JPS6260803A - Production of amorphous alloy powder - Google Patents

Production of amorphous alloy powder

Info

Publication number
JPS6260803A
JPS6260803A JP20059085A JP20059085A JPS6260803A JP S6260803 A JPS6260803 A JP S6260803A JP 20059085 A JP20059085 A JP 20059085A JP 20059085 A JP20059085 A JP 20059085A JP S6260803 A JPS6260803 A JP S6260803A
Authority
JP
Japan
Prior art keywords
ribbon
roll
amorphous alloy
strip
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20059085A
Other languages
Japanese (ja)
Inventor
Nobuyuki Morito
森戸 延行
Shinji Kobayashi
真司 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP20059085A priority Critical patent/JPS6260803A/en
Publication of JPS6260803A publication Critical patent/JPS6260803A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To stably produce powder of a proper particle size in simple stages by continuously feeding a molten alloy to the surface of a cooling roll, solidifying it by rapid cooling on the surface of the roll, separating a formed thin strip and crushing it. CONSTITUTION:A molten alloy is continuously fed to the surface of a cooling roll 2 rotating at a high speed from a pouring nozzle 1. It is solidified by rapid cooling in close contact with the surface of the roll 2 to form a thin amorphous alloy strip (amorphous alloy ribbon) 4. When the temp. of the strip 4 is within the range of the crystallization temp. -200 deg.C - the crystallization temp. +50 deg.C, air is jetted from an air nozzle 3 to separate the strip 4. The strip 4 is then crushed. By this method, amorphous powder can easily be produced only in two stages, that is, rapid cooling and crushing stages.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、非晶質合金粉末ごとに粉末冶金用あるいは
複合材料用の原料としての用途に用いて好適な非晶質合
金粉末の製造方法に関し、とくに処理工程の有利な簡略
化を図ったものである。
Detailed Description of the Invention (Field of Industrial Application) This invention provides a method for producing amorphous alloy powder suitable for use as a raw material for powder metallurgy or composite materials. In particular, the present invention provides an advantageous simplification of the processing steps.

(従来の技術) 非晶質合金粉末を製造する方法どしては、特開昭57−
29505号公報において、オリフィス用開口部から溶
湯を回転カップ内壁の冷却流体中に噴射して急速凝固さ
せ、つづいて冷却流体から固体粉体を回収する方法が提
案されている。
(Prior art) A method for producing amorphous alloy powder is disclosed in Japanese Patent Application Laid-Open No. 57-
Japanese Patent No. 29505 proposes a method in which molten metal is injected from an orifice opening into a cooling fluid on the inner wall of a rotary cup to rapidly solidify it, and then solid powder is recovered from the cooling fluid.

しかしながらこの方法では長時間の製造に伴い、開口部
が次第に溶損して拡大し、生成粉体径が変化してしまう
欠点がある他、生成粉体を冷却液体から分離する工程が
必要であった。
However, this method had the disadvantage that the opening gradually eroded and expanded during long production times, changing the diameter of the produced powder, and also required a step to separate the produced powder from the cooling liquid. .

また特開昭58−6907号公報では、上下2段の回転
ロールを設け、上段の単または双ロールに溶湯を落下供
給して、液滴に分断し、遠心力によって高速で放出させ
たこの分断液滴を下段の冷却回転ロール表面上に衝突さ
せて急速凝固させることによって非晶質合金粉末を製造
する方法が提案されている。
Furthermore, in Japanese Patent Application Laid-Open No. 58-6907, two stages of rotating rolls are provided, upper and lower stages, and the molten metal is dropped and supplied to the single or twin rolls in the upper stage, divided into droplets, and released at high speed by centrifugal force. A method has been proposed for producing an amorphous alloy powder by colliding droplets onto the surface of a lower cooling rotary roll and causing rapid solidification.

しかしながらこの方法で得られる非晶質合金粉末は、そ
の粒度が20〜506μmと広範囲にわたりかなりの粗
粒が混在することの他、装置全体を不活性ガス雰囲気で
覆われない限り、粉体表面の酸化を防止できないという
ところに問題があった。
However, the amorphous alloy powder obtained by this method has a wide range of particle sizes ranging from 20 to 506 μm and contains quite coarse particles, and unless the entire apparatus is covered with an inert gas atmosphere, the powder surface The problem was that oxidation could not be prevented.

さらに特公昭60−401号公報には、リボン状の非晶
質合金を作製したのち、結晶化温度以下で熱処理して、
結晶質相の生成を引起さずに脆化させ、次いで粉末状に
粉砕する方法が提案されている。
Furthermore, in Japanese Patent Publication No. 60-401, after producing a ribbon-shaped amorphous alloy, it is heat-treated at a temperature below the crystallization temperature.
A method has been proposed in which the material is embrittled without causing the formation of a crystalline phase and then ground into powder.

この方法は、第一工程でリボンを作るため、高い非晶質
度を確保することが可能であり、非晶質相100%の粉
末を製造できる利点は”あるが、その一方で第二工程に
おいて、脆化のための熱処理を施さねばならないなど煩
雑な工程を必要とする欠点があった。
Since this method creates a ribbon in the first step, it is possible to ensure a high degree of amorphousness, and it has the advantage of producing powder with 100% amorphous phase, but on the other hand, the second step However, there was a drawback in that it required complicated steps such as heat treatment to make it embrittle.

(発明が解決しようとする問題点) 上述したように従来法はいずれも、煩雑な処理工程を必
要とすることの他、必ずしも適正粒径の粉末が得られる
とは限らないところに問題を残していた。
(Problems to be Solved by the Invention) As mentioned above, all of the conventional methods require complicated processing steps and leave problems in that it is not always possible to obtain powder with an appropriate particle size. was.

この発明は、上記の問題を有利に解決するもので、急冷
鋳造−粉砕の2工程のみで、しかも適正粒径の粉末を安
定して製造することができる非晶質合金粉末の製造方法
を提案することを目的とする。
This invention advantageously solves the above problems, and proposes a method for producing amorphous alloy powder that can stably produce powder with an appropriate particle size using only two steps: rapid casting and pulverization. The purpose is to

(問題点を解決するための手段) すなわちこの発明は、合金溶湯を、その注湯ノズルから
、高速で回転する冷却ロールの表面に連続して供給し、
該ロール表面に密着帯同させながら急冷凝固して非晶質
合金薄帯を形成させつつ、該薄帯の温度が(結晶化温度
+50°C〜結晶化温度−200℃)の温度範囲におい
て冷却ロール表面から離脱させ、しかるのち粉砕するこ
とを特徴とする非晶質合金粉末の製造方法である。
(Means for Solving the Problems) That is, the present invention continuously supplies molten alloy from a pouring nozzle to the surface of a cooling roll rotating at high speed,
While forming an amorphous alloy ribbon through rapid cooling and solidification while adhering closely to the surface of the roll, the temperature of the ribbon is (crystallization temperature +50°C to crystallization temperature -200°C) on a cooling roll. This is a method for producing amorphous alloy powder, which is characterized by separating the powder from the surface and then pulverizing it.

以下この発明の解明経緯について説明する。The background to the elucidation of this invention will be explained below.

第1図に示したような構成の単ロール法によって通常の
非晶質合金リボンを作製する場合、注湯ノズル1から射
出された溶湯が急冷凝固されて得られたリボン2の温度
が少なくとも約200℃になるまで、冷却ロール3に密
着させながら冷却を強制すると、靭性の高い、非晶質度
100%のリボンが作製される。
When a normal amorphous alloy ribbon is produced by the single roll method having the configuration shown in FIG. By forcing the ribbon to cool to 200° C. while keeping it in close contact with the cooling roll 3, a ribbon with high toughness and 100% amorphousness is produced.

このとき冷却ロール3からのリボンのはく離を、第1図
のエアノズル4からのエアジェツトで行なう場合、エア
ノズル4の設置位置をずらすことによって、リボンの冷
却ロールに対する密着距離を適宜変更することができる
At this time, when the ribbon is peeled off from the cooling roll 3 using an air jet from the air nozzle 4 shown in FIG. 1, by shifting the installation position of the air nozzle 4, the distance in which the ribbon adheres to the cooling roll can be changed as appropriate.

エアノズル4を移動させ、エアジェツトの当る位置を次
第に注湯ノズル1側に近づけて、リボン2の密着距離を
短くしていくと、結晶質相が混在するようになる。そこ
でリボン密着距離の関数として、リボンの性状を種々調
べてみたところ、密着距離の減少とともに、 (11X線回折で調べた場合、非晶質単相−非晶質と結
晶質の混合相→結晶質単相と変化すること、(2)また
機械的性質は極めて靭い状態から脆いリボンへと変化す
ること、 (3)シかしながら機械的性質は極めて脆い状態ではあ
っても、X線的には完全に非晶質であり、しかもOSC
による熱分析試験でも結晶化による発熱ピークが明瞭に
確認できる状態のリボンを作製する条件が比較的広範囲
に存在すること(4)シたがってこの状態の非晶質合金
リボンを作製し、次いでボールミル、クラッシャーミル
、ハンマーミル等を用いて粉砕すれば、脆化焼鈍工程な
どを経ることなく、非晶質合金粉末を製造できること、 の知見を得た。
When the air nozzle 4 is moved and the position of the air jet is gradually brought closer to the pouring nozzle 1 side, thereby shortening the close contact distance of the ribbon 2, the crystalline phase becomes mixed. Therefore, we investigated various properties of the ribbon as a function of the ribbon adhesion distance, and found that as the adhesion distance decreased, (2) The mechanical properties change from an extremely tough state to a brittle ribbon; (3) However, even though the mechanical properties are extremely brittle, X-ray It is completely amorphous, and OSC
There is a relatively wide range of conditions for producing a ribbon in which the exothermic peak due to crystallization can be clearly confirmed even in thermal analysis tests conducted by We obtained the knowledge that by crushing using a crusher mill, hammer mill, etc., it is possible to produce amorphous alloy powder without going through the embrittlement annealing process.

そこで次に脆い非晶質合金を得るために、冷却ロールに
密着している非晶質合金薄帯を該ロールから離脱させる
べき時期について考察した。
Therefore, in order to obtain a brittle amorphous alloy, we considered the timing at which the amorphous alloy ribbon that is in close contact with the cooling roll should be separated from the roll.

FetJl+oSi+3組成の溶融合金を、直径300
 mmφの内部水冷式の銅合金製ロール面上にスリット
状ノズルを通して、射出した。このとき単ロールの回転
周速は35m/秒であった。
A molten alloy with a composition of FetJl+oSi+3 was
It was injected onto the surface of an internal water-cooled copper alloy roll of mmφ through a slit-shaped nozzle. At this time, the rotational circumferential speed of the single roll was 35 m/sec.

第2図に、リボンはく乱用エアノズルの設置場所を変え
て、リボンの密着距離を変化させ、該密着距離とリボン
性状との関係について調べた結果を示す。
FIG. 2 shows the results of investigating the relationship between the adhesion distance and ribbon properties by changing the installation location of the ribbon-peeling air nozzle and changing the adhesion distance of the ribbon.

この発明で目的とする非晶質合金粉末を粉砕法で製造す
る場合、粉砕前の出発原料は、非晶質で、かつ脆い合金
リボンでなければならないが、第2図に示した結果から
明らかなようにこの条件に適合する非晶質合金リボンは
、リボンの密着距離がロールの1/8周ないし1/4周
の時に、すなわちすボン温度で見ると約600°Cない
し約350℃まで冷却された時点で冷却ロールからはく
離された場合に得られることが判る。
When producing the amorphous alloy powder targeted by this invention by a pulverization method, the starting material before pulverization must be an amorphous and brittle alloy ribbon, which is clear from the results shown in Figure 2. An amorphous alloy ribbon that meets this condition has a temperature of about 600°C to about 350°C when the ribbon adhesion distance is from 1/8 to 1/4 of the roll, that is, from about 600°C to about 350°C in terms of carbon temperature. It can be seen that this is obtained when it is peeled off from the cooling roll at the time of cooling.

この非晶質合金の結晶化温度を昇温速度20℃/min
の熱分析で測定とだところ、約540 ”Cであること
が判明した。従って換言すれば好適なロール冷却終了温
度は結晶化温度より50℃高い温度ないし200℃低い
温度までの間である。そこで他の組成の非晶質合金につ
いても、適正なロール冷却終了温度について調査したと
ころ、1掲の実験結果と同じく、(結晶化温度+50℃
〜結晶化温度−200℃)であれば、所望の非晶質合金
薄帯が得られることが確かめられたのである。
The crystallization temperature of this amorphous alloy was increased at a heating rate of 20°C/min.
It was determined by thermal analysis to be approximately 540"C. In other words, the preferred roll cooling end temperature is between 50°C above the crystallization temperature and 200°C below the crystallization temperature. Therefore, when we investigated the appropriate roll cooling end temperature for amorphous alloys with other compositions, we found that (crystallization temperature + 50℃
It was confirmed that the desired amorphous alloy ribbon could be obtained if the crystallization temperature was -200°C).

脆化非晶質合金の粉砕には、ボールミル、グラフシャー
ミルおよびハンマーミル等の公知手段いずれもが適用で
きる。かかる粉砕において、粉末の汚染を極力低減する
ためには、これらの装置の摩耗部分に超硬合金やセラミ
ックス等を用いるか、表面被覆処理を施すことが望まし
い。また粉砕工程で表面酸化が問題になる場合には、窒
素、アルゴン等の中性雰囲気、あるいは真空中で粉砕す
ることが望ましい。
Any known means such as a ball mill, Grafshear mill, or hammer mill can be used to grind the embrittled amorphous alloy. In order to reduce contamination of powder as much as possible during such pulverization, it is desirable to use cemented carbide, ceramics, etc. for the worn parts of these devices, or to apply a surface coating treatment. Furthermore, if surface oxidation becomes a problem during the pulverization process, it is desirable to pulverize in a neutral atmosphere such as nitrogen or argon, or in a vacuum.

(作 用) この発明に従い得られる粉末は、組成が均一であるから
、この粉末を原料として、圧粉、焼結した部品の組織も
極めて微細で、均一なものとなり、通常の粉末を原料と
する場合に比べ、機械的性質の向上を図り得る。
(Function) Since the powder obtained according to the present invention has a uniform composition, the structure of parts compacted and sintered using this powder as a raw material is extremely fine and uniform. The mechanical properties can be improved compared to the case where the

(実施例) 実施例 I FeyoMO5Cr5B?Si+3組成の溶融合金を、
スリットノズルを介して、直径30cmの単ロール表面
に射出し、板厚30μmの非晶質合金リボンを作製する
に際し、リボン温度約450℃(非晶質リボンの結晶化
温度:550℃)で冷却ロールから離脱させた。
(Example) Example I FeyoMO5Cr5B? Molten alloy with Si+3 composition,
When injecting onto the surface of a single roll with a diameter of 30 cm through a slit nozzle to produce an amorphous alloy ribbon with a thickness of 30 μm, the ribbon is cooled at a temperature of approximately 450°C (crystallization temperature of amorphous ribbon: 550°C). Removed from roll.

かくして得られたリボンはX線的には非晶質であったが
、極めて脆く、その後ボールミルを使用して容易に粉砕
することができた。
Although the ribbon thus obtained was X-ray amorphous, it was extremely brittle and could then be easily ground using a ball mill.

実施例 2 Fe6゜B、。Si、。組成の溶融合金を実施例1と同
様に処理した。ただしリボン温度約400°C(非晶質
リボンの結晶化温度:540℃)で冷却ロールから離脱
させた。
Example 2 Fe6°B. Si,. A molten alloy of the composition was treated in the same manner as in Example 1. However, the ribbon was removed from the cooling roll at a temperature of about 400°C (crystallization temperature of amorphous ribbon: 540°C).

得られたリボンはX線的には非晶質であり、ボールミル
で容易に微粉砕することができた。
The obtained ribbon was X-ray amorphous and could be easily pulverized in a ball mill.

比較例 1 実施例2において、リボンはく離時のリボン温度を約2
00°Cとした。
Comparative Example 1 In Example 2, the ribbon temperature at the time of ribbon peeling was set to about 2
The temperature was 00°C.

得られたリボンはX&’i的には完全に非晶質であった
が、靭性が高く、そのためボールミルで粉砕することが
極めて困難であった。
Although the resulting ribbon was completely amorphous in terms of X&'i, it had high toughness and was therefore extremely difficult to mill in a ball mill.

(発明の効果) かくしてこの発明によれば、急冷鋳造−粉砕の2工程の
みで、非晶質合金粉末を容易に製造することができる。
(Effects of the Invention) Thus, according to the present invention, an amorphous alloy powder can be easily produced with only two steps: quench casting and pulverization.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、この発明に従う非晶質合金薄帯の製造要領説
明図、 第2図は、冷却ロールに対するリボンの密着距離と得ら
れたリボンの各性状との関係を示したグラフである。 第2図 9ホ゛ンの密着薯巨難
FIG. 1 is an explanatory diagram of the manufacturing procedure for an amorphous alloy ribbon according to the present invention, and FIG. 2 is a graph showing the relationship between the distance of adhesion of the ribbon to the cooling roll and each property of the obtained ribbon. Fig. 2 9-hole close contact huge difficulty

Claims (1)

【特許請求の範囲】[Claims] 1、合金溶湯を、その注湯ノズルから、高速で回転する
冷却ロールの表面に連続して供給し、該ロール表面に密
着帯同させながら急冷凝固して非晶質合金薄帯を形成さ
せつつ、該薄帯の温度が(結晶化温度+50℃〜結晶化
温度−200℃)の温度範囲において冷却ロール表面か
ら離脱させ、しかるのち粉砕することを特徴とする非晶
質合金粉末の製造方法。
1. Continuously supplying the molten alloy from the pouring nozzle to the surface of a cooling roll rotating at high speed, and rapidly solidifying it while closely adhering to the roll surface to form an amorphous alloy ribbon, A method for producing an amorphous alloy powder, characterized in that the ribbon is separated from the surface of a cooling roll in a temperature range of (crystallization temperature +50°C to crystallization temperature -200°C) and then pulverized.
JP20059085A 1985-09-12 1985-09-12 Production of amorphous alloy powder Pending JPS6260803A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20059085A JPS6260803A (en) 1985-09-12 1985-09-12 Production of amorphous alloy powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20059085A JPS6260803A (en) 1985-09-12 1985-09-12 Production of amorphous alloy powder

Publications (1)

Publication Number Publication Date
JPS6260803A true JPS6260803A (en) 1987-03-17

Family

ID=16426875

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20059085A Pending JPS6260803A (en) 1985-09-12 1985-09-12 Production of amorphous alloy powder

Country Status (1)

Country Link
JP (1) JPS6260803A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991004810A1 (en) * 1989-10-03 1991-04-18 The Australian National University Ball milling apparatus and method, and production of metallic amorphous materials
JP2000158098A (en) * 1998-12-01 2000-06-13 Shin Etsu Chem Co Ltd Apparatus for producing hydrogen-storage alloy and production thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991004810A1 (en) * 1989-10-03 1991-04-18 The Australian National University Ball milling apparatus and method, and production of metallic amorphous materials
JP2000158098A (en) * 1998-12-01 2000-06-13 Shin Etsu Chem Co Ltd Apparatus for producing hydrogen-storage alloy and production thereof

Similar Documents

Publication Publication Date Title
KR100642328B1 (en) raw material alloy for nanocomposite magnet, raw material alloy powder for the nanocomposite magnet, method for preparing the raw material alloy, method for preparing the nanocomposite magnet powder, and method for producing the nanocomposite magnet
US4592781A (en) Method for making ultrafine metal powder
KR100673046B1 (en) Nanocomposite magnet powder and method for producing the magnet
US4687510A (en) Method for making ultrafine metal powder
US5032174A (en) Powder particles for fine-grained hard material alloys and a process for the preparation of powder particles for fine-grained hard material alloys
EP0339767B1 (en) Method and apparatus for making flakes of RE-Fe-B-type magnetically-aligned material
EP0017723B1 (en) Method and apparatus for making metallic glass powder
US5725042A (en) Method for producing hydrogen-absorbing alloy
JP3604308B2 (en) Raw material alloy for nanocomposite magnet, powder and manufacturing method thereof, and nanocomposite magnet powder and magnet manufacturing method
US4502885A (en) Method for making metal powder
JPS6260803A (en) Production of amorphous alloy powder
CA1280858C (en) Comminuting and rapidly solidifying particles of metalloids and additive metal
JPH01111805A (en) Rapid solidification of plasma spray magnetic alloy
KR100279880B1 (en) Uranium High-Denslty Dlspersion Fuel with Spherical Uranium Alloy Powder Solidifled Rapldly by Atomization Method, and the Fuel Fabrlcation Process
US4783900A (en) Method of continuously producing rapidly solidified powder
JP2928965B2 (en) Injection molding method for ultra heat resistant and difficult to process materials
JP2984307B2 (en) Aluminum oxide, molded product thereof, and method for producing aluminum oxide
KR20070108600A (en) Method and device for manufacturing al alloy material included high si
JPH10112558A (en) Manufacture of thermoelectric material and thermoelectric conversion element
JPS6311606A (en) Production of fe-si-al alloy powder
JPS59166606A (en) Preparation of amorphous metal fine powder
JPS6260802A (en) Production of metallic powder
JPS6386805A (en) Production of amorphous alloy powder
JPS62256902A (en) Intermetallic al3ti powder and its production
JP3274920B2 (en) Manufacturing method of fine metal wire