JPS6386366A - Solid electrolyte fuel cell - Google Patents

Solid electrolyte fuel cell

Info

Publication number
JPS6386366A
JPS6386366A JP61231787A JP23178786A JPS6386366A JP S6386366 A JPS6386366 A JP S6386366A JP 61231787 A JP61231787 A JP 61231787A JP 23178786 A JP23178786 A JP 23178786A JP S6386366 A JPS6386366 A JP S6386366A
Authority
JP
Japan
Prior art keywords
carbonate
fuel cell
solid electrolyte
oxide
electrolyte fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61231787A
Other languages
Japanese (ja)
Inventor
Hakaru Ogawa
斗 小川
Kenji Murata
謙二 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP61231787A priority Critical patent/JPS6386366A/en
Publication of JPS6386366A publication Critical patent/JPS6386366A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • H01M8/244Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes with matrix-supported molten electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/2484Details of groupings of fuel cells characterised by external manifolds
    • H01M8/2485Arrangements for sealing external manifolds; Arrangements for mounting external manifolds around a stack
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/14Fuel cells with fused electrolytes
    • H01M2008/147Fuel cells with molten carbonates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0048Molten electrolytes used at high temperature
    • H01M2300/0051Carbonates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To facilitate the connection of unit cells, gas supply to unit cell, and gas sealing, and to increase space efficiency by forming a unit cell by arranging a porous fuel electrode and a porous oxidizing agent electrode on both sides of a plate-like electrolyte layer made of a specific material, and stacking a plurality of unit cells through conductive separators each of which has a fuel gas guide passage and an oxidizing agent guide passage on its both sides. CONSTITUTION:A unit cell 3 consists of a sheet-like electrolyte layer formed with a mixture powder of an oxide ion conductive material (for example, a mixture of Bi2O3 and Er2O3) and alkali metal carbonate (for example, a mixture of Li2CO3 and K2CO3) or alkali earth carbonate and a binder, and a porous oxidizing agent electrode (for example, a nickel powder sinter) and a porous fuel electrode (a sinter of Ni and Cr powder) which are arranged on both sides of the electrolyte layer 6. A plurality of unit cells 3 are stacked through conductive separators 4 between end plates 2a and 2b to obtain a fuel cell stack 1. A fuel gas guide passage 4a and an oxidizing gas guide passage 4b perpendicularly intersecting each other are formed on both sides of the separator 4.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、固体電解質燃料電池に係り、特に。[Detailed description of the invention] [Purpose of the invention] (Industrial application field) The present invention relates to solid electrolyte fuel cells, and more particularly to solid electrolyte fuel cells.

単位電池を積層化できるようにした固体電解質燃料電池
に関する。
This invention relates to a solid electrolyte fuel cell in which unit cells can be stacked.

(従来の技術) 固体電解質燃料電池は1通常、 ?li解質として安定
化されたZ「02を用いている。そして。
(Prior art) Solid electrolyte fuel cells usually have the following characteristics: Z'02 stabilized as li solute is used. And.

ZrO2を電解質として用いた従来の固体電解質燃料電
池は、一般に、多孔質チューブの表面に。
Conventional solid electrolyte fuel cells using ZrO2 as an electrolyte generally have a porosity on the surface of a porous tube.

酸化剤極、電解質層、燃料極からなる三層構造の単位電
池を焼結によって形成し、この111位電池を軸ノj向
へ複数配列したものとなっている。このような形状を採
用する理由は、ZrO2は電気抵抗率が高いため薄膜化
する必要があること、薄膜であるが故に機械的に脆いこ
と、固体電解質であるが故にガスシールが困難であるこ
と、単位電池同志を接続するためのコネクタの酸化を防
止することが困難であることなどによる。
A unit cell with a three-layer structure consisting of an oxidizer electrode, an electrolyte layer, and a fuel electrode is formed by sintering, and a plurality of these 111 cells are arranged in the axial direction. The reasons for adopting this shape are that ZrO2 has a high electrical resistivity, so it needs to be made into a thin film, that it is mechanically fragile because it is a thin film, and that gas sealing is difficult because it is a solid electrolyte. This is because it is difficult to prevent oxidation of the connectors used to connect unit batteries.

しかしながら、上記のように全体が円筒形状であるため
に、大容量の集合電池を形成しようとしても、単位電池
の大型化、単位電池相互の接続。
However, as described above, since the entire unit is cylindrical, even if an attempt is made to form a large-capacity assembled battery, it is difficult to increase the size of the unit batteries and connect the unit batteries to each other.

単位電池へのガス供給、冷却などの面で構造上。Structural aspects such as gas supply and cooling to unit cells.

製造」−2強m−t:の問題が生じ、空間積載効率(単
位体積当りに占める超電気素子体積の割合い。)の良い
集合電池を形成することが困難であった。
A problem arose in the manufacturing process, and it was difficult to form an assembled battery with good space loading efficiency (ratio of superelectric element volume per unit volume).

(発明が解決しよとする問題点) 上述の如く、従来の固体電解質燃料電池にあっては1円
筒形状を採用しなければならないために空間積載効率の
良い大容量の集合電池を形成することが困難であった。
(Problems to be Solved by the Invention) As mentioned above, since conventional solid electrolyte fuel cells have to adopt a single cylindrical shape, it is difficult to form a large-capacity assembled battery with good space loading efficiency. was difficult.

そこで本発明は、構成的に単位電池の大型化が容易であ
るばかりか、単位電池相互の接続、各単位電池へのガス
供給、冷却、ガスシールが容易に行なえ、空間積載効率
の良い大容量集合電池の実現に寄与できる固体電解質燃
料電池を提供することを目的としている。
Therefore, the present invention not only makes it easy to increase the size of unit batteries in terms of structure, but also allows easy connection of unit batteries, gas supply to each unit battery, cooling, and gas sealing, and a large capacity with good space loading efficiency. The aim is to provide a solid electrolyte fuel cell that can contribute to the realization of collective batteries.

[発明の構成] (問題点を解決するための手段) 本発明に係る固体電解質燃料電池では、酸化物イオン導
電性電解質物質とアルカリ金属炭酸塩またはアルカリ土
類炭酸塩とを含んで平板状に形成された電解質層の両面
に多孔質の燃料極と酸化剤極とを配して単位電池を構成
し、これら単位電池を両面に燃料ガス案内路と酸化剤ガ
ス案内路とを備えた導電性のセパレータを介して1(数
積層している。
[Structure of the Invention] (Means for Solving the Problems) The solid electrolyte fuel cell according to the present invention includes a flat electrolyte fuel cell containing an oxide ion conductive electrolyte material and an alkali metal carbonate or an alkaline earth carbonate. A unit cell is constructed by arranging a porous fuel electrode and an oxidant electrode on both sides of the formed electrolyte layer, and these unit cells are connected to a conductive cell with a fuel gas guide path and an oxidant gas guide path on both sides. 1 (several layers are laminated through a separator).

(作用) 合釘された炭酸塩は、動作温度下で電解質層に塑性を付
与し、電解質層の機械的強度を向」ニさせる。この機械
的強度の向ヒは中位電池の積層化を可能とする。また、
炭酸塩は、酸化物イオンに対して次の緩衝機能を発揮す
る。
(Function) The doweled carbonate imparts plasticity to the electrolyte layer under operating temperatures and improves the mechanical strength of the electrolyte layer. This mechanical strength advantage allows for the stacking of medium-sized batteries. Also,
Carbonates exhibit the following buffering function for oxide ions.

CO32−□ 002 + 02− この結果、酸化剤極および燃料極における酸化物イオン
の1a反分極が低減され、電解質層が比較的圧肉の平板
状であっても電解質層の電気抵抗率の増加が抑制される
。また、合釘された炭酸塩はイオン伝導性を向上させ、
この結果、従来の固体電解質燃料電池より低い温度での
動作を可能化し。
CO32-□ 002 + 02- As a result, the 1a antipolarization of oxide ions at the oxidizer electrode and the fuel electrode is reduced, and the electrical resistivity of the electrolyte layer increases even if the electrolyte layer has a relatively thick plate shape. is suppressed. Doweled carbonates also improve ionic conductivity,
As a result, they can operate at lower temperatures than conventional solid oxide fuel cells.

セパレータに、たとえばステンレス鋼の使用をi■能化
する。さらに、含有された炭酸塩は運転湯度で溶融して
ウェットシール機能を発揮する。このように炭酸塩を含
有させたことによって、空間積載効率を最も向上させう
る形態、つまり単位電池の積層化が可能となる。
For example, it is possible to use stainless steel for the separator. Furthermore, the carbonate contained melts at the operating hot water temperature and exhibits a wet sealing function. By including the carbonate in this way, it becomes possible to form a structure that can most improve the spatial loading efficiency, that is, to stack unit cells.

(実施例) 以下2本発明の詳細な説明する。(Example) Two aspects of the present invention will be described in detail below.

実施例1 図に示すような燃料電池積層体1を組立てた。Example 1 A fuel cell stack 1 as shown in the figure was assembled.

この燃料電池積層体1は、エンドプレート2a。This fuel cell stack 1 has an end plate 2a.

2b間に、1(数の単位電池3を導電性のセパレータ4
を介して積層したものとなっている。
A conductive separator 4 is placed between 2b and 1 unit battery 3.
It is laminated with .

単位電池3は、Ni粉末を焼結して得た多孔質の酸化剤
極5aとN i / Cr −90/10 (Im比)
粉末を焼結して得た多孔質の燃料極5bとの間に電解質
層6を介在させたものとなっている。電解質層6は、L
 i2 CO3/に2 CO3鴫62/ 38(モル比
)からなるアルカリ金属炭酸塩混合粉末と、  B i
203 /E r203−80/20(モ/l/比)か
らなる酸化物イオン導電性物質の混合粉末とを体積比が
3 ;7となるように混合し、これをポリエステルをバ
インダーとしてシート状に形成して得たものである。
The unit battery 3 includes a porous oxidizer electrode 5a obtained by sintering Ni powder and a Ni/Cr -90/10 (Im ratio)
An electrolyte layer 6 is interposed between the porous fuel electrode 5b obtained by sintering powder. The electrolyte layer 6 is L
an alkali metal carbonate mixed powder consisting of 62/38 (molar ratio) of 2 CO3 to 2 CO3;
203/E r203-80/20 (mol/l/ratio) mixed powder of oxide ion conductive material so that the volume ratio is 3:7, and this is formed into a sheet using polyester as a binder. It is obtained by forming.

セパレータ4は、ステンレスn4(sUs316)で形
成されたもので、その両面には互いに直交する方向へ延
びるガス案内溝4a、4bが形成されている。
The separator 4 is made of stainless steel N4 (sUs316), and gas guide grooves 4a and 4b extending in directions orthogonal to each other are formed on both surfaces thereof.

一方、角型環状のアルミナファイバーで形成されたフェ
ルト7a、7b、7c、7dを、マニホールドga、8
b、8c、8dのフランジ部にそれぞれ貼り合わせ、こ
のフェルト7a〜7bの表面にホウ酸ガラス粉を塗り付
けた。フェルト78〜7dは溶融ホウ酸ガラスを浸透さ
せて保持し。
On the other hand, felts 7a, 7b, 7c, and 7d formed of rectangular annular alumina fibers are placed in the manifold ga, 8
They were attached to the flange portions of felts 7a to 8d, respectively, and boric acid glass powder was applied to the surfaces of the felts 7a to 7b. The felts 78 to 7d are impregnated with molten boric acid glass and held therein.

上、記ホウ酸ガラスとでシール体を構成するものである
。そして、上記シール体を設けたマニホールド8a〜8
dを燃料電池積層体1の各側面に当てがい9図示しない
手段で締付けて燃料7代地を構成した。
The above-mentioned boric acid glass constitutes a sealing body. And manifolds 8a to 8 provided with the above-mentioned seal bodies
d was applied to each side of the fuel cell stack 1 and tightened by means not shown to form a fuel 7 bonding area.

このように構成された燃料電池を650’Cに昇温させ
、マニホールド8a側からマニホールド8C側へ向ケチ
燃料ガス(H2/ COz −80/ 20体積比)P
を通流させるとともにマニホールド8bからマニホール
ド8d側へ向けて酸化剤ガス(A i r/CO2−7
0/30体積比)Qを通流させて発電を行なったところ
、 0.15A/′d負荷時で0.6v電圧を得た。
The temperature of the fuel cell configured in this way is raised to 650'C, and a stingy fuel gas (H2/COz -80/20 volume ratio) P is pumped from the manifold 8a side to the manifold 8C side.
At the same time, the oxidant gas (A i r / CO2-7
When electricity was generated by passing 0/30 volume ratio) Q, a voltage of 0.6V was obtained at a load of 0.15A/'d.

比較のため、  Z r 02 / Ca 0=951
5  (重量比)の混合粉末をホットプレスで2M圧の
板状にしてなる安定化されたジルコニアを電解質層とし
て使用し、同様の実験を行なったところ、 0.15A
/〜負荷時で0.3 V程度であった。
For comparison, Z r 02 / Ca 0 = 951
When a similar experiment was conducted using stabilized zirconia made by hot pressing a mixed powder of 5 (weight ratio) into a plate shape at 2M pressure as the electrolyte layer, the result was 0.15A.
The voltage was about 0.3 V under load.

実施例2 L i 2 CO3/ K2 CO3=02/38 (
モル比)からなるアルカリ金属炭酸塩混合粉末と。
Example 2 Li 2 CO3/ K2 CO3=02/38 (
molar ratio) with an alkali metal carbonate mixed powder.

Ca CO3/S r CO3−50150(モル比)
からなるアルカリ土類炭酸塩混合粉末と、Bi2O3/
Y2O3−80/20 (モル比)からなる酸化物イオ
ン導電性物質の混合粉末とを体積比で2015/75の
割合いに混合し、この混合粉末を補強材としてのカンタ
ルメツシュまたはFe−Cr−Al!合金のメツシュと
一緒にホットプレスして電解質層6を作製した。この電
解質層6を図に示した燃料電池に組み込んで実施例1と
同様の試験を行なったところ、実施例1と同様の結果が
得られた。
Ca CO3/S r CO3-50150 (molar ratio)
Alkaline earth carbonate mixed powder consisting of Bi2O3/
A mixed powder of an oxide ion conductive material consisting of Y2O3-80/20 (molar ratio) is mixed at a volume ratio of 2015/75, and this mixed powder is used as a reinforcing material such as Canthal mesh or Fe-Cr-Al. ! The electrolyte layer 6 was prepared by hot pressing together with an alloy mesh. When this electrolyte layer 6 was incorporated into the fuel cell shown in the figure and the same test as in Example 1 was conducted, the same results as in Example 1 were obtained.

実施例3 炭酸塩保持材としてのLiAノ02ファイバーと、 L
 i2 CO3/に2 CO3=82/38 (モル比
)からなるアルカリ金属炭酸塩混合粉末と。
Example 3 LiAno02 fiber as carbonate retaining material and L
An alkali metal carbonate mixed powder consisting of i2 CO3/2 CO3 = 82/38 (mole ratio).

B i 203 /Y203 /Nb203−7615
 /19モル比)からなる酸化物イオン導電性物質の混
合粉末とを体積比で5 /20/75の割合いに混合し
B i 203 /Y203 /Nb203-7615
/19 molar ratio) and a mixed powder of an oxide ion conductive material in a volume ratio of 5/20/75.

この混合粉末をホットプレスして電解質層6を作製した
。この電解質層6を図に示した燃料電池に組み込んで実
施例1と同様の試験を行なったところ、実施例1と同様
の結果が得られた。
This mixed powder was hot pressed to produce an electrolyte layer 6. When this electrolyte layer 6 was incorporated into the fuel cell shown in the figure and the same test as in Example 1 was conducted, the same results as in Example 1 were obtained.

なお、炭酸塩の混入割合いは5〜40体積%が好ましい
。すなわち、40体積06を越えると、熱サイクル時に
炭酸塩の体積変化で電解質層にクラックか入り易くなり
、また、5体積%未満であると。
Note that the mixing ratio of carbonate is preferably 5 to 40% by volume. That is, if it exceeds 40 volume 06, cracks will easily occur in the electrolyte layer due to volume change of carbonate during thermal cycling, and if it is less than 5 volume %.

分極が急増するからである。また、炭酸塩の保持材とし
て、LiA!!02.ZrO2゜5rTi03.CeO
2,チタン酸バリウム。
This is because polarization increases rapidly. In addition, as a carbonate retention material, LiA! ! 02. ZrO2゜5rTi03. CeO
2. Barium titanate.

LiZrO2,チタン酸リチウム、AJ203 。LiZrO2, lithium titanate, AJ203.

Si3N4.SiCの徹扮末を混入してもよい。Si3N4. A complete SiC powder may be mixed.

さらに補強材として、ZrO2繊維。Furthermore, ZrO2 fiber is used as a reinforcing material.

LiZrO2繊維、A12o、、繊維や耐食処理および
絶縁処理の施された金属メツシュを用いてもよい。また
、セパレータの形状は2図に示した形状に限らず、ガス
案内機能と集電機能とを有する波板を用いてもよい。燃
料極側のセパレータを海綿状金属で構成してもよい。ま
た、アルカリ土類炭酸塩としては炭酸バリウムも使用で
きる。また。
LiZrO2 fibers, A12o fibers, or metal meshes subjected to corrosion-resistant treatment and insulation treatment may also be used. Moreover, the shape of the separator is not limited to the shape shown in FIG. 2, and a corrugated plate having a gas guiding function and a current collecting function may be used. The separator on the fuel electrode side may be made of a spongy metal. Moreover, barium carbonate can also be used as the alkaline earth carbonate. Also.

マニホールドのシール体に供されるアルミナファイバー
フェルトの代りにZrO2フェルトやガラスウールのマ
ットを用いるようにしてもよい。
ZrO2 felt or glass wool mat may be used in place of the alumina fiber felt provided for the seal body of the manifold.

[発明の効果] 以上のべたように1本発明によれば2炭酸塩を混入させ
たことによって、電解質層の機械的強反の向上化、板状
化、低動作温度化を図れ、加えてガスシールの容易化も
図れ、これによって空間積載効率の良い積層化を実現で
き、また積層化によってガス供給系統および冷却系統の
単純化も図れる固体電解質燃料電池を提供できる。
[Effects of the Invention] As described above, according to the present invention, by incorporating dicarbonate, it is possible to improve the mechanical strength of the electrolyte layer, make it plate-shaped, and lower the operating temperature. It is also possible to provide a solid electrolyte fuel cell that facilitates gas sealing, thereby realizing stacking with good space loading efficiency, and also simplifying the gas supply system and cooling system by stacking.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明の一実施例に係る固体電解質燃料電池の分解
斜視図である。 1・・・燃料電池積層体、  2a、  2b・・・エ
ンドプレート23・・・単位電池、4・・・セパレータ
、5a、5b・・・多孔質電極板、6・・・7電解質層
、8a〜8d・・・マニホールド、P・・・燃料ガス、
Q・・・酸化剤ガス。
The figure is an exploded perspective view of a solid electrolyte fuel cell according to an embodiment of the present invention. DESCRIPTION OF SYMBOLS 1...Fuel cell laminate, 2a, 2b...End plate 23...Unit cell, 4...Separator, 5a, 5b...Porous electrode plate, 6...7 Electrolyte layer, 8a ~8d...Manifold, P...Fuel gas,
Q: Oxidizing gas.

Claims (7)

【特許請求の範囲】[Claims] (1)酸化物イオン導電性電解質物質とアルカリ金属炭
酸塩またはアルカリ土類炭酸塩とを含んで平板状に形成
された電解質層の両面に多孔質の燃料極と酸化剤極とを
配して単位電池を構成し、これら単位電池を両面に燃料
ガス案内路と酸化剤ガス案内路とを備えた導電性のセパ
レータを介して複数積層してなることを特徴とする固体
電解質燃料電池。
(1) A porous fuel electrode and an oxidizer electrode are arranged on both sides of an electrolyte layer formed into a flat plate containing an oxide ion conductive electrolyte material and an alkali metal carbonate or an alkaline earth carbonate. A solid electrolyte fuel cell comprising a plurality of unit cells stacked together with a conductive separator interposed therebetween having a fuel gas guide path and an oxidant gas guide path on both sides.
(2)前記電解質中における前記アルカリ金属炭酸塩ま
たはアルカリ土類炭酸塩の含有比は、5〜40体積%で
あることを特徴とする特許請求の範囲第1項記載の固体
電解質燃料電池。
(2) The solid electrolyte fuel cell according to claim 1, wherein the content ratio of the alkali metal carbonate or alkaline earth carbonate in the electrolyte is 5 to 40% by volume.
(3)前記アルカリ金属炭酸塩は、炭酸リチウムと炭酸
カリウムとの混合塩であることを特徴とする特許請求の
範囲第1項記載の固体電解質燃料電池。
(3) The solid electrolyte fuel cell according to claim 1, wherein the alkali metal carbonate is a mixed salt of lithium carbonate and potassium carbonate.
(4)前記アルカリ土類炭酸塩は、炭酸バリウム、炭酸
カルシウム、炭酸ストロンチウムの中から選ばれた少な
くとも1種であることを特徴とする特許請求の範囲第1
項記載の固体電解質燃料電池。
(4) Claim 1, wherein the alkaline earth carbonate is at least one selected from barium carbonate, calcium carbonate, and strontium carbonate.
The solid electrolyte fuel cell described in Section 1.
(5)前記酸化物イオン導電性電解質物質は、酸化ビス
マスを主成分とするものであることを特徴とする特許請
求の範囲第1項記載の固体電解質燃料電池。
(5) The solid electrolyte fuel cell according to claim 1, wherein the oxide ion conductive electrolyte material contains bismuth oxide as a main component.
(6)前記酸化物イオン導電性電解質物質は、酸化ビス
マスと酸化エルビウムとであることを特徴とする特許請
求の範囲第5項記載の固体電解質燃料電池。
(6) The solid electrolyte fuel cell according to claim 5, wherein the oxide ion conductive electrolyte material is bismuth oxide and erbium oxide.
(7)前記酸化物イオン導電性電解質物質は、酸化ビス
マスと酸化イットリアと酸化ニオブとであることを特徴
とする特許請求の範囲第5項記載の固体電解質燃料電池
(7) The solid electrolyte fuel cell according to claim 5, wherein the oxide ion conductive electrolyte material is bismuth oxide, yttria oxide, and niobium oxide.
JP61231787A 1986-09-30 1986-09-30 Solid electrolyte fuel cell Pending JPS6386366A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61231787A JPS6386366A (en) 1986-09-30 1986-09-30 Solid electrolyte fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61231787A JPS6386366A (en) 1986-09-30 1986-09-30 Solid electrolyte fuel cell

Publications (1)

Publication Number Publication Date
JPS6386366A true JPS6386366A (en) 1988-04-16

Family

ID=16929018

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61231787A Pending JPS6386366A (en) 1986-09-30 1986-09-30 Solid electrolyte fuel cell

Country Status (1)

Country Link
JP (1) JPS6386366A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002518794A (en) * 1998-06-12 2002-06-25 エイイーピー・エムテク・エル・エル・シー Ceramic fuel cell
KR101480838B1 (en) * 2011-12-30 2015-01-12 두산중공업 주식회사 Manifold type fuel cell having fluid guide
JP2017517837A (en) * 2014-04-04 2017-06-29 ハルドール・トプサー・アクチエゼルスカベット Electrically insulating three-layer gasket for SFOC unit

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002518794A (en) * 1998-06-12 2002-06-25 エイイーピー・エムテク・エル・エル・シー Ceramic fuel cell
KR101480838B1 (en) * 2011-12-30 2015-01-12 두산중공업 주식회사 Manifold type fuel cell having fluid guide
JP2017517837A (en) * 2014-04-04 2017-06-29 ハルドール・トプサー・アクチエゼルスカベット Electrically insulating three-layer gasket for SFOC unit

Similar Documents

Publication Publication Date Title
JP3350167B2 (en) Molten carbonate fuel cell
KR101432386B1 (en) Solid oxide fuel cell having longitudinal channel and transversal channel
JP6208499B2 (en) Fuel cell or electrolysis cell, cell stack device, module and module storage device
US9666892B2 (en) Cell, cell stack device, module, and module housing device
JP2019185883A (en) Fuel cell
JP6498992B2 (en) Flat fuel cell
TWI729087B (en) Electrochemical element, electrochemical module, electrochemical device, and energy system
JP2013012397A (en) Solid oxide fuel cell and fuel cell module
JP2000048831A (en) Solid electrolyte fuel cell
JP2002343376A (en) Lamination structure of plate-shaped solid oxide fuel cell
JP6389133B2 (en) Fuel cell stack
US7892698B2 (en) Electrically conductive fuel cell contact material
JP2841340B2 (en) Solid electrolyte fuel cell
JPS6386366A (en) Solid electrolyte fuel cell
JP2012181927A (en) Solid oxide fuel cell and fuel cell module
JP4707985B2 (en) Fuel cell and cell stack
JPH10134828A (en) Current collecting method between fuel electrode and separator of flat solid electrolyte fuel cell
JP7087624B2 (en) Fuel cell stack
JPH07320756A (en) Solid electrolytic fuel cell
JP3244310B2 (en) Solid oxide fuel cell
JP2980921B2 (en) Flat solid electrolyte fuel cell
JP3108256B2 (en) Solid oxide fuel cell
JPH1125999A (en) Solid electrolyte fuel cell
JP7430698B2 (en) Electrochemical reaction single cell and electrochemical reaction cell stack
JPH0462757A (en) Solid electrolyte type fuel cell