JPS6385024A - Processing of glass rod for optical fiber - Google Patents
Processing of glass rod for optical fiberInfo
- Publication number
- JPS6385024A JPS6385024A JP22803086A JP22803086A JPS6385024A JP S6385024 A JPS6385024 A JP S6385024A JP 22803086 A JP22803086 A JP 22803086A JP 22803086 A JP22803086 A JP 22803086A JP S6385024 A JPS6385024 A JP S6385024A
- Authority
- JP
- Japan
- Prior art keywords
- glass
- rod
- starting
- glass rod
- dummy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000011521 glass Substances 0.000 title claims abstract description 57
- 239000013307 optical fiber Substances 0.000 title claims description 5
- 239000002994 raw material Substances 0.000 claims abstract description 6
- 239000002245 particle Substances 0.000 claims description 9
- 238000000034 method Methods 0.000 claims description 7
- 239000010419 fine particle Substances 0.000 claims description 4
- 238000000151 deposition Methods 0.000 claims description 3
- 238000002485 combustion reaction Methods 0.000 claims description 2
- 239000005373 porous glass Substances 0.000 abstract description 10
- 239000002131 composite material Substances 0.000 abstract description 6
- 230000001965 increasing effect Effects 0.000 abstract description 5
- 230000008021 deposition Effects 0.000 abstract description 3
- 239000012808 vapor phase Substances 0.000 abstract description 2
- 239000004071 soot Substances 0.000 abstract 3
- 229910003910 SiCl4 Inorganic materials 0.000 abstract 1
- 238000005137 deposition process Methods 0.000 abstract 1
- FDNAPBUWERUEDA-UHFFFAOYSA-N silicon tetrachloride Chemical compound Cl[Si](Cl)(Cl)Cl FDNAPBUWERUEDA-UHFFFAOYSA-N 0.000 abstract 1
- 239000007858 starting material Substances 0.000 description 16
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 6
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 4
- 238000007796 conventional method Methods 0.000 description 4
- 239000011737 fluorine Substances 0.000 description 4
- 229910052731 fluorine Inorganic materials 0.000 description 4
- VXEGSRKPIUDPQT-UHFFFAOYSA-N 4-[4-(4-methoxyphenyl)piperazin-1-yl]aniline Chemical compound C1=CC(OC)=CC=C1N1CCN(C=2C=CC(N)=CC=2)CC1 VXEGSRKPIUDPQT-UHFFFAOYSA-N 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 229910052742 iron Inorganic materials 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- 239000005049 silicon tetrachloride Substances 0.000 description 3
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 2
- 230000003028 elevating effect Effects 0.000 description 2
- 239000010453 quartz Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 238000004017 vitrification Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B37/00—Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
- C03B37/01—Manufacture of glass fibres or filaments
- C03B37/012—Manufacture of preforms for drawing fibres or filaments
- C03B37/014—Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
- C03B37/01486—Means for supporting, rotating or translating the preforms being formed, e.g. lathes
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Glass Melting And Manufacturing (AREA)
- Manufacture, Treatment Of Glass Fibers (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、元ファイバの製造に用いられるガラスロッド
の増径加工に関するものである。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to diameter-increasing processing of glass rods used in the production of original fibers.
光フアイバ製造に用いられるガラスロッドの増径加工を
行う従来法としていわゆる気相軸付法(MAD法)t−
利用した方法があり、例えば第2図に示されるように行
う。第2図に於て、出発ロッド3は治具2を介し昇降装
置の回転チャック1で保持され、回転及び上下動可能な
状態にある。バーナ4には酸水素炎又はプロパンガス等
の火炎が形成され、ここに四塩化ケイ素等のガラス原料
を供給することにより、火炎中にガラス微粒子5t−生
成する。該ガラス微粒子5Fi出発ロッド3上に堆積し
、同時に起こるわずかな焼結によって、多孔質ガラス体
6が出発ロッド5上に形成された複合体を得る。該複合
体を、その後高温にて加熱処理して透明ガラス体とする
ことにより、出発ロッドより増径されたガラスロッドを
得ることができる。The so-called vapor phase attachment method (MAD method) is a conventional method for increasing the diameter of glass rods used in optical fiber manufacturing.
There are several methods used, for example as shown in FIG. In FIG. 2, the starting rod 3 is held by a rotary chuck 1 of an elevating device via a jig 2, and is in a state where it can rotate and move up and down. A flame of oxyhydrogen flame or propane gas is formed in the burner 4, and by supplying a glass raw material such as silicon tetrachloride to the flame, 5t of fine glass particles are generated in the flame. The glass fine particles 5Fi are deposited on the starting rod 3 and a slight sintering that occurs at the same time yields a composite in which a porous glass body 6 is formed on the starting rod 5. By subsequently heat-treating the composite at a high temperature to obtain a transparent glass body, a glass rod having a diameter larger than that of the starting rod can be obtained.
しかしながら上記した従来の方法には、次のような問題
点があった。However, the conventional method described above has the following problems.
(1)第5図(入)のように出発ガラスロッド3の全長
がかくれる位置までガラス微粒子5を堆積させても、加
熱処理後の透明ガラス微粒子は第3図(B)のような形
状になシ、出発ロッド3の全長を増径加工することがで
きない。(1) Even if the glass particles 5 are deposited to a position where the entire length of the starting glass rod 3 is covered as shown in FIG. 5 (in), the transparent glass particles after heat treatment will have a shape as shown in FIG. 3 (B) Unfortunately, it is not possible to increase the diameter of the entire length of the starting rod 3.
(It) これに対し出発ガラスロッド3の全長を増
径加工できるように1第3図(A1の状態からさらに出
発ガラスロッド3の下端部を越えてガラス微粒子を堆積
させようとしても微粒子の堆積面の形が変わシ、安定に
堆積させることができない。これは、バーナと堆積面の
間隔が変わるためである。(It) On the other hand, in order to increase the diameter of the entire length of the starting glass rod 3, it is possible to increase the diameter of the starting glass rod 3 (Fig. 3). The shape of the surface changes, making it impossible to deposit stably.This is because the distance between the burner and the deposition surface changes.
本発明はこのような現状に鑑み、出発ロンドの全長を増
径加工できる新しい加工方法を目的としてなされ次もの
である。In view of the current situation, the present invention has been made with the aim of providing a new processing method that can increase the diameter of the entire length of the starting iron.
本発明は燃焼バーナの火炎中にガラス原料を導入し、火
炎中に生成したガラス微粒子を回転しつつ上下動可能な
軸にその一方の端をとシつけられた出発ガラスロッドの
外周部に堆積した後、加熱処理することによシ増径され
九透明ガラス四ツドを得る方法において、前記出発ガラ
スロッドの他の端に該出発ガラスロッドと同径のダミー
ロッドを接続した状態で、ガラス微粒子をガラスロッド
全長にわたシ堆積することを特徴とする光ファイバ用ガ
ラスロッドの加工方法である。In the present invention, glass raw materials are introduced into the flame of a combustion burner, and the glass particles generated in the flame are deposited on the outer periphery of a starting glass rod whose one end is attached to a shaft that can be moved up and down while rotating. In this method, a dummy rod having the same diameter as the starting glass rod is connected to the other end of the starting glass rod, and glass fine particles are added to the starting glass rod. This is a method for processing a glass rod for optical fibers, which is characterized by depositing the following over the entire length of the glass rod.
以下図面を参照して本発明を説明する。第1図は本発明
の一具体例を示し、出発ガラスロッド3は治具2を介し
昇降装置の回転チャック1に保持され、回転・上下動可
能な状態にあシ、該出発ガラスロッド3の治具2側と反
対の一端にはダミーガラスロッド7が接続されている。The present invention will be explained below with reference to the drawings. FIG. 1 shows a specific example of the present invention, in which a starting glass rod 3 is held by a rotating chuck 1 of an elevating device via a jig 2, and is in a state where it can rotate and move up and down. A dummy glass rod 7 is connected to one end opposite to the jig 2 side.
このような出発ガラスロッド3及びダミーガラスロッド
7上に1バーナ4の火炎中にガラス原料例えば四塩化ケ
イ素等を供給して生成したガラス微粒子5を堆積して多
孔質ガラス体6を形成し、複合体を得る。かように行う
と出発ガラスロッド3の一端に同径のダミーロッド7が
接続されているので、出発ロッド3の下端部を越えても
、すなわち出発カラスロッド3が多孔質ガラス体6によ
シ覆いかくされた後も、全く同じ条件でガラス微粒子5
の堆積を続けることができる。得られた複合体を高温に
て加熱処理狐透明ガラス体とすると、出発材全長にわた
って均一に増径したロンドを得ることができる。On such starting glass rod 3 and dummy glass rod 7, glass particles 5 produced by supplying a glass raw material such as silicon tetrachloride into the flame of one burner 4 are deposited to form a porous glass body 6. Get the complex. By doing this, since the dummy rod 7 having the same diameter is connected to one end of the starting glass rod 3, even if it goes beyond the lower end of the starting rod 3, that is, the starting glass rod 3 is not inserted into the porous glass body 6. Even after being covered and hidden, glass particles 5 were collected under exactly the same conditions.
can continue to accumulate. When the resulting composite is heat-treated at a high temperature to form a transparent glass body, a rondo whose diameter is uniformly increased over the entire length of the starting material can be obtained.
以上の説明では四塩化ケイ素をガラス原料とする例を示
したが、本発明は出発材と同径のダミーロッドを出発材
に接続し、出発材全長にわたって均一にガラス微粒子の
堆積した多孔質ガラス体を形成する点にあるので、出発
ガラスロッド及び多孔質ガラス体の組成については特に
限定されるところはない。In the above explanation, an example was shown in which silicon tetrachloride is used as a glass raw material, but the present invention connects a dummy rod with the same diameter as the starting material to the starting material, and forms a porous glass with glass particles evenly deposited over the entire length of the starting material. There are no particular limitations on the compositions of the starting glass rod and the porous glass body since the purpose is to form a body.
出発材と同径のダミーロッドとしては、出発材と同程度
の粘性を持つものが好ましく、例えば出発材力5in2
ならばSl、2.7ツ素添加5zo2ならばフッ素添加
5102 を用−ればよい。ダミーロッドの不純物に
ついては、天然石英のレベル(Aj 20 ppm1F
a 2 ppm ) テロれば良い。The dummy rod with the same diameter as the starting material is preferably one with a viscosity comparable to that of the starting material, for example, the starting material force is 5 in2.
If so, use Sl, and if 5zo2 is doped with 2.7 fluorine, then 5102 is doped with fluorine. Regarding impurities in the dummy rod, the level of natural quartz (Aj 20 ppm 1F
a 2 ppm) Terrorism is fine.
又、ダミーロッドと出発材との接続は加熱溶融によれば
よい。The dummy rod and the starting material may be connected by heating and melting.
出発材として径が21)1)φである純粋な石英ロンド
と、これをとシ囲む外径10寵φのフッ素を含む石英ガ
ラスとが一体くなつ九ロッドを使用した。第1図に示し
念装置において該出発材の一端に、出発材と同径の治具
を付け、他端にやはシ同径のダミーロッドを取付けた。As a starting material, nine rods were used, which were made up of a pure quartz rod having a diameter of 21)1)φ and a fluorine-containing quartz glass surrounding it and having an outer diameter of 10 mm. In the demonstration device shown in FIG. 1, a jig having the same diameter as the starting material was attached to one end of the starting material, and a dummy rod having the same diameter was attached to the other end.
この治具を回転・上下動可能なチャックに保持し、斜め
下方に置かれたバーナよシガラス微粒子を吹き出させ、
これを出発材およびダミーロッド上に堆積させていった
。ガラス微粒子が堆積した多孔質ガラス体の外径は15
0mφとなつ九。This jig is held in a chuck that can be rotated and moved up and down, and the burner placed diagonally downward blows out the glass particles.
This was deposited on the starting material and dummy rod. The outer diameter of the porous glass body on which glass fine particles are deposited is 15
0mφ and Natsu9.
これを高温炉でフッ素添加および透明ガラス化を行なつ
次後、その透明ガラス体の外径を測定したところ、出発
材がその中に含まれる部分の径は最大53.43EII
、最少52.6mi、と非常に変動が少なく、出発材の
全長を増径加工することができた。After fluorine addition and transparent vitrification were performed on this in a high-temperature furnace, the outer diameter of the transparent glass body was measured, and the diameter of the portion containing the starting material was at most 53.43EII.
, a minimum of 52.6 mi, with very little variation, making it possible to increase the diameter of the entire length of the starting material.
以上説明したように、本発明は出発材と同径のダミーロ
ンドを接続して出発材の全長にわたり均一厚さとなるよ
う多孔質ガラス体を形成するので、出発材全長を極めて
均一に増径加工することができる。したがって光フアイ
バ用のガラス母材を製造するにおいて、長手方向に均一
な製品を高歩留シで得ることができる。As explained above, in the present invention, a porous glass body is formed so as to have a uniform thickness over the entire length of the starting material by connecting a dummy iron with the same diameter as the starting material. can do. Therefore, in manufacturing a glass preform for optical fibers, a product that is uniform in the longitudinal direction can be obtained at a high yield.
第1図は本発明の実施態様を説明する概略の断面図、第
2図は従来法の概略断面図、第3図(A)は従来法によ
る出発ロンドの下端での多孔質ガラス体の形成状態を示
す図であり、第3図(Blは(Alで得た複合体を高温
加熱処理して得た増径されたガラスロッドの断面図であ
る。FIG. 1 is a schematic sectional view illustrating an embodiment of the present invention, FIG. 2 is a schematic sectional view of a conventional method, and FIG. 3(A) is a conventional method for forming a porous glass body at the lower end of a starting iron. FIG. 3 is a diagram showing the state, and FIG. 3 (Bl is a cross-sectional view of a glass rod with an increased diameter obtained by subjecting a composite obtained from Al to high-temperature heat treatment.
Claims (1)
中に生成したガラス微粒子を回転しつつ上下動可能な軸
にその一方の端をとりつけられた出発ガラスロッドの外
周部に堆積した後、加熱処理することにより増径された
透明ガラスロッドを得る方法において、前記出発ガラス
ロッドの他の端に該出発ガラスロッドと同径のダミーロ
ッドを接続した状態で、ガラス微粒子をガラスロッド全
長にわたり堆積することを特徴とする光ファイバ用ガラ
スロッドの加工方法。(1) Glass raw materials are introduced into the flame of a combustion burner, and the glass particles generated in the flame are deposited on the outer periphery of a starting glass rod whose one end is attached to a shaft that can move up and down while rotating. In this method, a dummy rod having the same diameter as the starting glass rod is connected to the other end of the starting glass rod, and glass fine particles are applied over the entire length of the glass rod. A method for processing a glass rod for optical fiber, characterized by depositing it.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22803086A JPH0672027B2 (en) | 1986-09-29 | 1986-09-29 | Processing method of glass rod for optical fiber |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22803086A JPH0672027B2 (en) | 1986-09-29 | 1986-09-29 | Processing method of glass rod for optical fiber |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6385024A true JPS6385024A (en) | 1988-04-15 |
JPH0672027B2 JPH0672027B2 (en) | 1994-09-14 |
Family
ID=16870096
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP22803086A Expired - Fee Related JPH0672027B2 (en) | 1986-09-29 | 1986-09-29 | Processing method of glass rod for optical fiber |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0672027B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0770583A1 (en) * | 1992-07-09 | 1997-05-02 | Sumitomo Electric Industries, Ltd | Method for drawing glass proform for optical fiber |
-
1986
- 1986-09-29 JP JP22803086A patent/JPH0672027B2/en not_active Expired - Fee Related
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0770583A1 (en) * | 1992-07-09 | 1997-05-02 | Sumitomo Electric Industries, Ltd | Method for drawing glass proform for optical fiber |
US5674306A (en) * | 1992-07-09 | 1997-10-07 | Sumitomo Electric Industries, Ltd. | Method and apparatus for drawing glass preform for optical fiber |
Also Published As
Publication number | Publication date |
---|---|
JPH0672027B2 (en) | 1994-09-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR950006197B1 (en) | Method for flame abrasion of glass preform | |
CN1197798C (en) | Method for producing fibre-optical precast stick | |
US6978641B2 (en) | Method for cutting glass rod and cutting device for use therein | |
US4276072A (en) | Optical fiber fabrication | |
JP2003171137A (en) | Method for manufacturing optical fiber preform | |
JPS6385024A (en) | Processing of glass rod for optical fiber | |
EP0024412A1 (en) | Optical fiber fabrication process. | |
CN109843815A (en) | The manufacturing method of optical fiber base material | |
JP6979000B2 (en) | Manufacturing method of glass base material for optical fiber | |
JP4407742B2 (en) | Inspection method of refractive index distribution of glass base material | |
JP4565221B2 (en) | Optical fiber preform | |
JP3290612B2 (en) | Method of detecting core tube crack in sintering process of optical fiber preform and method of manufacturing optical fiber preform | |
JPH0986948A (en) | Production of porous glass base material for optical fiber | |
JPS6065742A (en) | Production of porous glass base material for optical fiber by vad method | |
JPH0525817B2 (en) | ||
JPH0327491B2 (en) | ||
JP2022127161A (en) | Method for manufacturing optical fiber preform and method for manufacturing optical fiber | |
JPH0218333A (en) | Heat treatment of porous base material | |
JPH054825A (en) | Production of glass article | |
JP2002249342A (en) | Glass body and method for manufacturing it | |
JP2003165736A (en) | Method for manufacturing optical fiber preform and device and manufacturing optical fiber preform using it | |
JPH03232732A (en) | Production of glass preform for hydrogen-resistant optical fiber | |
JPS61281039A (en) | Production of optical fiber | |
JPS5899129A (en) | Production of rod lens | |
JPH0717398B2 (en) | Method for manufacturing base material for optical fiber |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |