JPS638515A - Ultrasonic flow rate measuring instrument - Google Patents
Ultrasonic flow rate measuring instrumentInfo
- Publication number
- JPS638515A JPS638515A JP61152950A JP15295086A JPS638515A JP S638515 A JPS638515 A JP S638515A JP 61152950 A JP61152950 A JP 61152950A JP 15295086 A JP15295086 A JP 15295086A JP S638515 A JPS638515 A JP S638515A
- Authority
- JP
- Japan
- Prior art keywords
- ultrasonic
- fluid
- transducer
- temperature
- pipe
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000012530 fluid Substances 0.000 claims abstract description 54
- 238000005259 measurement Methods 0.000 claims description 17
- 239000000463 material Substances 0.000 claims description 10
- 229920003002 synthetic resin Polymers 0.000 claims description 6
- 239000000057 synthetic resin Substances 0.000 claims description 6
- 230000001934 delay Effects 0.000 claims description 3
- 238000001514 detection method Methods 0.000 claims description 3
- 230000005284 excitation Effects 0.000 abstract description 11
- 230000003111 delayed effect Effects 0.000 abstract description 2
- 230000005855 radiation Effects 0.000 description 12
- 238000010586 diagram Methods 0.000 description 9
- 230000007423 decrease Effects 0.000 description 5
- 230000005540 biological transmission Effects 0.000 description 4
- 230000035945 sensitivity Effects 0.000 description 4
- 239000000428 dust Substances 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 229910000975 Carbon steel Inorganic materials 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 2
- 239000010962 carbon steel Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000002604 ultrasonography Methods 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
Landscapes
- Measuring Volume Flow (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
この発明は例えば超音波の管路向流6体中の伝播時間よ
シ流量を算出する超音波流量夕j1定装置において、特
に測定流体の温度変化による音響伝播路の修正に関する
。Detailed Description of the Invention [Industrial Application Field] This invention relates to an ultrasonic flow rate determination device that calculates the flow rate based on the propagation time of ultrasonic waves in a conduit countercurrent flow body, for example, and in particular, to Concerning the modification of the acoustic propagation path by changes.
管路内の流体の流速又は流量を御1定する超音波を使用
した光景測定装置において、管路の外周に1組の超音波
送受波器を配置して管路内IIL体の流、先。In a sight measurement device using ultrasonic waves that controls the flow rate or flow rate of fluid in a pipe, a pair of ultrasonic transducers are placed around the outer circumference of the pipe to measure the flow of IIL bodies in the pipe. .
量の測定に関しては昭44−2583八実用新案公報[
超音波流量測定装置」及び昭51−25750号特許公
報「超音波流量測定装置」に示されている。Regarding the measurement of quantity, see 1972-25838 Utility Model Publication [
"Ultrasonic Flow Measuring Apparatus" and Japanese Patent No. 51-25750 "Ultrasonic Flow Measuring Apparatus".
1組の超音波送受波器を管路の外周にその流体の流れ方
向である管軸に沿って設置して、超音波送受波器の管路
への取付位置については管路寸法、管路材質および流体
の種類などにより一方の超音波送受波器から放射される
超音波が他方の超音波送受波器にて十分な感度にて受信
できるように音響伝播路が決定されている。A pair of ultrasonic transducers is installed along the pipe axis, which is the flow direction of the fluid, on the outer circumference of the pipe, and the installation position of the ultrasonic transducer on the pipe is determined by the pipe dimensions and pipe Depending on the material and type of fluid, the acoustic propagation path is determined so that the ultrasonic waves emitted from one ultrasonic transducer can be received with sufficient sensitivity by the other ultrasonic transducer.
上記条件にて一組の超音波送受波器を設置したとき測定
流体温度が変化すると、音響伝播路を形成している楔体
、管路、流体などの媒質の音速度が変わって音響伝播路
が変化する。When a set of ultrasonic transducers is installed under the above conditions, if the temperature of the fluid to be measured changes, the sound velocity of the medium such as the wedge, pipe, or fluid that forms the acoustic propagation path changes, causing the acoustic propagation path to change. changes.
第4図は従来の反射型音響伝播路の説明図であり、音響
伝播路が管路内の反射を利用した例を示すもので、1は
内径りの管路、3−1.3−2は超音波送受波器(以下
送受波器と云う)、11は合成樹脂材よシなる楔体、L
は1組の送受波器3−1.3−2の超音波ビームの管路
1への入射位置間隔である。Fig. 4 is an explanatory diagram of a conventional reflection type acoustic propagation path, and shows an example in which the acoustic propagation path utilizes reflection within the pipe, where 1 is an inner diameter pipe, 3-1.3-2 is an ultrasonic transducer (hereinafter referred to as transducer); 11 is a wedge made of synthetic resin; L;
is the interval between the incident positions of the ultrasonic beams of the pair of transducers 3-1, 3-2 into the conduit 1.
第5図は従来の透過型音響伝播路の説明図であり、音響
伝播路が管路内の超音波の直接伝播を利用した例を示す
もので、管路1は鉄系材料で内径はD、送受波器3−1
,3−2は超音振動子(以下振動子という)の放射面に
合成樹脂材より成る楔体11が設けられ、管路1内の流
体は水とする。FIG. 5 is an explanatory diagram of a conventional transmission type acoustic propagation path, and shows an example in which the acoustic propagation path utilizes direct propagation of ultrasonic waves within the conduit.The conduit 1 is made of iron-based material and has an inner diameter of D. , transducer 3-1
, 3-2, a wedge body 11 made of a synthetic resin material is provided on the radiation surface of an ultrasonic vibrator (hereinafter referred to as a vibrator), and the fluid in the pipe line 1 is water.
上記音響伝播路にある媒質の境界面ばおいて!・ま媒質
の音速度と入射角によって超音波の屈折が発生する。(
スネルの法則)流体の温度が変化すると媒質の音速度が
変わるので屈折角が変化して音響伝播路が変わる。従っ
て送受波器6−1から放射される超音波ビームは音響伝
播路の変化により送受波器3−2の所定位置から偏位し
た位置へ到達する。Place it on the boundary surface of the medium in the above sound propagation path!・Ultrasonic waves are refracted depending on the sound speed of the medium and the angle of incidence. (
Snell's law) When the temperature of the fluid changes, the speed of sound in the medium changes, so the angle of refraction changes and the acoustic propagation path changes. Therefore, the ultrasonic beam emitted from the transducer 6-1 reaches a position deviated from the predetermined position of the transducer 3-2 due to the change in the acoustic propagation path.
例えばJIS−G−3452配管用炭素鋼鋼管を使用し
、振動子はPZT、i体11の材質はアクリルとし第4
図に示す反射型音響伝播路の管路1において、送受波器
3−1よシ放射される超音波ビームの管路1への入射角
を47とすると流体の温度が10℃から60℃へ変わっ
たとき、管路寸法25 A、50 A、100A、20
0Aにおける超音波ビームの到達位置の送受波器3−1
.3−2(7) 所定入射間V4 L ヨ、!l) (
7)偏位Xハ5.4 m、 a 8 m 。For example, JIS-G-3452 carbon steel pipes are used, the vibrator is PZT, the i-body 11 is made of acrylic, and the fourth
In conduit 1 of the reflective acoustic propagation path shown in the figure, if the angle of incidence of the ultrasonic beam emitted by the transducer 3-1 into conduit 1 is 47, the temperature of the fluid changes from 10°C to 60°C. When changed, pipe size 25A, 50A, 100A, 20
Transducer/receiver 3-1 at the arrival position of the ultrasonic beam at 0A
.. 3-2 (7) Predetermined incidence interval V4 L Yo! l) (
7) Deflection X 5.4 m, a 8 m.
15.6鱈、30.3m となυ、流体温度が変わる
と超音波ビームの到達位置が変化するので送受波器3−
2における超音波の受信信号レベルが低下する。15.6 cod, 30.3 m υ, as the fluid temperature changes, the arrival position of the ultrasonic beam changes, so the transducer 3-
The received signal level of the ultrasonic waves at 2 decreases.
また一方において、
C:流体の音速度、 φ:超音波の流体への屈折角τ
;固定遅延時間、 V:流体の流速
td;送受波器3−1から送受波器6−2の流れに順方
向の伝播時間、
1++:送受波器3−2から送受波器3−1の流れに逆
方向の伝播時間とすると、
”” (c+v廊φ)■φ +7
1°=死コ厖刀;「+7
温度が変わると音響伝播路を構成する各媒質の音速度が
変化する。従って管路1への超音波ビームの入射角を一
定とすると屈折角φが変化するので流速Vが変わシ測定
誤差になる。On the other hand, C: sound velocity of the fluid, φ: angle of refraction of the ultrasonic wave into the fluid τ
; Fixed delay time; V: Fluid flow rate td; Propagation time in the forward direction from the transducer 3-1 to the transducer 6-2; 1++: From the transducer 3-2 to the transducer 3-1. Assuming that the propagation time is in the opposite direction to the flow, ``'' (c+veroφ)■φ +7 1°=death; ``+7 When the temperature changes, the sound speed of each medium that makes up the acoustic propagation path changes.Therefore, If the angle of incidence of the ultrasonic beam on the conduit 1 is constant, the angle of refraction φ changes, so the flow velocity V changes, resulting in a measurement error.
流体の流速及び流量は超音波の一組の送受波器3−1.
3−2間の伝播時間差ならびに管軸と超音波の伝播方向
のなす角度によって決まるので、同一流速あるいは同一
流量において流体温度が変化すると出力は変化して測定
誤差を発生する。The fluid flow rate and flow rate are determined by a pair of ultrasonic transducers 3-1.
Since it is determined by the propagation time difference between 3 and 2 and the angle between the tube axis and the propagation direction of the ultrasonic wave, if the fluid temperature changes at the same flow rate or flow rate, the output will change and a measurement error will occur.
上記のような従来の超音波流量測定装置では流体の温度
が変わると音響伝播路を形成する媒質の音速度が変化し
て各媒質の境界面における超音波の屈折角が変化するの
で音響伝播路が偏位して、送受波器3−1から送信され
た超音波ビームは送受波器3−2の所定位置よシ偏位し
た位置に到達する。この状態は流体温度の変化ならびに
管路寸法が大きくなるに対応して顕著になるので、送受
波器6−2が受信する超音波レベルが減少して受信感度
の低下をもたらし、極端な場合は音響伝播路の偏位が大
きくなり超音波ビームが到達せず受信不能になる。更に
従来の方法では温度変化による測定誤差の介入は避けら
れなかった。従って受信感度の低下とともに測定誤差が
介入しまた測定不能になることがある。In the conventional ultrasonic flow measurement device as described above, when the temperature of the fluid changes, the sound velocity of the medium forming the acoustic propagation path changes, and the refraction angle of the ultrasonic wave at the interface between each medium changes, so the acoustic propagation path changes. is deviated, and the ultrasonic beam transmitted from the transducer 3-1 reaches a position of the transducer 3-2 that is deviated from the predetermined position. This state becomes more noticeable as the fluid temperature changes and the pipe size increases, so the ultrasonic level received by the transducer 6-2 decreases, resulting in a decrease in reception sensitivity, and in extreme cases, The deviation of the acoustic propagation path becomes large, and the ultrasonic beam does not reach the ultrasonic beam, making it impossible to receive it. Furthermore, with conventional methods, measurement errors due to temperature changes cannot be avoided. Therefore, as the receiving sensitivity decreases, measurement errors may intervene and measurement may become impossible.
特に工業用プラントにおいて管路1内流犠を測定すると
き、管路寸法、管路材質、流体の種類(水以外の流体)
、流体の温度など音響伝播路を変える要因が非常に多い
。音響伝播路を修正するには送受波器3−1.3−2の
振動子放射面に設けられている裸体11の形状を変えて
管路1への超音波ビームの入射角を変更しなければなら
ないという問題点があった。Especially when measuring the internal flow of pipe 1 in an industrial plant, pipe dimensions, pipe material, type of fluid (fluid other than water)
There are many factors that change the acoustic propagation path, such as the temperature of the fluid. In order to modify the acoustic propagation path, the incident angle of the ultrasonic beam to the conduit 1 must be changed by changing the shape of the bare body 11 provided on the transducer radiation surface of the transducer 3-1.3-2. There was a problem that it had to be done.
この発明はかかる問題点を解決するためになされたもの
で、流量計測の応用面を拡大するために管路寸法、管路
材質、流体の音速度や流体温度などが変化しても、1組
の送受波器3−1.3−2の超音波の音響伝播路が安定
して常時正常な受信信号が得られ測定誤差の発生を抑制
するようK、送受波器3−1.3−2から放射される超
音波ビームの管路1への入射角を自動的に制御できる超
音波流量測定装置を得ることを目的とする。This invention was made to solve this problem, and in order to expand the range of applications for flow measurement, even if the pipe dimensions, pipe material, sound velocity of the fluid, fluid temperature, etc. change, one set of K, the transducer 3-1.3-2 so that the acoustic propagation path of the ultrasonic wave of the transducer 3-1.3-2 is stabilized, a normal reception signal is always obtained, and measurement errors are suppressed. It is an object of the present invention to provide an ultrasonic flow rate measuring device that can automatically control the incident angle of an ultrasonic beam emitted from a pipe 1 into a conduit 1.
管路の外周に管軸方向に縦列Vc1組の超音波送受波器
を配置して管路内流体の超音波伝播時間よシ流体の流量
を測定する超音波流量測定装置において、複数個の個別
に励振される超音波振動子を合成樹脂材よシなる裸体の
管軸方向の傾斜面に配列された超音波送受波器と、超音
波送受波器内に配列される一方の端の超音波振動子を基
皐にして配列順にΔt、2Δt、 3Δt…の遅延量を
与える遅延量可調節の複数個の遅延回路と7超音波送受
波器へ遅延回路を経て、パルス信号を供給するパルス回
路と、流体の温度を検出する温度検出手段と、遅延回路
の遅延量を温度検出手段の出力信号に対応した制御信号
を発生する制御回路とを具備したものである。In an ultrasonic flow measurement device that measures the ultrasonic propagation time of the fluid in the pipe and the flow rate of the fluid by arranging one set of ultrasonic transducers in a column Vc in the pipe axis direction on the outer circumference of the pipe, a plurality of individual An ultrasonic transducer is arranged on an inclined plane in the axial direction of a naked body made of synthetic resin, and an ultrasonic transducer is excited at one end of the ultrasonic transducer. A plurality of delay circuits with adjustable delay amounts that give delays of Δt, 2Δt, 3Δt, etc. in the order of arrangement based on the transducer, and a pulse circuit that supplies pulse signals to the 7 ultrasonic transducers via the delay circuits. The temperature detecting means detects the temperature of the fluid, and the control circuit generates a control signal that corresponds to the delay amount of the delay circuit in accordance with the output signal of the temperature detecting means.
この発明においては、送受波器は夫々複数個の振動子よ
シ成り、相互の振動子のパルス信号による励振はパルス
発生回路より遅延回路を経て加えられ、夫々の遅延回路
の一定の関連をもって遅延される遅延量は測定する流体
温度に対応して自動的に制御されるので夫々の振動子の
パルス信号の励振位相が流体温度により調節され、この
励振位相を変えることにより送受波器から放射される超
音波ビームの管路への入射角を変化させて音響伝播路が
適正に維持される。In this invention, each transducer is composed of a plurality of oscillators, and the excitation of each oscillator by a pulse signal is applied from a pulse generation circuit through a delay circuit, and is delayed by a certain relationship between the respective delay circuits. The delay amount is automatically controlled according to the fluid temperature to be measured, so the excitation phase of the pulse signal of each vibrator is adjusted according to the fluid temperature, and by changing this excitation phase, the amount of delay emitted from the transducer is adjusted. The acoustic propagation path is maintained properly by changing the angle of incidence of the ultrasonic beam on the pipe.
第1図はこの発明の一実施例を示すブロック図であり、
1は上記従来装置と同一である。2は超音波を発生する
電気−音響変換を行う振動子、6は個別に励振され、−
列に配列された複数個の振動子2より成る送受波器、4
は複数個の振動子2を個別励振するパルス信号を発生す
るパルス回路、5は複数個の振動子毎に設けられパルス
回路4のパルス信号の励振位相に一定の関連をもって遅
延を与える遅延回路、6は測定流体の温度信号を発生す
る温度検出器、7は流体温度信号により各遅延回路5の
遅延量を調節する制御回路、8は送受波器3が放射する
超音波ビームの放射方向である。FIG. 1 is a block diagram showing one embodiment of the present invention,
1 is the same as the conventional device described above. 2 is a vibrator that performs electro-acoustic conversion to generate ultrasonic waves, 6 is individually excited, and -
A transducer consisting of a plurality of transducers 2 arranged in a row, 4
5 is a pulse circuit that generates a pulse signal to individually excite the plurality of oscillators 2; 5 is a delay circuit provided for each of the plurality of oscillators and delays the excitation phase of the pulse signal of the pulse circuit 4 in a certain relationship; 6 is a temperature detector that generates a temperature signal of the fluid to be measured; 7 is a control circuit that adjusts the delay amount of each delay circuit 5 based on the fluid temperature signal; and 8 is the radiation direction of the ultrasonic beam emitted by the transducer 3. .
上記のように構成された超音波流量測定装置において、
送受波器3の内部には例えば個別に励振される4個の振
動子2が設けられ、パルス回路4より4回路に分岐され
たパルス信号が個別の遅延回路5を経て振動子2を励振
する。In the ultrasonic flow measurement device configured as above,
Inside the transducer 3, for example, four oscillators 2 that are individually excited are provided, and a pulse signal branched from a pulse circuit 4 into four circuits excites the oscillators 2 through individual delay circuits 5. .
流体温度が常温に等しいときは各遅延回路5の遅延量は
凡て等しく、個別に励振された振動子2よシなる送受波
器3から放射される超音波ビームの森を方向8は送受波
器3の放射面に垂直な方向となる。When the fluid temperature is equal to room temperature, the delay amount of each delay circuit 5 is the same, and the direction 8 is the direction 8 of the ultrasonic beam forest emitted from the transducer 3, which is an individually excited transducer 2. The direction is perpendicular to the radiation surface of the vessel 3.
流体温度が常温より上昇したとき温度検出手段の出力信
号が変化して制御回路7の出力は遅延回路5が備えてい
る遅延量切替タップへの接続位置を切替えて各振動子2
へ加えられる励振パルス信号の遅延量が制御される。複
数個の振動子2の励振パルス信号の位相を夫々変化した
ときの送受波器6よυ放射される超音波ビームの校躬特
性について、
第2図は送受波器3の超音波ビームの放射特性の説明図
、dは振動子2の配置間隔、Cは媒質の音速度、Δtは
遅延回路4の遅延量、θは超音波ビームの寂射方向の偏
位角、各振動子2へのノくルス信号の遅延量は図に示す
とおり、その振動子2の配列によりddnθに対応して
付与されて超音波ビームの偏位角は
C・ Δt
θ=、1h1(−−7−)
となる、振動子2を個別に励振するパルス信号に振動子
2の配列順に配列の一方の端からΔt、 2Δt。When the fluid temperature rises above room temperature, the output signal of the temperature detection means changes and the output of the control circuit 7 is connected to the delay amount switching tap provided in the delay circuit 5 to switch the connection position to each vibrator 2.
The amount of delay of the excitation pulse signal applied to is controlled. Regarding the calibration characteristics of the ultrasonic beam emitted from the transducer 6 when the phases of the excitation pulse signals of the plurality of transducers 2 are changed respectively, Fig. 2 shows the emission of the ultrasonic beam from the transducer 3. In the explanatory diagram of the characteristics, d is the arrangement interval of the transducers 2, C is the sound velocity of the medium, Δt is the delay amount of the delay circuit 4, θ is the deflection angle of the ultrasonic beam in the radiation direction, and the deviation to each transducer 2. As shown in the figure, the delay amount of the Norculus signal is given according to ddnθ by the arrangement of the transducer 2, and the deflection angle of the ultrasonic beam is C・Δtθ=,1h1(−−7−). Δt, 2Δt from one end of the array in the order in which the oscillators 2 are arranged in pulse signals that individually excite the oscillators 2.
3et…の振動子2毎に異なる遅延を夫々与えて励振パ
ルス信号の位相を変化させることにょシ、複数個の振動
子2から放射され合成超音波ビームの放射方向は振動子
2の放射面に垂直な方向から振動子2の配列方向にその
遅延量に比例して偏位角が増加するように偏位させるこ
とができる。また振動子2へ与える遅延量の基準位置を
他方の端として順次遅延量を垢・加すると超音波ビーム
の喝位角は垂直方向から上記偏位方向と逆の方向に偏位
させることができる。By applying a different delay to each transducer 2 of 3et... to change the phase of the excitation pulse signal, the radiation direction of the combined ultrasound beam emitted from the plurality of transducers 2 is directed to the radiation surface of the transducer 2. It is possible to deviate from the vertical direction in the arrangement direction of the vibrators 2 so that the deviation angle increases in proportion to the amount of delay. Furthermore, by sequentially adding delay amounts using the reference position of the delay amount given to the transducer 2 as the other end, the tilt angle of the ultrasonic beam can be deviated from the vertical direction in the opposite direction to the above deviation direction. .
第6図に送受波器3の購造図の一例を示す。FIG. 6 shows an example of a purchasing drawing of the transducer 3.
12は合成樹脂材より成る背板で4個の振動子2が一定
間隔dに配置されて合成樹脂により一体構造に成形さル
ており、楔体11の傾斜面に沿って振動子2を配列し且
つ放射面を楔体11に接着させて送受波器3を管路1へ
装着したとき、超音波ビームは楔体11を経て管路1内
へ放射される構造となっている。Reference numeral 12 denotes a back plate made of a synthetic resin material, on which four vibrators 2 are arranged at regular intervals d and are integrally molded from synthetic resin, and the vibrators 2 are arranged along the slope of the wedge body 11. When the transducer 3 is attached to the conduit 1 with its radiation surface adhered to the wedge 11, the ultrasonic beam is radiated into the conduit 1 through the wedge 11.
上記構造において、送受波器3−1から放射される超音
波ビームのJIS G 3452配管用炭素鋼鋼管
50Aを使用した管路1への入射角47とし流体温度が
20℃のとき、1組の送受波器6−1゜3−2の超音波
ビームの管路1への入射位置間隔(L)は56. O,
となる。流体温度が上昇したとき管路1の材質及びアク
リル材の楔体11の音速塵は減少するが、流体(水)の
音速塵は増加するので音響伝播路の各媒質の境界位置に
おける屈折角、が変化して音響伝播路が変わる。In the above structure, when the incidence angle of the ultrasonic beam emitted from the transducer 3-1 to the pipe line 1 using JIS G 3452 carbon steel pipe 50A is 47 and the fluid temperature is 20°C, one set of The incident position interval (L) of the ultrasonic beam of the transducer 6-1°3-2 into the conduit 1 is 56. O,
becomes. When the fluid temperature rises, the sonic dust of the pipe 1 material and the acrylic wedge 11 decreases, but the sonic dust of the fluid (water) increases, so the refraction angle at the boundary position of each medium in the acoustic propagation path, changes, and the acoustic propagation path changes.
例えば流体温度が20℃から60℃に上昇したとき上記
入射位置間隔(L)の値は62.7閣となる。このとき
送受波器6−1の超音波ビームの管口路5の遅延量を調
節することにより屈折角の変動による音響伝播路の変化
が修正されて超音波ビームの管路1内の反射位置は流体
温度が常温のときの位置と一致し且つ到達位置も送受波
器3−2の位置と一致する◎
上記内容は1組の送受波器3−1.3−2を第5図に示
す透過型音響伝播路の管路1に装着しても同様に修正を
行うことができる。送受波器3−1から放射される超音
波ビームの管路1への入射角を変えると音響伝播路の各
媒質の境界面知おける屈折角が流体温度により屈折角が
変化しても超音波ビームは受信用送受波器3−2の所定
位置へ到達できるように音響伝播路が常に正しく確保ち
れる。For example, when the fluid temperature increases from 20° C. to 60° C., the value of the incident position interval (L) becomes 62.7 degrees. At this time, by adjusting the amount of delay in the channel 5 of the ultrasonic beam of the transducer 6-1, changes in the acoustic propagation path due to variations in the refraction angle are corrected, and the reflection position of the ultrasound beam in the channel 1 is corrected. corresponds to the position when the fluid temperature is room temperature, and the reached position also coincides with the position of the transducer 3-2. The same modification can be made even if the device is attached to the conduit 1 of the transmission type acoustic propagation path. If you change the angle of incidence of the ultrasonic beam emitted from the transducer 3-1 into the pipe line 1, the refraction angle at the interface between each medium in the acoustic propagation path will change, even if the refraction angle changes depending on the fluid temperature. The acoustic propagation path is always properly secured so that the beam can reach a predetermined position of the receiving transducer 3-2.
流体温度の検出は温度検出器を管路1へ装着して行うか
又は流体温度による音速塵の変化を利用して流量測定を
行う1組の送受波器3−1.3〜2を使用して超音波の
伝播時間よυ算出することができる。流体温度信号によ
υ遅延回路4の遅延量を自動的に変化させて各振動子2
の励振位相を変えると、送受波器3内の振動子2は管路
1の管軸方向に配列されているので超音波ビームの放射
角は管軸を含む平面内で変化するので、これにより超音
波ビームの管路1への入射角が変化できる。The fluid temperature is detected by attaching a temperature detector to the pipe line 1, or by using a set of transducers 3-1.3 to 2, which measure the flow rate by utilizing changes in sonic dust due to the fluid temperature. The propagation time of the ultrasonic wave can be calculated using Each vibrator 2 automatically changes the delay amount of the υ delay circuit 4 according to the fluid temperature signal.
When the excitation phase of The angle of incidence of the ultrasonic beam onto the conduit 1 can be changed.
この超音波流量測定装置においては、1組の送受波器3
−1及び6−2は交互励振を行うので、超音波信号の送
信時ならびに受信時に同一遅延量が付与されておυ、送
受波器3−1.3−2の超音波ビーム放射特性の管路1
とのなす角度は送信時及び受信時においても夫々等しい
。In this ultrasonic flow measuring device, one set of transducer 3
-1 and 6-2 perform alternate excitation, so the same amount of delay is given when transmitting and receiving ultrasonic signals. Road 1
The angle between the two is the same at the time of transmission and at the time of reception.
本発明は送受波器3内に複数個の振動子2を配置して、
振動子2を励振するパルス信号の位相を流体温度信号に
より遅延回路5の遅延量を振動子2の配列に対応した一
定の関連をもって遅延量の変化を与えて制御することに
よ)常に1組の送受波器乙のビーム放射特性の管路1と
のなす角度を修正して常に適正な音響伝播路を形成させ
、送受波器乙の超音波信号の送信及び受信を最良感度の
状態にて行い流体への屈折角の変化を修正して正確な測
定を行わせることができる。The present invention arranges a plurality of vibrators 2 in a transducer 3,
(by controlling the phase of the pulse signal that excites the vibrator 2 by changing the delay amount of the delay circuit 5 using the fluid temperature signal by changing the delay amount in a certain relationship corresponding to the arrangement of the vibrator 2), one set is always set. The angle between the beam radiation characteristics of the transducer B and the pipe line 1 is corrected to always form an appropriate acoustic propagation path, and the ultrasonic signal is transmitted and received by the transducer B in the state of optimum sensitivity. Changes in the angle of refraction into the fluid can be corrected for accurate measurements.
また管路寸法、管路材質や流体の種類などが変わっても
最適な音響伝播路が形成できるよう遅延画路4の遅延量
を調節して行なうことができる。Further, even if the dimensions of the pipe, the material of the pipe, the type of fluid, etc. change, the delay amount of the delay image path 4 can be adjusted so that an optimal sound propagation path can be formed.
この発明は以上説明したとおυ、送受波器内に複数個の
振動子を配列し、夫々の振動子を励振する信号の位相を
流体温度により調節するという簡単な構造により、測定
流体の温度が変化しても測定流体の温度信号により送受
波器の各振動子を励振するパルス信号の相互の位相を一
定の関連をもって調節することにより送受波器から放射
される超音波ビームの放射特性の管路とのなす角度を制
御して常に1flllllの送受波器に最適な音響伝播
路を形成させて、正確な測定を行うことができる。更に
管路寸法、管路材質、測定流体の種類や流体温度などが
異なる工業用プラントなどにおける流量測定尤も広く適
用できるので超音波流量計の応用面が拡張できる効果が
ある。As explained above, this invention has a simple structure in which a plurality of oscillators are arranged in a transducer and the phase of the signal that excites each oscillator is adjusted depending on the fluid temperature. The radiation characteristics of the ultrasonic beam emitted from the transducer can be controlled by adjusting the mutual phase of the pulse signals that excite each transducer of the transducer in a certain relationship even when the temperature signal of the measuring fluid changes. Accurate measurements can be made by controlling the angle between the acoustic propagation path and the 1flllll transducer to always form an optimal acoustic propagation path. Furthermore, the ultrasonic flowmeter can be widely applied to flow measurement in industrial plants where pipe dimensions, pipe materials, types of fluids to be measured, fluid temperatures, etc. are different, thereby expanding the range of applications of the ultrasonic flowmeter.
第1図はこの発明の一実施例を示すブロック図、?IC
2図は超音波ビームの放射特性の説明図、第3図は送受
波器の構造図の一例、第4図は従来の反射型音響伝播路
の説明図、第5図は従来の透過型音響伝播路の説明図で
ある。
図において、2は超音波振動子、3は超音波送受波器、
4はパルス回路、5は遅延回路、6は温度検出器、7は
制御回路、8は超音波ビームの放射方向である。
なお、各図中同一符号は同一または相当を示す。FIG. 1 is a block diagram showing one embodiment of this invention. IC
Figure 2 is an explanatory diagram of the radiation characteristics of an ultrasonic beam, Figure 3 is an example of a structural diagram of a transducer, Figure 4 is an explanatory diagram of a conventional reflective acoustic propagation path, and Figure 5 is an illustration of a conventional transmission acoustic propagation path. FIG. 3 is an explanatory diagram of a propagation path. In the figure, 2 is an ultrasonic transducer, 3 is an ultrasonic transducer,
4 is a pulse circuit, 5 is a delay circuit, 6 is a temperature detector, 7 is a control circuit, and 8 is the radiation direction of the ultrasonic beam. Note that the same reference numerals in each figure indicate the same or equivalent.
Claims (1)
配置して管路内流体の超音波伝搬時間より流体の流量を
測定する超音波流量測定装置において、複数個の個別に
励振される超音波振動子を合成樹脂材よりなる楔体の管
軸方向の傾斜面に配列されてなる超音波送受波器と、前
記超音波送受波器内に配列される一方の端の超音波振動
子を基準にしてその配列順にΔt、2Δt、3Δt…の
遅延量を与える遅延量可調節の複数個の遅延回路と、前
記超音波送受波器へ前記遅延回路を経てパルス信号を供
給するパルス回路と、流体温度を検出する温度検出手段
と、前記遅延回路の遅延量を前記温度検出手段の出力信
号に対応させた制御信号を発生する制御回路とを具備し
、流体温度の信号により前記超音波送受波器の超音波放
射方向の管路とのなす角度を調節することを特徴とする
超音波流量測定装置。In an ultrasonic flow measurement device that measures the flow rate of a fluid based on the ultrasonic propagation time of the fluid in the pipe by arranging a set of ultrasonic transducers in tandem in the pipe axis direction on the outer circumference of the pipe, multiple individual an ultrasonic transducer in which ultrasonic transducers excited by the ultrasonic transducer are arranged on an inclined surface in the tube axis direction of a wedge made of a synthetic resin material, and one end arranged in the ultrasonic transducer A plurality of delay circuits whose delay amounts can be adjusted to give delays of Δt, 2Δt, 3Δt, etc. in the order of arrangement based on the ultrasonic transducer, and pulse signals are supplied to the ultrasonic transducer via the delay circuits. a pulse circuit that detects a fluid temperature, a temperature detection means that detects a fluid temperature, and a control circuit that generates a control signal in which a delay amount of the delay circuit corresponds to an output signal of the temperature detection means, An ultrasonic flow rate measurement device characterized in that the angle between the ultrasonic transducer and the pipe line in the ultrasonic emission direction is adjusted.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61152950A JPS638515A (en) | 1986-06-30 | 1986-06-30 | Ultrasonic flow rate measuring instrument |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61152950A JPS638515A (en) | 1986-06-30 | 1986-06-30 | Ultrasonic flow rate measuring instrument |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS638515A true JPS638515A (en) | 1988-01-14 |
JPH0554889B2 JPH0554889B2 (en) | 1993-08-13 |
Family
ID=15551703
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61152950A Granted JPS638515A (en) | 1986-06-30 | 1986-06-30 | Ultrasonic flow rate measuring instrument |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS638515A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006292406A (en) * | 2005-04-06 | 2006-10-26 | Tokyo Keiso Co Ltd | Ultrasonic flow meter |
JP7035263B1 (en) * | 2021-11-25 | 2022-03-14 | 東京計装株式会社 | Ultrasonic flow meter |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0926342A (en) * | 1995-07-13 | 1997-01-28 | Matsushita Electric Ind Co Ltd | Ultrasonic oscillator and ultrasonic flowmeter using it |
-
1986
- 1986-06-30 JP JP61152950A patent/JPS638515A/en active Granted
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006292406A (en) * | 2005-04-06 | 2006-10-26 | Tokyo Keiso Co Ltd | Ultrasonic flow meter |
JP4746903B2 (en) * | 2005-04-06 | 2011-08-10 | 東京計装株式会社 | Ultrasonic flow meter |
JP7035263B1 (en) * | 2021-11-25 | 2022-03-14 | 東京計装株式会社 | Ultrasonic flow meter |
Also Published As
Publication number | Publication date |
---|---|
JPH0554889B2 (en) | 1993-08-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4930358A (en) | Method of and apparatus for measuring flow velocity by using ultrasonic waves | |
EP0264991B1 (en) | Ultrasonic flow meter | |
JP5122453B2 (en) | Flow velocity distribution measuring device and ultrasonic flow meter | |
US4015470A (en) | Flow measuring method and apparatus | |
US4748857A (en) | Ultrasonic apparatus for measuring the flow velocity of a fluid | |
JP3216769B2 (en) | Temperature and pressure compensation method for clamp-on type ultrasonic flowmeter | |
US9752907B2 (en) | Phase controlled variable angle ultrasonic flow meter | |
JP4712035B2 (en) | Method for calibrating mounting type or clamp type ultrasonic flow measuring device | |
RU2660011C1 (en) | Method and device for ultrasonic flow method measurement and layout device for controlling ultrasonic flow measurements by practical method | |
EP2816327B1 (en) | Ultrasonic flowmeter | |
EP0657021B1 (en) | Flow meter | |
US6584860B1 (en) | Flow probe insertion gauge | |
US5557970A (en) | Automated thickness measurement system | |
RU2580907C1 (en) | Ultrasonic waveguide level meter for liquid | |
JPH05223608A (en) | Ultrasonic flowmeter | |
JPH0447770B2 (en) | ||
US20040129088A1 (en) | Single-body dual-chip orthogonal sensing transit-time flow device using a parabolic reflecting surface | |
JPS638515A (en) | Ultrasonic flow rate measuring instrument | |
US3204457A (en) | Ultrasonic flowmeter | |
JP3136002B2 (en) | Ultrasonic flow meter | |
JP2011038870A (en) | Ultrasonic flow meter and flow rate measuring method using the same | |
JPH0376866B2 (en) | ||
JPH05180678A (en) | Ultrasonic flow meter and method for measuring flow rate by it | |
JPS6040916A (en) | Correcting method of temperature-change error of ultrasonic wave flow speed and flow rate meter | |
WO2005064288A1 (en) | Ultrasonic flowmeter, wedge for ultrasonic flowmeter, method for setting ultrasonic transmitting/receiving unit, and ultrasonic transmitting/receiving unit |