JPS6386805A - Production of amorphous alloy powder - Google Patents

Production of amorphous alloy powder

Info

Publication number
JPS6386805A
JPS6386805A JP22995586A JP22995586A JPS6386805A JP S6386805 A JPS6386805 A JP S6386805A JP 22995586 A JP22995586 A JP 22995586A JP 22995586 A JP22995586 A JP 22995586A JP S6386805 A JPS6386805 A JP S6386805A
Authority
JP
Japan
Prior art keywords
powder
amorphous alloy
hydrogen
strip
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22995586A
Other languages
Japanese (ja)
Inventor
Nobuyuki Morito
森戸 延行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP22995586A priority Critical patent/JPS6386805A/en
Publication of JPS6386805A publication Critical patent/JPS6386805A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

PURPOSE:To obtain amorphous alloy powder which is particularly excellent for powder metallurgy and catalyst or as a raw material for a composite material by absorbing hydrogen into a thin amorphous alloy strip manufactured by a quick liquid cooling method, then pulverizing the alloy to powder. CONSTITUTION:The thin amorphous strip is formed by the quick liquid cooling method; i.e., by supplying a molten alloy continuously from a pouring nozzle onto a cooling roll rotating at a high speed and quickly cooling the molten alloy on the surface of said roll to solidify. The thin amorphous alloy strip is then cathodically reduced in an electrolyte soln., by which the strip is subjected to an embrittlement treatment to absorb the hydrogen therein. The embrittled thin amorphous alloy strip is thereafter pulverized to the powder, by which the desired amorphous alloy powder is obtd. The powder is dehydrogenated by heating the powder at the crystallization temp. or below after the pulverization to obtain the amorphous alloy powder which does not contain the hydrogen in the case of using the powder in an application where the remaining of a slight amt. of the hydrogen in the alloy powder is not desired.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、非晶質合金粉末特に粉末冶金用、触媒用ある
いは複合材料の原料として優れた非晶質合金粉末の製造
方法に関するものである。
[Detailed Description of the Invention] (Industrial Application Field) The present invention relates to a method for producing amorphous alloy powder, particularly an amorphous alloy powder that is excellent for powder metallurgy, catalyst use, or as a raw material for composite materials. .

(従来の技術) 非晶質合金粉末の製造方法としては、特開昭57−29
505号において、オリフィス用開口部から溶湯を回転
カップ内壁の冷却流体中に噴射して急速凝固させ、つづ
いて冷却流体から固体粉体を回収する方法が開示されて
いる。
(Prior art) A method for producing amorphous alloy powder is disclosed in Japanese Patent Application Laid-open No. 57-29.
No. 505, a method is disclosed in which molten metal is injected through an orifice opening into a cooling fluid on the inner wall of a rotating cup for rapid solidification, and solid powder is subsequently recovered from the cooling fluid.

また特開昭58−6907号では、上下2段の回転ロー
ルを設け、上段の単ロールまたは双ロールに溶湯を落下
供給して液滴に分断し、遠心力によって高速で放出させ
た分断液滴流を下段の冷却回転ロール表面上に衝突させ
て、急速凝固させることによって非晶質合金粉末を製造
する方法が開示されている。
Furthermore, in JP-A No. 58-6907, two stages of rotating rolls, upper and lower, are provided, and molten metal is dropped into the single roll or twin rolls in the upper stage to break it into droplets, and the separated droplets are released at high speed by centrifugal force. A method is disclosed for producing amorphous alloy powder by impinging a stream onto the surface of a lower tier of chilled rotating rolls for rapid solidification.

さらに特公昭60〜401号には、リボン状の非晶質合
金を作製した後、結晶化温度以下で熱処理して、結晶質
相の生成をひき起こさずに脆化させ、次いで粉末状に粉
砕する方法が提案されている。
Furthermore, in Japanese Patent Publication No. 60-401, after producing a ribbon-shaped amorphous alloy, it is heat-treated at a temperature below the crystallization temperature to embrittle it without causing the formation of a crystalline phase, and then pulverized into powder. A method has been proposed.

(発明が解決しようとする問題点) 前記特開昭57−29505号の方法では、長時間の製
造に伴い、開口部が次第に溶損して拡大し、生成粉体径
が変化してしまう欠点がある他、生成粉体を冷却液体か
ら分離する必要があった。
(Problems to be Solved by the Invention) The method of JP-A No. 57-29505 has the disadvantage that the opening gradually melts and expands during long-term production, resulting in a change in the diameter of the produced powder. In addition, it was necessary to separate the produced powder from the cooling liquid.

また、前記特開昭58−6907号の方法で得られる非
晶質合金粉末は、その粒度が20〜500μmと広範囲
にわたり、かなりの粗粒が混在することの他、装置全体
を不活性ガス雰囲気で覆わない限り粉体表面の酸化を防
止できないところに問題があった。
Furthermore, the amorphous alloy powder obtained by the method of JP-A No. 58-6907 has a wide range of particle sizes, ranging from 20 to 500 μm, with considerable coarse particles mixed in, and the entire apparatus is heated in an inert gas atmosphere. The problem was that oxidation of the powder surface could not be prevented unless it was covered with.

さらに、前記特公昭60−401号の方法は、第1工程
でリボンを作るため高い非晶質度を確保することが可能
であり、非晶質相100%の粉末を製造できる利点はあ
るが、一方、第2工程で脆化のための熱処理を施さねば
ならないなど煩雑な工程を必要とした。
Furthermore, the method disclosed in Japanese Patent Publication No. 60-401 has the advantage that it is possible to ensure a high degree of amorphism because the ribbon is produced in the first step, and that powder with 100% amorphous phase can be produced. On the other hand, it required complicated steps such as heat treatment for embrittlement in the second step.

(問題点を解決するための手段) 本発明は、従来技術の有する前記問題点を除去・改善す
ることのできる製造方法を提供することを目的とするも
のであり、特許請求の範囲記↓゛2の製造方法を提供す
ることによって前記目的を達成することができる。すな
わち本発明は、1、液体急冷法により作製した非晶質合
金薄帯に水素吸収脆化処理を施して、該非晶質合金薄帯
中に水素を吸収させた後、粉末状に粉砕することを特徴
とする非晶質合金粉末の製造方法。
(Means for Solving the Problems) The present invention aims to provide a manufacturing method that can eliminate and improve the above-mentioned problems of the prior art, and the scope of the claims is as follows: The above object can be achieved by providing the second manufacturing method. That is, the present invention includes 1. subjecting an amorphous alloy ribbon produced by a liquid quenching method to hydrogen absorption embrittlement treatment to absorb hydrogen into the amorphous alloy ribbon, and then pulverizing it into a powder form. A method for producing an amorphous alloy powder characterized by:

2、前記水素吸収脆化処理は、電解質溶液中で非晶質合
金薄帯に陰極還元処理を施すことを特徴とする特許請求
の範囲第1項記載の非晶質合金粉末の製造方法。
2. The method for producing an amorphous alloy powder according to claim 1, wherein the hydrogen absorption embrittlement treatment is performed by subjecting the amorphous alloy ribbon to a cathodic reduction treatment in an electrolyte solution.

3、液体急冷法により作製した非晶質合金薄帯に水素吸
収脆化処理を施して、該非晶質合金薄帯中に水素を吸収
させた後、粉末状に粉砕し、さらに脱水素処理を施すこ
とを特徴とする非晶質合金粉末の製造方法 に関するものである。
3. The amorphous alloy ribbon produced by the liquid quenching method is subjected to hydrogen absorption embrittlement treatment to absorb hydrogen into the amorphous alloy ribbon, and then pulverized into powder and further subjected to dehydrogenation treatment. The present invention relates to a method for producing an amorphous alloy powder, which is characterized in that the present invention comprises the steps of:

次に本発明の詳細な説明する。Next, the present invention will be explained in detail.

本発明は、第一工程で液体急冷法すなわち溶融合金を注
湯ノズルから高速で回転する冷却ロールの表面に連続し
て供給し、該ロール表面で急冷凝固して非晶質合金薄帯
を形成させ、次いで電解質溶液中で非晶質合金薄帯を陰
極還元し、水素を吸収させる脆化処理を施し、脆化され
た非晶質合金薄帯を粉末状に粉砕することを特徴とする
非晶質合金粉末の製造方法である0合金粉末中に微量の
水素が残留することを望まない用途に用いる場合は、粉
砕後に結晶化温度以下で加熱すること等により、脱水素
して水素を含まない非晶質合金薄帯を製造することがで
きる。
The present invention utilizes a liquid quenching method in the first step, in which molten alloy is continuously supplied from a pouring nozzle to the surface of a cooling roll rotating at high speed, and is rapidly solidified on the surface of the roll to form an amorphous alloy ribbon. The amorphous alloy ribbon is then cathodically reduced in an electrolyte solution, subjected to an embrittlement treatment to absorb hydrogen, and the embrittled amorphous alloy ribbon is pulverized into powder. When using the crystalline alloy powder for applications where it is not desirable for a small amount of hydrogen to remain in the 0 alloy powder, it may be dehydrogenated to contain hydrogen by heating below the crystallization temperature after pulverization. It is possible to produce a non-amorphous alloy ribbon.

上記非晶質合金薄帯の脆化処理として、例えば電解質溶
液中で非晶質合金薄帯を陰極にして電解することにより
、薄帯表面で水素を発生させ、50〜200ρpa1の
該水素を薄帯に吸収させることにより薄帯を脆化させる
。ここで、薄帯に水素を吸収させる手段をとった理由は
、非晶質合金の原子配列は無秩序であり、結晶質合金よ
り密度が低く、原子間の空隙が大きいため、水素を吸収
し易いからである。この水素による脆化処理を非晶質合
金薄帯に施し、粒度が適正な粉体に粉砕する粉末化のた
めの前処理手段として用いた点に、本発明の特徴がある
As the embrittlement treatment of the amorphous alloy ribbon, for example, by electrolyzing the amorphous alloy ribbon in an electrolyte solution using the amorphous alloy ribbon as a cathode, hydrogen is generated on the ribbon surface, and the hydrogen of 50 to 200 ρpa1 is The ribbon becomes brittle by being absorbed into the ribbon. Here, the reason why we adopted the method of absorbing hydrogen into the ribbon is that the atomic arrangement of amorphous alloys is disordered, the density is lower than that of crystalline alloys, and the gaps between atoms are large, so it is easy to absorb hydrogen. It is from. The present invention is characterized in that this embrittlement treatment with hydrogen is applied to an amorphous alloy ribbon and used as a pretreatment means for pulverizing the amorphous alloy ribbon into powder having an appropriate particle size.

なお、水素吸収脆化処理方法としては、上記電解質溶液
中での処理の他に酸処理やH2ガス中での加熱等を採用
することができる。
Note that as a hydrogen absorption embrittlement treatment method, in addition to the treatment in the electrolyte solution described above, acid treatment, heating in H2 gas, etc. can be adopted.

次に本発明を非晶質合金粉末の製造方法について具体的
に説明する。
Next, a method for manufacturing an amorphous alloy powder according to the present invention will be specifically explained.

FetqBBS1sG+組成の溶融合金を内部強制水冷
方式の銅合金製冷却ロール面上に、注湯ノズルのスリッ
ト状開口部を通して射出し、急冷凝固させ、板厚25μ
m、板中100 mmの非晶質合金薄帯が作製された。
A molten alloy having a composition of FetqBBS1sG+ is injected onto the surface of a copper alloy cooling roll using an internal forced water cooling system through the slit-shaped opening of a pouring nozzle, and rapidly solidified to form a sheet with a thickness of 25μ.
An amorphous alloy ribbon with a thickness of 100 mm and a thickness of 100 mm in the plate was prepared.

該非晶質合金薄帯は、χ線回折により結晶相のピークは
検出されず非晶質であり、また180度密着曲げで割れ
ることはなく、靭性に優れていた。従って、この状態の
非晶質合金薄帯片をボールミルに入れて粉砕しようとし
たがほとんど破砕できなかった。
The amorphous alloy ribbon was found to be amorphous with no crystal phase peak detected by chi-ray diffraction, and it did not crack during 180 degree tight bending and had excellent toughness. Therefore, an attempt was made to crush the amorphous alloy thin strip in this state in a ball mill, but it could hardly be crushed.

LN  H,SO,水溶液中で、前記非晶質合金薄帯を
陰極、白金板を対極として、室温で10分間通電し、約
150 ppa+の水素を吸収させ脆化処理を施した、
電解処理後の非晶質合金薄帯は脆くなり、180度密若
向げには耐えられなくなった。X線回折により結晶相の
ピークは検出されず非晶質であることが確認できた。
In an LN H, SO, aqueous solution, the amorphous alloy ribbon was used as a cathode and the platinum plate was used as a counter electrode, and electricity was applied at room temperature for 10 minutes to absorb about 150 ppa+ hydrogen and perform embrittlement treatment.
After electrolytic treatment, the amorphous alloy ribbon became brittle and could no longer withstand 180-degree bending. No crystal phase peak was detected by X-ray diffraction, and it was confirmed that the material was amorphous.

水素による脆化処理を施した非晶質合金薄帯片をボール
ミル中に入れて2時間運転したところ、平均粉体径は約
50 tt mとなった。脆化非晶質合金薄帯片の粉砕
は、ボールミル、クラッシャーミルおよびハンマーミル
等の公知手段のいずれもが適用できる。該粉砕において
、粉末の汚染を掻力低減するためには、前記手段の摩耗
部分に超硬合金やセラミックス等を用いるか、硬質表面
被覆処理を施すことが望ましい。また粉砕工程で表面酸
化が問題になる場合には、窒素、アルゴン等の中性雰囲
気あるいは真空中で粉砕することが望ましい。
When an amorphous alloy thin strip subjected to hydrogen embrittlement treatment was placed in a ball mill and operated for 2 hours, the average powder diameter was about 50 tt m. Any known means such as a ball mill, a crusher mill, and a hammer mill can be used to crush the embrittled amorphous alloy thin strip. In order to reduce contamination of the powder by scratching force during the pulverization, it is desirable to use cemented carbide, ceramics, etc. for the worn portion of the means, or to apply a hard surface coating treatment. Furthermore, if surface oxidation becomes a problem during the pulverization process, it is desirable to pulverize in a neutral atmosphere such as nitrogen or argon, or in a vacuum.

非晶質合金粉末を粉末冶金の原料として用いる場合、粉
末中の水素の存在は成形焼結材の機械的性質を損なうこ
とがある。このような用途に用いる非晶質合金粉末にあ
っては脱水素処理が必要となる。脱水素処理として、本
発明においては例えば加熱処理を提案する。非晶質合金
薄帯に吸収された水素は、微粉砕処理中に80%以上の
がなりの量が放出されるが、100〜300℃の加熱に
よってさらに容易に放出される。この水素放出は、中性
ガスの気流あるいは真空中で行うことにより促進される
。なお、合金粉末を粉末冶金等において、均質組成や微
細結晶粒組織を得るために用いる際は、必ずしも非晶質
構造を要求されないので、その場合には結晶化温度以上
にまで加熱し、脱水素を短時間に施すこともできる。
When amorphous alloy powder is used as a raw material for powder metallurgy, the presence of hydrogen in the powder may impair the mechanical properties of the shaped and sintered material. Amorphous alloy powder used for such uses requires dehydrogenation treatment. As the dehydrogenation treatment, heat treatment, for example, is proposed in the present invention. More than 80% of the hydrogen absorbed in the amorphous alloy ribbon is released during the pulverization process, and it is more easily released by heating at 100 to 300°C. This hydrogen release is promoted by performing it in a neutral gas stream or in a vacuum. When using alloy powder to obtain a homogeneous composition or fine grain structure in powder metallurgy, etc., an amorphous structure is not necessarily required, so in that case, it is heated to a temperature higher than the crystallization temperature and dehydrogenated. can also be applied in a short period of time.

本発明に用いる非晶質合金の形状は、ストリップ状、リ
ボン状、フィラメント状、繊維状のいずれであってもよ
い。
The shape of the amorphous alloy used in the present invention may be any of a strip, a ribbon, a filament, and a fiber.

次に本発明を実施例について説明する。Next, the present invention will be explained with reference to examples.

(実施例1) Fet、B+zSiaC+組成の溶融合金を注湯ノズル
を通して、内部強制水冷方式のCu−Be合金製冷却ロ
ール表面に射出し、板厚22μmの非晶質合金薄帯を作
製した。ロール周速25 m/see、スリット形状は
0.6lMX 50mmとした。X線回折により非晶質
であることを確認した0次にIN  H(J水溶液中で
、非晶質合金薄帯を陰極、白金板を対極として、室温で
10分間3A通電し、薄帯に約100ppn+の水素を
吸収させ脆化処理を施した。次いで鉄製乳鉢中で粗砕し
て、数n角程度のりん片状とした後、アルミナ製ボール
ミル中で3時間粉砕したところ、平均粒径は約35μm
の非晶質合金粉末が得られた。
(Example 1) A molten alloy having a composition of Fet, B+zSiaC+ was injected through a pouring nozzle onto the surface of a cooling roll made of a Cu-Be alloy with internal forced water cooling, to produce an amorphous alloy ribbon with a thickness of 22 μm. The peripheral speed of the roll was 25 m/see, and the slit shape was 0.6 lMX 50 mm. In a zero-order IN H (J aqueous solution), which was confirmed to be amorphous by X-ray diffraction, a 3A current was applied to the ribbon at room temperature for 10 minutes using the amorphous alloy ribbon as a cathode and a platinum plate as a counter electrode. It was subjected to embrittlement treatment by absorbing about 100 ppn+ of hydrogen.Then, it was roughly crushed in an iron mortar to form flakes of several nanometers square, and then crushed in an alumina ball mill for 3 hours. is about 35μm
An amorphous alloy powder was obtained.

(実施例2) NiysB+5SLo組成の溶融合金を前記実施例1と
同様に処理して、板厚25μmの非晶質合金薄帯を作製
した0次にlNNaOH水溶液で非晶質合金を陰極、白
金板を対極として、5分間、  5A通電し、薄帯に約
120 PP1lの水素を吸収させ脆化処理を施した0
次いで鉄製乳鉢中で粗砕した後、ボールミル中で3時間
粉砕してから、250℃で10分間加熱し、脱水素した
。得られた粉体の平均粒径は約40μmであり、X線回
折により非晶質であることを確認した。
(Example 2) A molten alloy having a composition of NiysB+5SLo was treated in the same manner as in Example 1 to produce an amorphous alloy ribbon with a thickness of 25 μm.The amorphous alloy was used as a cathode and a platinum plate in a 0-order lN NaOH aqueous solution. The thin strip was subjected to embrittlement treatment by applying a current of 5 A for 5 minutes and absorbing about 120 PP1L of hydrogen using the material as a counter electrode.
Next, the mixture was roughly crushed in an iron mortar, then crushed in a ball mill for 3 hours, and then heated at 250°C for 10 minutes to dehydrogenate. The average particle size of the obtained powder was about 40 μm, and it was confirmed by X-ray diffraction that it was amorphous.

(比較例1) 前記実施例2で得たNi75BI5Sil。非晶質合金
薄帯に水素による脆性処理を施すことなく、乳鉢中で粗
砕しようとしたがりん片状にすることさえできなかった
(Comparative Example 1) Ni75BI5Sil obtained in Example 2. An attempt was made to crush the amorphous alloy ribbon in a mortar without subjecting it to embrittlement treatment using hydrogen, but it was not even possible to crush it into flakes.

本発明の急冷鋳造、水素吸収脆化処理および粉砕の簡略
な工程に従う非晶質合金粉末の製造方法により、非晶質
塵が高く、粒径が適正で、またFn径分布の制御も容易
であり、表面清浄度の高い優れた非晶質合金粉末を製造
することができた。
The method for producing amorphous alloy powder according to the present invention according to the simple steps of rapid cooling casting, hydrogen absorption embrittlement treatment, and pulverization provides high amorphous dust, appropriate particle size, and easy control of Fn size distribution. We were able to produce an excellent amorphous alloy powder with high surface cleanliness.

(発明の効果) 本発明によれば、簡略な工程により非晶質塵が高く、粒
径が適正でまた粒径分布の制御も容易であり、表面清浄
度の高い、粉末冶金用あるいは複合材料用に用いて優れ
た非晶質合金粉末を製造することができ、その効果は大
きい。
(Effects of the Invention) According to the present invention, a material for powder metallurgy or composite material with high amorphous dust, appropriate particle size, easy control of particle size distribution, and high surface cleanliness can be obtained through a simple process. It can be used to produce excellent amorphous alloy powder, and its effects are great.

Claims (1)

【特許請求の範囲】 1、液体急冷法により作製した非晶質合金薄帯に水素吸
収脆化処理を施して、該非晶質合金薄帯中に水素を吸収
させた後、粉末状に粉砕することを特徴とする非晶質合
金粉末の製造方法。 2、前記水素吸収脆化処理は、電解質溶液中で非晶質合
金薄帯に陰極還元処理を施すことを特徴とする特許請求
の範囲第1項記載の非晶質合金粉末の製造方法。 3、液体急冷法により作製した非晶質合金薄帯に水素吸
収脆化処理を施して、該非晶質合金薄帯中に水素を吸収
させた後、粉末状に粉砕し、さらに脱水素処理を施すこ
とを特徴とする非晶質合金粉末の製造方法。
[Claims] 1. Hydrogen absorption embrittlement treatment is applied to an amorphous alloy ribbon produced by a liquid quenching method to absorb hydrogen into the amorphous alloy ribbon, and then pulverized into powder. A method for producing an amorphous alloy powder, characterized by: 2. The method for producing an amorphous alloy powder according to claim 1, wherein the hydrogen absorption embrittlement treatment is performed by subjecting the amorphous alloy ribbon to a cathodic reduction treatment in an electrolyte solution. 3. The amorphous alloy ribbon produced by the liquid quenching method is subjected to hydrogen absorption embrittlement treatment to absorb hydrogen into the amorphous alloy ribbon, and then pulverized into powder and further subjected to dehydrogenation treatment. A method for producing an amorphous alloy powder, the method comprising:
JP22995586A 1986-09-30 1986-09-30 Production of amorphous alloy powder Pending JPS6386805A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22995586A JPS6386805A (en) 1986-09-30 1986-09-30 Production of amorphous alloy powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22995586A JPS6386805A (en) 1986-09-30 1986-09-30 Production of amorphous alloy powder

Publications (1)

Publication Number Publication Date
JPS6386805A true JPS6386805A (en) 1988-04-18

Family

ID=16900326

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22995586A Pending JPS6386805A (en) 1986-09-30 1986-09-30 Production of amorphous alloy powder

Country Status (1)

Country Link
JP (1) JPS6386805A (en)

Similar Documents

Publication Publication Date Title
CN109175391B (en) Method for in-situ synthesis of nano-oxide particle dispersion strengthened alloy
JPWO2006051737A1 (en) Sputtering target for producing metallic glass film and method for producing the same
JP2001342506A (en) Method for production of powder material and method for producing target material
JPS6289803A (en) Powdery particle for fine granular hard alloy and its production
JPH0660386B2 (en) Metal semi-finished product and manufacturing method thereof
US5725042A (en) Method for producing hydrogen-absorbing alloy
WO2006051736A1 (en) Hydrogen separation membrane, sputtering target for forming of hydrogen separation membrane, and process for producing the same
JP3604308B2 (en) Raw material alloy for nanocomposite magnet, powder and manufacturing method thereof, and nanocomposite magnet powder and magnet manufacturing method
JPS6386805A (en) Production of amorphous alloy powder
JP2954711B2 (en) W-Ti alloy target and manufacturing method
US20030168333A1 (en) Metal or metal alloy based sputter target and method for the production thereof
JP3721557B2 (en) Thermoelectric material manufacturing method
DE10064056B4 (en) Process for producing a cast iron sintered body with high hardness and high chromium content
JPH0119448B2 (en)
JPH04362105A (en) Production of fine intermetallic compound powder
JP2527105B2 (en) Method for manufacturing thin plate duplex stainless steel slab
JPS6260803A (en) Production of amorphous alloy powder
HU199904B (en) Process for production of alloy-dust based on rare earth metall-cobalt of improved quality
JPH0250969B2 (en)
JP2005303326A (en) MnSi1.7 SYSTEM THERMOELECTRIC MATERIAL
JPS6383204A (en) Production of composite amorphous alloy powder
JPH06306413A (en) Production of hydrogen storage alloy powder
JPS6260802A (en) Production of metallic powder
JPS63100107A (en) Production of amorphous alloy powder
JPS62256902A (en) Intermetallic al3ti powder and its production