained by adjusting the composition of Co-Ni by vacuum induction melting (VIF) of the bath water, Mn, A
A deoxidizing element such as 1 is added, reacted with oxygen and removed as scum to produce an ingot.

【0014】次いで、さらに、真空アーク再溶解(VA
R)を行う。二重に真空溶解が行われることになる。次
いでこのようにして得られたCo−Ni基合金から成る
インゴットを通常の熱間圧延又は鍛造により熱間加工を
行った後、機械加工により所定の寸法に切断し、磁気記
録媒体用のCo基合金の素材を得ることができる。以
下、実施例を示し、さらに詳しくこの発明の実施の形態
について説明する。
Then, the vacuum arc remelting (VA
R). Double vacuum melting will be performed. Then, the ingot made of the Co--Ni based alloy thus obtained is subjected to hot working by ordinary hot rolling or forging, and then cut into a predetermined size by machining to obtain a Co base for a magnetic recording medium. The alloy material can be obtained. Hereinafter, examples will be shown, and embodiments of the present invention will be described in more detail.

【0015】[0015]

【実施例】Co及びNi等を原料として真空誘導溶解炉
において約1,550℃で溶解し、均一な溶湯が得られ
た段階で必要に応じてMn、Al、Ca、MgおよびS
iを添加し、真空処理を施してインゴットを作成した。
このものの組成は、表1のとおりであった。このもの
を、真空アーク溶解炉(VAR)で再溶解し、インゴッ
トを作成した。このものの組成は、表1に示したとおり
であった。
[Examples] Co, Ni, etc. were melted at about 1,550 ° C. in a vacuum induction melting furnace, and Mn, Al, Ca, Mg and S were added as necessary at the stage when a uniform molten metal was obtained.
i was added and vacuum treatment was performed to prepare an ingot.
The composition of this product was as shown in Table 1. This was remelted in a vacuum arc melting furnace (VAR) to prepare an ingot. The composition of this product was as shown in Table 1.

【0016】得られたインゴットを鍛造し、かつ、小片
の蒸着材とした。この蒸着材を用いて電子ビーム溶解に
より真空蒸着して成膜した。ガスによるピンホールの発
生、そして突沸現象の発生も見られなかった。さらに表
2に示すように、成膜後の磁気記録媒体の、保磁力(H
c)、飽和磁束密度(Bs)は、従来材との間に差が認
められないものであった。
The obtained ingot was forged and used as a vapor deposition material in small pieces. A film was formed by vacuum evaporation using this evaporation material by electron beam melting. Neither generation of pinholes due to gas nor occurrence of bumping phenomenon was observed. Further, as shown in Table 2, the coercive force (H
c) and the saturation magnetic flux density (Bs) had no difference from the conventional material.

【0017】[0017]

【表1】 [Table 1]

【0018】[0018]

【表2】 [Table 2]

【0019】[0019]

【発明の効果】以上詳しく説明したとおり、この発明に
よる磁気記録媒体用Co基合金の製造方法では、磁気特
性も実用上問題なく良好であり、突沸現象がなく、ピン
ホールや厚みのムラのない磁性層を得ることができると
いう優れた効果を発揮する。
As described in detail above, in the method for producing a Co-based alloy for a magnetic recording medium according to the present invention, the magnetic properties are satisfactory without any practical problems, there is no bumping phenomenon, and there are no pinholes or uneven thickness. It has an excellent effect that a magnetic layer can be obtained.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 真空蒸着により成膜する磁気記録媒体用
の次の組成; Ni:5〜25重量%、 C:0.005重量%以下、 Mn:0.01〜0.10重量%、 Al:0.002〜0.01重量%、 O:0.0050重量%以下、 N:0.0010重量%以下、 Coおよび不可避的不純物:残部 を有するコバルト基合金の製造方法であって、真空誘導
溶解に続いて真空アーク再溶解を行うことを特徴とする
磁気記録媒体用コバルト基合金の製造方法。
1. The following composition for a magnetic recording medium formed by vacuum evaporation: Ni: 5 to 25% by weight, C: 0.005% by weight or less, Mn: 0.01 to 0.10% by weight, Al : 0.002-0.01% by weight, O: 0.0050% by weight or less, N: 0.0010% by weight or less, Co and unavoidable impurities: A method for producing a cobalt-based alloy having the balance, which is vacuum-induced. A method for producing a cobalt-based alloy for magnetic recording media, which comprises melting and then remelting in a vacuum arc.
【請求項2】 CaおよびMgが、各々0.001〜
0.005重量%含有されている請求項1の製造方法。
2. Ca and Mg are each 0.001 to 0.001.
The manufacturing method according to claim 1, wherein the content is 0.005% by weight.
【請求項3】 Siが0.01〜0.10重量%含有さ
れている請求項1または2の製造方法。
3. The method according to claim 1, wherein Si is contained in an amount of 0.01 to 0.10% by weight.
JP8038426A 1996-02-26 1996-02-26 Manufacture of cobalt-base alloy for magnetic recording medium Pending JPH09227968A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8038426A JPH09227968A (en) 1996-02-26 1996-02-26 Manufacture of cobalt-base alloy for magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8038426A JPH09227968A (en) 1996-02-26 1996-02-26 Manufacture of cobalt-base alloy for magnetic recording medium

Publications (1)

Publication Number Publication Date
JPH09227968A true JPH09227968A (en) 1997-09-02

Family

ID=12524996

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8038426A Pending JPH09227968A (en) 1996-02-26 1996-02-26 Manufacture of cobalt-base alloy for magnetic recording medium

Country Status (1)

Country Link
JP (1) JPH09227968A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009074175A (en) * 2008-09-29 2009-04-09 Mitsubishi Materials Corp Stock for vapor deposition, and information recording medium

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009074175A (en) * 2008-09-29 2009-04-09 Mitsubishi Materials Corp Stock for vapor deposition, and information recording medium

Similar Documents

Publication Publication Date Title
US6458182B2 (en) Process for producing high-purity Mn materials
US5234512A (en) Fe-ni alloy sheet for shadow mask, excellent in etching pierceability, preventing sticking during annealing, and inhibiting production of gases
US4440720A (en) Magnet alloy useful for a magnetic recording and reproducing head and a method of manufacturing thereof
KR920004678B1 (en) METHOD FOR MANUFACTURING Ni-Fe ALLOY SHEET HAVING EXCELLENT DC MAGNETIC PROPERTY AND EXCELLENT AC MAGNETIC PROPERTY
JPH08209306A (en) Iron-nickel alloy with low coefficient of thermal expansion
JPH09227968A (en) Manufacture of cobalt-base alloy for magnetic recording medium
JP3076141B2 (en) Magnetic thin film target material and method of manufacturing the same, Fe-MC soft magnetic film and method of manufacturing the same, and magnetic head and magnetic recording / reproducing apparatus using the same
JP3396420B2 (en) Mn-Ir alloy sputtering target for forming magnetic thin film and Mn-Ir alloy magnetic thin film
JPH05247642A (en) Target member and manufacture therefor
JPH07252565A (en) Cobalt-based alloy for magnetic recording medium and its production
JP4573381B2 (en) Manufacturing method of sputtering target
JPH0754069A (en) Production of cobalt-based alloy for magnetic recording medium
JPH0517819A (en) Production of soft-magnetic alloy having fine crystal
JPS62186511A (en) Target member
JPS63195234A (en) Manufacture of cobalt-base alloy for magnetic recording medium
JP2636604B2 (en) Soft magnetic steel excellent in direct current magnetization characteristics and coating adhesion, and method for producing the same
JPH0430451B2 (en)
JP3103458B2 (en) Material for evaporation
JPH0790515A (en) Iron-base amorphous alloy increased in magnetic flux density and reduced in iron loss
JPH0288746A (en) High permeability magnetic material
JP2000160330A (en) Cobalt-nickel alloy sputtering target and its production
JPS5810462B2 (en) Fe↓-Cr↓-Co magnetic alloy
JPS63206466A (en) Fe-si-base alloy for vapor deposition
JPS61189609A (en) Magnetic material for magnetic recording medium
JP2020202006A (en) Co-BASED ALLOY FOR SOFT MAGNETIC LAYER OF MAGNETIC RECORDING MEDIA