JPS6386478A - Manufacture of insulating gate type semiconductor device - Google Patents

Manufacture of insulating gate type semiconductor device

Info

Publication number
JPS6386478A
JPS6386478A JP23205586A JP23205586A JPS6386478A JP S6386478 A JPS6386478 A JP S6386478A JP 23205586 A JP23205586 A JP 23205586A JP 23205586 A JP23205586 A JP 23205586A JP S6386478 A JPS6386478 A JP S6386478A
Authority
JP
Japan
Prior art keywords
gate
recess
electrode
forming
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23205586A
Other languages
Japanese (ja)
Inventor
Kiyoto Watabe
毅代登 渡部
Tatsuro Okamoto
岡本 龍郎
Takio Ono
大野 多喜夫
Yasushi Kinoshita
木下 靖史
Kiichi Nishikawa
毅一 西川
Hideo Kotani
小谷 秀夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP23205586A priority Critical patent/JPS6386478A/en
Publication of JPS6386478A publication Critical patent/JPS6386478A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7827Vertical transistors

Abstract

PURPOSE:To improve the degree of integration by forming a gate electrode on the side wall part of a recess formed in a predetermined region on a semiconductor substrate of a first conductivity type, and, with this electrode as a mask, ion-implanting an impurity of a second conductivity type into the substrate surface thereby to form source and drain regions. CONSTITUTION:After forming an oxide film 2 on the surface of a substrate 1, a resist film 20 having a hole section is formed, and with the film 20 as a mask the substrate 1 is anisotropically etched to form a recess. Then, after removing the film 20, an insulating film 4 is formed on the substrate 1 surface, and further a silicon layer 5 is formed. And, a resist film 21 is formed in the portion in which a gate electrode is to be drawn out. Then, by performing anisotropic etching, leaving the silicon layer 5 on the side wall part of a recess 3 and the part having the photoresist, the other part is removed, thereby forming an electrode 50. And the electrode 50 as a mask As ions 6 are implanted to form source and drain regions 7, 7. Subsequently, after forming an insulating film 8 on the surface, an opening 9 is provided, and a wiring layer 10 is formed. With this, the gate width can be changed without varying the area occupied by the device.

Description

【発明の詳細な説明】 [産業上の利用分野〕 この発明はMO8電界効果半導体装置のような絶縁ゲー
ト形半導体装置の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method of manufacturing an insulated gate type semiconductor device such as an MO8 field effect semiconductor device.

[従来の技術〕 第6八図ないし第6C図は従来の〜10S半導体装置の
製造方法を示す工程断面図である。また、第7図および
第8図は第6B図および第6C図の工程における平面図
である。以下、これらの図を参照しながら従来のMO8
半導体装置の製造方法について説明する。
[Prior Art] FIGS. 68 to 6C are process cross-sectional views showing a conventional method of manufacturing a ~10S semiconductor device. 7 and 8 are plan views of the steps shown in FIGS. 6B and 6C. Below, with reference to these figures, the conventional MO8
A method for manufacturing a semiconductor device will be explained.

まず第6A図に示すように、p型シリコン基板1にLO
CO8法を用いて素子分離用の酸化膜2を形成する。次
に第6B図に示すように、p型シリコン基板1上にグー
1−絶縁膜4を形成し、その上にn型ポリシリコンを形
成し、フォトレジストを用いてこれをエツチングするこ
とにより、第7図に示すようなゲート電極51を形成す
る。レジスト1vI!去後、Asイオンを150keV
r4x10”cl−2注入してソース・トレイン領域7
゜7を形成する。そして、第6c図に示すように、さら
に上面に絶縁膜8を形成し、その絶縁膜8の所定箇所に
コンタクトホール9を開孔して、第8図に示すようにア
ルミニウム配線w11oを形成する。以上のようにして
、素子が完成する。
First, as shown in FIG. 6A, the LO is placed on the p-type silicon substrate 1.
An oxide film 2 for element isolation is formed using the CO8 method. Next, as shown in FIG. 6B, a goo 1-insulating film 4 is formed on the p-type silicon substrate 1, an n-type polysilicon is formed thereon, and this is etched using a photoresist. A gate electrode 51 as shown in FIG. 7 is formed. Resist 1vI! After leaving the As ion at 150keV
r4x10” cl-2 injection to source train region 7
Form ゜7. Then, as shown in FIG. 6c, an insulating film 8 is further formed on the upper surface, and a contact hole 9 is opened at a predetermined location in the insulating film 8, thereby forming an aluminum wiring w11o as shown in FIG. . In the manner described above, the device is completed.

[発明が解決しようとする問題点] このようにして製造される従来のMO8半導体装置にお
いては、ゲートを平面上に形成しているので、ゲート長
やゲート幅を変更することにより素子の占める面積が変
わり、このためゲート長やゲート幅の変更が容易にでき
なかった。また、ゲート長やゲート幅を大きくすること
により素子の占める面積が大きくなるので、集積度の向
上が望めないという問題点があった。
[Problems to be Solved by the Invention] In the conventional MO8 semiconductor device manufactured in this way, the gate is formed on a plane, so by changing the gate length and gate width, the area occupied by the element can be reduced. Therefore, it was not possible to easily change the gate length or gate width. Furthermore, since increasing the gate length and gate width increases the area occupied by the element, there is a problem in that the degree of integration cannot be expected to improve.

この発明は上記のような問題点を解消するためになされ
たもので、ゲート長やゲート幅を変更しても素子の占め
る面積が変わらず、集積度の向上が望める絶縁ゲート形
半導体装置の製造方法を提供することを目的とする。
This invention was made in order to solve the above-mentioned problems, and it is possible to manufacture an insulated gate type semiconductor device in which the area occupied by the element does not change even if the gate length or gate width is changed, and the degree of integration can be improved. The purpose is to provide a method.

[問題点を解決するための手段] この発明にかかる絶縁グー1〜形半導体装置の製造方法
は、第1導電型の半導体基板上の所定領域に凹部を形成
し、この凹部の側壁部にゲート電極を形成し、このゲー
ト電極をマスクとして前記半導体基板表面に第2導電型
の不純物をイオン注入することによってソースおよびド
レイン領域を形成するものである。
[Means for Solving the Problems] In the method for manufacturing an insulating goo type 1-type semiconductor device according to the present invention, a recess is formed in a predetermined region on a semiconductor substrate of a first conductivity type, and a gate is formed on the side wall of the recess. Source and drain regions are formed by forming an electrode and ion-implanting impurities of a second conductivity type into the surface of the semiconductor substrate using the gate electrode as a mask.

[作用] この発明にかかる絶縁ゲート形半導体装置の製造方法に
よると、凹部側壁部にゲートが形成され、ゲート長が凹
部の深さに対応し、ゲート幅が凹部の周囲の長さに対応
することになる。したがって凹部の深さを変えることに
よってゲート長を変更することができ、凹部の平面形状
を変えることによってゲート幅を変更することができる
[Function] According to the method for manufacturing an insulated gate type semiconductor device according to the present invention, a gate is formed on the side wall of the recess, the gate length corresponds to the depth of the recess, and the gate width corresponds to the length of the periphery of the recess. It turns out. Therefore, by changing the depth of the recess, the gate length can be changed, and by changing the planar shape of the recess, the gate width can be changed.

すなわち、周囲の長さが長くなるような平面形状に凹部
を形成すれば、ゲート幅を大きくすることができる。
That is, if the concave portion is formed in a planar shape such that the circumference becomes long, the gate width can be increased.

[実施例] 以下、この発明の実施例を図面を用いて説明する。[Example] Embodiments of the present invention will be described below with reference to the drawings.

第1八図ないし第1E図はこの発明の一実施例であるM
O3半導体装置の製造方法の主要工程断面図である。ま
た第2図(a)、(tl)、第3図、第4図および第5
図は第1B図ないし第1E図の各工程における平面図で
ある。以下、これらの図を参照しながら、前記MO8半
導体装置の製造方法について説明する。
Figures 18 to 1E show an embodiment of the present invention.
FIG. 3 is a cross-sectional view of main steps in a method for manufacturing an O3 semiconductor device. Also, Figure 2 (a), (tl), Figure 3, Figure 4, and Figure 5.
The figure is a plan view of each step in FIGS. 1B to 1E. Hereinafter, a method for manufacturing the MO8 semiconductor device will be described with reference to these figures.

まず第1A図に示すように、p型シリコン基板1の表面
の所定箇所に素子分離用の酸化[12を形成する。次に
第1B図に示すように、所定形状の孔部を有するフォト
レジスト1I20を形成し、このフォトレジスト族20
をマスクとしてp型シリコン基板1を異方性エツチング
することにより凹部3を形成する。第2図(a )はこ
の凹部3の形状を正方形に形成した場合を示している。
First, as shown in FIG. 1A, oxide [12] for element isolation is formed at predetermined locations on the surface of the p-type silicon substrate 1. Next, as shown in FIG. 1B, a photoresist 1I20 having holes of a predetermined shape is formed, and this photoresist group 20
The concave portion 3 is formed by anisotropically etching the p-type silicon substrate 1 using as a mask. FIG. 2(a) shows a case where the recess 3 is formed into a square shape.

この凹部3の深さはゲート長に対応するものである。The depth of this recess 3 corresponds to the gate length.

次に第1CliJに示すように、前記フォトレジスト族
20を除去した後、p型シリコン基板1表面にゲート絶
縁m4を形成し、さらにn型ポリシリコンld5を形成
する。そして、ゲート電極を引出す部分にフォト・レジ
スト膜21を形成する(第3図参照)。次に第1D図に
示すように、RIE(リアクティブ・イオン・エツチン
グ)を用いて異方性エツチングを行ない、凹部3の側壁
部およびフォトレジスト ン層5を残して他の部分を除去する。このようにしてゲ
ート電極50が形成される。そして、このゲート電極5
0をマスクとして、例えばAsイオン6を150eVで
注入し、ソースおよびドレイン領域7.7を形成する(
第4図参照)。それから第1E図に示すように、表面に
絶縁[!8を形成した後、ソースおよびドレイン領域7
.7ならびにゲート電極50と電気的接続をとるための
開口9(コンタクトホール)を設け、アルミニウム配線
FIJ10を形成する(第5図参照)。以上のようにし
て素子が完成する。
Next, as shown in the first CliJ, after removing the photoresist group 20, a gate insulation m4 is formed on the surface of the p-type silicon substrate 1, and further an n-type polysilicon ld5 is formed. Then, a photoresist film 21 is formed on the portion where the gate electrode is drawn out (see FIG. 3). Next, as shown in FIG. 1D, anisotropic etching is performed using RIE (reactive ion etching) to remove the sidewalls of the recesses 3 and the photoresist layer 5, leaving the remaining portions. In this way, gate electrode 50 is formed. And this gate electrode 5
0 as a mask, for example, As ions 6 are implanted at 150 eV to form source and drain regions 7.7 (
(See Figure 4). Then, as shown in Figure 1E, the surface is insulated [! After forming source and drain regions 7
.. 7 and an opening 9 (contact hole) for making electrical connection with the gate electrode 50, and an aluminum wiring FIJ10 is formed (see FIG. 5). The device is completed in the above manner.

このように形成された素子のゲート長は、凹部3の深さ
によって決定されることになり、したがって、ゲート長
を変更しても素子の占める面積は変わらない。
The gate length of the device formed in this way is determined by the depth of the recess 3, and therefore, even if the gate length is changed, the area occupied by the device does not change.

また、この素子のゲート幅は凹部3の周囲の長さにより
決定されることになり、したがって、ゲート幅を変更す
るためには凹部3の形状を変えればよい。第2図(b)
のような形状に凹部3を形成すれば、凹部3側壁部の面
積が大きくな□す、したがってゲート幅を大きくするこ
とができる。
Further, the gate width of this element is determined by the length of the circumference of the recess 3, and therefore, the shape of the recess 3 can be changed in order to change the gate width. Figure 2(b)
If the recess 3 is formed in the shape of □, the area of the side wall of the recess 3 can be increased, and therefore the gate width can be increased.

上記実施例は、Nチャネル絶縁ゲート(MOS)半導体
装置について説明したが、p型シリコン基板をn型シリ
コン基板に変更し、注入する不純物をn型からp型に変
更することによって、PチャネルMO3半導体IAIに
も適用可能である。
Although the above embodiment describes an N-channel insulated gate (MOS) semiconductor device, by changing the p-type silicon substrate to an n-type silicon substrate and changing the implanted impurity from n-type to p-type, P-channel MO3 It is also applicable to semiconductor IAI.

[発明の効果] 以上のように、この発明によれば、ゲートが凹部側壁部
に形成され、そのため、ゲート長が凹部の深さによって
決定されるので、ゲート長を変更しても素子の占める面
積は変わらない。また、グー1〜幅は凹部の周囲の長さ
によって決定されるので、凹部の平面形状を変えること
により、素子の占める面積を変えずにゲート幅を変更す
ることができる。
[Effects of the Invention] As described above, according to the present invention, the gate is formed on the side wall of the recess, and the gate length is determined by the depth of the recess. The area remains unchanged. Furthermore, since the width is determined by the length of the periphery of the recess, by changing the planar shape of the recess, the gate width can be changed without changing the area occupied by the element.

したがって、ゲート長およびゲート幅を大きくしても素
子の占める面積が増加せず、集v4度の向上が望める。
Therefore, even if the gate length and gate width are increased, the area occupied by the element does not increase, and an improvement in the convergence of V4 degrees can be expected.

【図面の簡単な説明】[Brief explanation of the drawing]

第1八図ないし第1E図はこの発明にかかるゲート絶縁
形半導体装置の製造方法の一実施例を示す工程断面図で
ある。第2図(a)(b)、第3図、第4図および第5
図は、それぞれ第1B図、第1C図、第1D図および第
1E図に対応する平面図である。第6八図ないし第6C
Iは従来の半導体装置の製造方法を示す工程断面図であ
る。第7図および第8図はそれぞれ第68図および第6
C図に対応する平面図である。 図において、1は第1導電型半導体基板、3は凹部、4
はゲート絶fill、 6は第2導電型不純物イオン、
50はゲート絶縁膜である。 なお、各図中同一符号は同一または相当部分を示す。 代理人   大  岩  増  維 弔IA図 第LB図 箔20 第4図 躬5図 第6A図 箔6B図
FIGS. 18 to 1E are process cross-sectional views showing one embodiment of the method for manufacturing a gate insulated semiconductor device according to the present invention. Figures 2(a)(b), 3, 4 and 5
The figures are plan views corresponding to FIG. 1B, FIG. 1C, FIG. 1D, and FIG. 1E, respectively. Figures 68 to 6C
I is a process cross-sectional view showing a conventional method for manufacturing a semiconductor device. Figures 7 and 8 are Figures 68 and 6, respectively.
It is a top view corresponding to figure C. In the figure, 1 is a first conductive type semiconductor substrate, 3 is a recessed portion, and 4 is a semiconductor substrate of a first conductivity type.
6 is the gate isolation fill, 6 is the second conductivity type impurity ion,
50 is a gate insulating film. Note that the same reference numerals in each figure indicate the same or corresponding parts. Agent Masu Oiwa Condolences IA Figure LB Figure 20 Figure 4 Tsuji 5 Figure 6A Figure 6B

Claims (4)

【特許請求の範囲】[Claims] (1)第1導電型の半導体基板上の所定領域に凹部を形
成する工程と、前記半導体基板上にゲート絶縁膜を形成
する工程と、前記ゲート絶縁膜上の凹部側壁部にゲート
電極を形成する工程と、前記ゲート電極をマスクとして
前記半導体基板表面に第2導電型の不純物をイオン注入
する工程とを有する絶縁ゲート形半導体装置の製造方法
(1) Forming a recess in a predetermined region on a semiconductor substrate of a first conductivity type, forming a gate insulating film on the semiconductor substrate, and forming a gate electrode on the side wall of the recess on the gate insulating film. A method for manufacturing an insulated gate type semiconductor device, comprising the steps of: ion-implanting an impurity of a second conductivity type into the surface of the semiconductor substrate using the gate electrode as a mask.
(2)前記ゲート電極は、前記半導体基板上およびゲー
ト絶縁膜上に電極材料層を形成し、電極引出し領域にフ
ォトレジストを形成した後、異方性エッチングによって
凹部側壁部および電極引出し領域を残してそれ以外の電
極材料を除去することによつて形成することを特徴とす
る特許請求の範囲第1項記載の半導体装置の製造方法。
(2) The gate electrode is formed by forming an electrode material layer on the semiconductor substrate and the gate insulating film, forming a photoresist on the electrode extraction area, and then performing anisotropic etching to leave the recessed sidewalls and the electrode extraction area. 2. The method of manufacturing a semiconductor device according to claim 1, wherein the semiconductor device is formed by removing other electrode materials.
(3)前記電極材料は、半導体または高融点金属である
ことを特徴とする特許請求の範囲第1項または第2項記
載の半導体装置の製造方法。
(3) The method for manufacturing a semiconductor device according to claim 1 or 2, wherein the electrode material is a semiconductor or a high melting point metal.
(4)前記凹部は、側壁部の面積が大きくなるような形
状に形成することを特徴とする特許請求の範囲第1項な
いし第3項のいずれかに記載の半導体装置の製造方法。
(4) The method of manufacturing a semiconductor device according to any one of claims 1 to 3, wherein the recess is formed in a shape that increases the area of the side wall.
JP23205586A 1986-09-29 1986-09-29 Manufacture of insulating gate type semiconductor device Pending JPS6386478A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23205586A JPS6386478A (en) 1986-09-29 1986-09-29 Manufacture of insulating gate type semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23205586A JPS6386478A (en) 1986-09-29 1986-09-29 Manufacture of insulating gate type semiconductor device

Publications (1)

Publication Number Publication Date
JPS6386478A true JPS6386478A (en) 1988-04-16

Family

ID=16933262

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23205586A Pending JPS6386478A (en) 1986-09-29 1986-09-29 Manufacture of insulating gate type semiconductor device

Country Status (1)

Country Link
JP (1) JPS6386478A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0439164A2 (en) * 1990-01-25 1991-07-31 Kabushiki Kaisha Toshiba Field-effect transistor having a vertical structure and method of manufacturing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0439164A2 (en) * 1990-01-25 1991-07-31 Kabushiki Kaisha Toshiba Field-effect transistor having a vertical structure and method of manufacturing the same

Similar Documents

Publication Publication Date Title
US6518623B1 (en) Semiconductor device having a buried-channel MOS structure
US4803176A (en) Integrated circuit structure with active device in merged slot and method of making same
JPH0355984B2 (en)
JP2002033476A (en) Semiconductor device and its fabricating method
JP2002016080A (en) Manufacturing method of trench-gate type mosfet
KR100271265B1 (en) Self-aligned pocl3 process flow for submicron microelectronics applications using amorphized polysilicon
US6734058B2 (en) Method for fabricating a semiconductor device
JP2002270837A (en) Silicon carbide semiconductor device and method of manufacturing the same
JPH05226672A (en) Manufacture of vertical type field-effect transistor and transistor manufactured through said method
JPS6386478A (en) Manufacture of insulating gate type semiconductor device
JP2673384B2 (en) Semiconductor device and manufacturing method thereof
US20180261692A1 (en) Semiconductor device and manufacturing method thereof
JP2956635B2 (en) Semiconductor device and manufacturing method thereof
KR980012599A (en) Methods of forming transistors using salicide process technology
JPH09139382A (en) Manufacture of semiconductor device
JPS5846648A (en) Manufacture of semiconductor device
JPH06244415A (en) Semiconductor device and manufacture thereof
JPS60226168A (en) Complementary mos semiconductor device
JPS62120040A (en) Manufacture of semiconductor device
KR100515075B1 (en) Method of forming buried wiring of semiconductor device
JP3064984B2 (en) Method for manufacturing semiconductor device
JPS60150642A (en) Complementary semiconductor device and manufacture thereof
KR970000714B1 (en) Semiconductor integrated circuit device
JPH04102356A (en) Semiconductor integrated circuit and manufacture thereof
JPH11251426A (en) Semiconductor integrated circuit device and its manufacture