JPS638424B2 - - Google Patents

Info

Publication number
JPS638424B2
JPS638424B2 JP53028728A JP2872878A JPS638424B2 JP S638424 B2 JPS638424 B2 JP S638424B2 JP 53028728 A JP53028728 A JP 53028728A JP 2872878 A JP2872878 A JP 2872878A JP S638424 B2 JPS638424 B2 JP S638424B2
Authority
JP
Japan
Prior art keywords
probe
flaw detection
tube
ultrasonic
cable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53028728A
Other languages
Japanese (ja)
Other versions
JPS54121789A (en
Inventor
Takao Sato
Hirotoshi Kino
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2872878A priority Critical patent/JPS54121789A/en
Publication of JPS54121789A publication Critical patent/JPS54121789A/en
Publication of JPS638424B2 publication Critical patent/JPS638424B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/02872Pressure

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Description

【発明の詳細な説明】 加圧水形原子炉や高速増殖炉などでは、内径が
10〜30mm程度の細管を伝熱管とした、蒸気発生器
や過熱器が設置され、これを介して冷却系と原子
炉で発生した熱の授受が行なわれる。
[Detailed description of the invention] In pressurized water reactors, fast breeder reactors, etc., the inner diameter is
A steam generator and a superheater are installed using thin tubes of about 10 to 30 mm as heat transfer tubes, and the heat generated in the cooling system and the reactor is exchanged through these.

この細管が健全であるか否かを定期的に検査
し、傷などが管肉を貫通する前に対策を行なうこ
とが炉の安全運転上非常に望ましい。
It is highly desirable for the safe operation of the furnace to periodically inspect whether the thin tube is healthy or not, and to take measures to prevent damage from penetrating the tube wall.

従来この細管を検査する手段としてX線検査や
渦電流検査などが適用されているが、一旦構造体
として組み立てられた後、検査を行なうことは、
種々の困難を伴つていた。
Conventionally, methods such as X-ray inspection and eddy current inspection have been applied to inspect these thin tubes, but it is difficult to inspect them once they have been assembled as a structure.
It was accompanied by various difficulties.

特に高速増殖炉の蒸気発生器のごとく、ヘリカ
ルコイル状とした伝熱管の全長が数10mにもなる
場合には、管の外側にはそれを支持するための溶
接や構造物が多数設けられ、しかも放射線被ばく
の問題があるため、管の外側から検査することは
事実上不可能であり、管内面にプローブを挿入し
て検査する必要がある。
In particular, when the total length of a helical coiled heat transfer tube is several tens of meters, such as in a fast breeder reactor steam generator, many welds and structures are installed on the outside of the tube to support it. Furthermore, due to the problem of radiation exposure, it is virtually impossible to inspect the tube from the outside, and it is necessary to insert a probe into the inner surface of the tube for inspection.

ところで、蒸気発生器の管は直線状のものとは
限らず、ヘリカル状になつていたり、U字状であ
つたりするため、管内に超音波の発振、受信など
を行なうプローブを挿入して探傷を行なう場合に
は、プローブの形状ならびにそれに接続するケー
ブルの太さがプローブの挿入性に大きく影響する
ことが実験的に確認された。
By the way, the tubes of steam generators are not necessarily straight, but may be helical or U-shaped, so flaw detection is carried out by inserting a probe that emits and receives ultrasonic waves into the tubes. It has been experimentally confirmed that the shape of the probe and the thickness of the cable connected to it greatly affect the ease of inserting the probe.

すなわち、超音波探傷用のプローブは超音波を
発射するための励振子、超音波を受信しそれを電
気信号に変換する受信子が必要最少限の構成要素
であるが、管の円周方向全面を探傷するためには
何らかの方法でその円周方向全面に超音波の発受
信をしなければならない。これをスキヤンニング
と呼称するが、従来よりスキヤンニングの方法と
しては電気的な方法と、モータなどによる機械的
な方法が使用されていることは周知であり、細管
用プローブもこのスキヤンニングを行なう要素が
必要となる。
In other words, the minimum required components of an ultrasonic flaw detection probe are an exciter for emitting ultrasonic waves and a receiver for receiving ultrasonic waves and converting them into electrical signals, but the entire circumferential surface of the tube is In order to detect flaws, it is necessary to send and receive ultrasonic waves all over the circumference in some way. This is called scanning, and it is well known that conventional scanning methods include electrical methods and mechanical methods using motors, etc., and probes for thin tubes also perform this scanning. element is required.

内径約20mm、全長約60mというようなヘリカル
コイル状細管の内面から探傷する場合の課題は、
高速かつ高精度に探傷できること共に、管の全長
に亘つて挿入できるプローブを実現することであ
つた。
The challenges when detecting flaws from the inner surface of a helical coiled tube with an inner diameter of approximately 20 mm and a total length of approximately 60 m are as follows.
The aim was to create a probe that could detect flaws at high speed and with high precision, and that could be inserted over the entire length of the pipe.

そこで、探傷の高速化を図るには、超音波ビー
ムの回転走査を電気的にスキヤンニングする方法
が最も有効とされているが、このスキヤンニング
を行う要素を管の外部に設置した場合、管内には
各励振子、受信子からの信号線が多数管内を通過
する構造となる。
Therefore, in order to speed up flaw detection, the most effective method is to electrically scan the rotational scanning of an ultrasonic beam, but if the element for this scanning is installed outside the pipe, The structure is such that many signal lines from each exciter and receiver pass through the tube.

この様子を第1図を用いて説明する。第1図に
おいて1は探傷対象の管の断面であり、は超音
波プローブで励振子または受信子21,22……
が円周方向に多数配列されており、各々に信号用
ケーブル21a,22a……が接続されている。
This situation will be explained using FIG. In Fig. 1, 1 is a cross section of the tube to be tested, and 2 is an ultrasonic probe with exciters or receivers 21, 22...
are arranged in a circumferential direction, and signal cables 21a, 22a, . . . are connected to each of them.

3はマルチプレクサで管の円周方向を探傷する
ために順次振動子を切換えて、励振および受信を
行なうためのものである。100は探傷装置であ
る。
Numeral 3 is a multiplexer for excitation and reception by sequentially switching the vibrators for flaw detection in the circumferential direction of the tube. 100 is a flaw detection device.

第1図のプローブは励振子と受信子とを共通の
振動子で共用する例を示したものであり、その場
合でもたとえば周方向を16分割程度にすると、少
なくとも管内を通るケーブル本数は16本にもな
る。実際には、周方向の分割数は更に大きくする
必要があり、また超音波の信号パスが短かいと
き、たとえば管内径がが小さいときや管の肉厚が
薄いときは、励振子と受信子とを共通にすると、
励振パルスや管表面からの反射波が十分減衰しな
いうちに次の受信波が帰つてしまうゆえ管内表面
近傍での探傷が不可能となつてしまう。そのよう
な場合には両者を分離する必要があるが、そうす
るとケーブル本数は倍の数となる。
The probe in Figure 1 shows an example in which the exciter and receiver are shared by a common transducer. Even in that case, if the circumferential direction is divided into about 16 sections, at least 16 cables will pass through the tube. It also becomes. In reality, the number of circumferential divisions needs to be even larger, and when the ultrasonic signal path is short, for example when the tube inner diameter is small or the tube wall thickness is thin, the exciter and receiver If we have this in common,
Since the next received wave returns before the excitation pulse and the reflected wave from the tube surface are sufficiently attenuated, it becomes impossible to detect flaws near the inner surface of the tube. In such a case, it is necessary to separate the two, but then the number of cables will be doubled.

また一般に高周波信号の減衰量はケーブル径に
反比例して増加するので、数MHzの信号を扱う超
音波探傷では、ケーブル径をあまり小さくするこ
とは望ましくない。
Furthermore, since the amount of attenuation of high-frequency signals generally increases in inverse proportion to the cable diameter, it is not desirable to make the cable diameter too small in ultrasonic flaw detection that handles signals of several MHz.

このようなプローブをヘリカルコイル状細管内
に挿入するためには、たとえばピアノ線等をプロ
ーブに接続して押し込む方法などが考えられる
が、内径20mm程度の細管による実験によると、注
意深く操作してもたかだか10m程度挿入すると、
まつたくそれ以上の挿入が不可能であることが実
験的に確認された。
In order to insert such a probe into a helical coiled thin tube, it is possible to connect a piano wire or the like to the probe and push it in, but experiments with thin tubes with an inner diameter of about 20 mm show that even with careful manipulation, If you insert about 10m at most,
It was experimentally confirmed that further insertion was impossible.

したがつてプローブは、水圧や空気圧により挿
入する必要のあることが明らかとなつたが、この
場合でもプローブに接続するケーブルの径が数mm
以上となると挿入が非常に困難となることが明ら
かにされ、内径約20mmの数10mもある蒸気発生器
伝熱管全長にわたつてプローブを挿入するために
は、ケーブル径を2〜4mm程度に細くする必要の
あることが確認された。
Therefore, it became clear that the probe needed to be inserted using water or air pressure, but even in this case, the diameter of the cable connected to the probe was several mm.
It has become clear that insertion becomes extremely difficult if the probe is inserted over the entire length of the steam generator heat exchanger tube, which is several tens of meters long and has an inner diameter of approximately 20 mm.The cable diameter must be thinned to about 2 to 4 mm. It was confirmed that it was necessary to do so.

以上述べたように、ヘリカルコイル状の伝熱用
細管を探傷するプローブは、挿入性の点からケー
ブル本数をできるだけ少なくしてケーブルの仕上
り外径を細くする必要があり、反面、探傷精度の
点から励振子と受信子を分離することによりケー
ブル本数が増大し、しかも伝送信号の忠実性を向
上するためにできるだけ太径のケーブルを使用す
る必要があるということになる。
As mentioned above, for probes that detect defects in helical coil-shaped heat transfer tubes, it is necessary to minimize the number of cables and reduce the finished outer diameter of the cables from the viewpoint of ease of insertion. By separating the exciter and the receiver, the number of cables increases, and in addition, it is necessary to use cables with as large a diameter as possible in order to improve the fidelity of the transmitted signal.

本発明はこれらの相反する要求を解決するため
になされたもので、その目的とするところは、超
音波ビームのスキヤンニングを管内から電子的に
行うプローブをヘリカルコイル状細管の全長に亘
つて挿入でき、しかも高精度に探傷できるように
構成したヘリカルコイル状細管用超音波探傷装置
を提供することである。
The present invention was made to solve these conflicting demands, and its purpose is to insert a probe that electronically scans an ultrasonic beam from inside the tube over the entire length of the helical coiled tube. It is an object of the present invention to provide an ultrasonic flaw detection device for a helical coiled thin tube configured to perform flaw detection with high accuracy.

まず本発明プローブを使用した超音波探傷装置
の概要について説明する。
First, an outline of an ultrasonic flaw detection apparatus using the probe of the present invention will be explained.

第2図は本発明を適用した探傷装置の1例を示
す図であり、細管1を探傷するプローブ6は、管
の円周方向に並設したi(iは整数)個の励振用
ならびに受信用振動子2、i個の振動子の受信信
号を順次切換えるためのマルチプレクサ3、受信
信号を増幅するプリアンプ4、マルチプレクサを
切換えるためのチヤンネルセレクタ5とから成つ
ている。すなわち本発明装置の第1の特徴は、短
いパスにおける欠陥検出性を向上するために励振
子と受信子を分離して各々複数個の振動子を円周
方向に併設し、励振子は複数個を同時に励振して
超音波ビームを管全周に照射すると共に、受信子
を順次切換えて反射波を受信するように構成し、
少なくとも前記励振子、受信子及びマルチプレク
サを管内に挿入するようにしてケーブル本数を大
幅に削減したものであるプローブ6の詳細実施例
は第4図のようであり、円周方向に並設したi個
の受信用振動子のいずれかの信号をマルチプレ
クサ3内の電子スイツチ31〜3iの閉成により
端子5aに円周方向に順次取り出すものである
が、スイツチ31〜3iは、デコーダ52の出力
によつて制御される。また、該デコーダ52は、
カウンタ51の出力に1対1に対応した信号を出
力するもので、これらは周知のものが使用され
る。
FIG. 2 is a diagram showing an example of a flaw detection device to which the present invention is applied, in which there are i (i is an integer) probes 6 for excitation and reception, which are arranged in parallel in the circumferential direction of the tube 1. It consists of a transducer 2, a multiplexer 3 for sequentially switching the received signals of the i transducers, a preamplifier 4 for amplifying the received signal, and a channel selector 5 for switching the multiplexer. In other words, the first feature of the device of the present invention is that, in order to improve defect detection in short paths, the exciter and the receiver are separated and each has a plurality of transducers arranged side by side in the circumferential direction. is simultaneously excited to irradiate the entire circumference of the tube with an ultrasonic beam, and the receivers are sequentially switched to receive reflected waves.
A detailed embodiment of the probe 6, in which at least the exciter, the receiver, and the multiplexer are inserted into the pipe to greatly reduce the number of cables, is shown in FIG. By closing the electronic switches 31 to 3i in the multiplexer 3, the signals from any one of the receiving transducers 2 are sequentially taken out to the terminal 5a in the circumferential direction. controlled by. Further, the decoder 52
It outputs a signal that corresponds one-to-one to the output of the counter 51, and known types are used.

またプローブを小形軽量化するため、超音波励
振用振動子は、数100Vの同一の励振パルスで同
時に励振するようになし、送受両振動子の相対位
置は、周知のように受信超音波信号が最大となる
よう各々対をなして好適な位置に配設する。
Furthermore, in order to make the probe smaller and lighter, the ultrasonic excitation transducer is designed to simultaneously excite with the same excitation pulse of several 100 V, and the relative positions of both the transmitting and receiving transducers are determined so that the received ultrasonic signal is Each pair is arranged at a suitable position so as to maximize the number of pairs.

以上のごとき構成の探傷装置により細管の探傷
を行なう場合、まず第2図のチヤネル切換回路1
1の端子11aに第4図のカウンタ51をリセツ
トするためのパルス(第3図にPrで示す)をケー
ブル11aに出力し、第1の振動子21の出力を
取り出すため、スイツチ31を閉成する。次に第
3図PEで示す励振パルスを第4図の超音波送信
用振動子21′〜2i′にケーブル12aを介して
与え、超音波信号を出力させる。
When testing a thin tube using the flaw detection device configured as described above, first, channel switching circuit 1 shown in Fig. 2 is used.
A pulse (indicated by P r in FIG. 3) for resetting the counter 51 in FIG. to be accomplished. Next, an excitation pulse shown as P E in FIG. 3 is applied to the ultrasonic transmitting transducers 21' to 2i' shown in FIG. 4 via the cable 12a to output ultrasonic signals.

この超音波は、探傷対象細管の表面または底面
の境界層から表面反射(第3図SS)あるいは底面
反射(同じくBr)として返つてくる。
This ultrasonic wave returns from the boundary layer on the surface or bottom of the tube to be tested as surface reflection (S S in Fig. 3) or bottom reflection (also B r ).

この両反射波は振動子21で電気信号に変換さ
せた後電子スイツチ31を通り、第2図のプリア
ンプ4に入力され、増幅された後ケーブル13a
によつて受信回路13に導かれる。
Both reflected waves are converted into electric signals by the vibrator 21, passed through the electronic switch 31, inputted to the preamplifier 4 shown in FIG. 2, and amplified by the cable 13a.
is guided to the receiving circuit 13 by.

受信回路13はこの信号を受けて、表面波と底
面波との間に一定値以上の反射波(たとえば第3
図のDr)の有無または表面波の位置により、欠
陥があるか否かを判定するものである。この場合
にプロープは励振子と受振子とが分離してあり、
励振子から管内表面までの超音波ビームのパスが
短いときや管内厚が薄いときにも励振パルス表面
反送波・底面反射波等がそれぞれ時間的に分解さ
れ明らかに識別できる(この際、図示していない
が通常は励振子と受信子との間に遮音板が設けら
れている)。
The receiving circuit 13 receives this signal and detects a reflected wave of a certain value or more between the surface wave and the bottom wave (for example, the third
It is determined whether there is a defect or not based on the presence or absence of D r ) in the figure or the position of the surface wave. In this case, the probe has separate exciter and receiver,
Even when the ultrasonic beam path from the exciter to the tube inner surface is short or the tube inner thickness is thin, the excitation pulse surface retransmission waves, bottom surface reflection waves, etc. are resolved in time and can be clearly identified (in this case, (Although not shown, a sound insulating plate is usually provided between the exciter and receiver).

次にチヤネル切換用パルス(第3図Pa)を切
換回路11からケーブル11bを介してカウンタ
に与えると、カウンタの計数値が1だけ変化し、
円周方向の次の振動子の信号を受信するため第4
図のスイツチ32を閉成させ、励振用振動子を励
振する。
Next, when a channel switching pulse (Fig. 3 P a ) is applied to the counter from the switching circuit 11 via the cable 11b, the count value of the counter changes by 1.
The fourth transducer receives the signal of the next transducer in the circumferential direction.
The switch 32 shown in the figure is closed to excite the excitation vibrator.

以下同様にしてi個の振動子の全ての送受信が
完了したら、再度リセツトパルスを出力して繰返
しi個の振動子を送受信を行い、超音波ビームを
電気的に走査し高速回転を行う。このカウンタの
リセツトは、管周方向での超音波ビームの送受信
位置を知るために必要である。なお第2図の10
は全体のタイミングを制御する制御回路である。
Thereafter, in the same manner, when all the transmissions and receptions of the i transducers are completed, a reset pulse is outputted again to repeatedly transmit and receive the i transducers, and the ultrasonic beam is electrically scanned and rotated at high speed. Resetting this counter is necessary to know the transmitting and receiving position of the ultrasonic beam in the circumferential direction. Note that 10 in Figure 2
is a control circuit that controls the overall timing.

このほかプローブの各部に電源を供給するた
めのケーブルが3本(交流信号の増幅のため、
正、負ならびに接地線の3本が必要であり、第2
図に14a,14bで示す)必要で、各部の接地
線を共通にしたとしても、必要最小限のゲーブル
芯線数は6本となる。
In addition, there are three cables to supply power to each part of the probe 6 (for AC signal amplification,
Three wires are required: positive, negative, and ground wires, and the second
(shown as 14a and 14b in the figure), and even if the grounding wires of each part are made common, the minimum number of gable core wires required is six.

ところで振動子励振パルスならびに受信信号用
ケーブルは、1mm程度以下とすると電気的に種々
の悪影響が表われ、また機械的引張り強さを弱く
問題がある。
By the way, if the cable for vibrator excitation pulses and reception signals is about 1 mm or less, various adverse effects will appear electrically, and the mechanical tensile strength will be weak, which is problematic.

このため本発明装置では、カウンタのリセツト
信号用ケーブルと例えば正極側電源線、ならびに
チヤネル切換パルス用ケーブルと例えば電源の負
極側電源線とをそれぞれ共用し、必要ケーブル芯
線数を4本に減少させたことが第2の特徴であ
る。
Therefore, in the device of the present invention, the counter reset signal cable and, for example, the positive power supply line are shared, and the channel switching pulse cable and the negative power supply line, for example, are shared, respectively, and the number of required cable core wires is reduced to four. This is the second feature.

これを適用した具体的な一実施例が第4図であ
る。
A specific example to which this is applied is shown in FIG.

第4図から明らかなように、本発明のプローブ
ではケーブル芯線は14a,14b,13a,1
2aの4本であり、カウンタのリセツト端子Pr
は、抵抗R1ならびにコンデンサC2から成る微
分回路を通して電源の負極線に接続されており、
またチヤネル切換用パルス入力端子Paは電源の
正極線に接続されている。
As is clear from FIG. 4, in the probe of the present invention, the cable core wires are 14a, 14b, 13a, 1
2a, and the counter reset terminal P r
is connected to the negative pole line of the power supply through a differential circuit consisting of resistor R1 and capacitor C2,
Further, the channel switching pulse input terminal P a is connected to the positive electrode line of the power supply.

すなわち、第3図の動作波形図から明らかなよ
うに、リセツトパルスあるいはチヤネル切換パル
スを印加するときは、探傷パルスの送受信は中断
しており、カウンタの電源電圧のみ保持しておけ
ば探傷自身には何らの影響も与えない。
In other words, as is clear from the operating waveform diagram in Figure 3, when a reset pulse or channel switching pulse is applied, the transmission and reception of the flaw detection pulse is interrupted, and if only the power supply voltage of the counter is maintained, the flaw detection itself has no effect.

カウンタ(メモリ部)の電圧はダイオードD1
とコンデンサC1からなる保持回路によつてパル
ス印加の短時間保持しておくので、前回の計数値
は変化しない。
The voltage of the counter (memory part) is diode D1
Since the pulse application is held for a short period of time by a holding circuit consisting of a capacitor C1 and a capacitor C1, the previous count value does not change.

電源のオンオフを行なわしめるために、チヤネ
ル切換回路11の出力は、トランジスタT1,T2
からなるスイツチ素子に与え、各々数マイクロ秒
の微小時間だけオフにされるような信号Pr,Pa
がベースに与えられる。
In order to turn the power on and off, the output of the channel switching circuit 11 is connected to transistors T 1 and T 2 .
signals P r and P a that are applied to switch elements consisting of
is given to the base.

以上のようにして線を減少させ、たとえば振振
パルス用ケーブル12aと受信信号用ケーブル1
3aに、一般に市販されていて減衰量もそれほど
大きくない外径1.5mm〜2mm程度の同軸ケーブル
を使用し、電源線としてやはり同程度の径の2芯
シールド線を用いることによつて、全体を3本撚
線とした場合の仕上り外径を3.2〜4mm程度にす
ることが可能となる。
As described above, the number of lines is reduced, for example, the vibration pulse cable 12a and the receiving signal cable 1.
For 3a, we used a commercially available coaxial cable with an outer diameter of about 1.5 mm to 2 mm, which does not have a large amount of attenuation, and used a 2-core shielded wire with the same diameter as the power supply wire. When three strands are used, the finished outer diameter can be set to about 3.2 to 4 mm.

なお、励磁パルス用ケーブル12aと受信信号
用ケーブルの使用時間が第3図に示したように異
なるため、両者を共用することも原理的には可能
であるが、実際には送受両端とケーブル特性イン
ピーダンスを完全にマツチングさせることが不可
能であるため、ケーブル内で反射信号が現われ、
両者を共用すると超音波送信信号の影響が受信信
号に大きく現われて、探傷性能を低下させるため
共用が不可能であることは容易に考察されよう。
Note that since the usage times of the excitation pulse cable 12a and the reception signal cable are different as shown in Figure 3, it is theoretically possible to use both cables in common, but in reality, both the transmission and reception ends and the cable characteristics are different. Since it is impossible to perfectly match the impedances, reflected signals appear within the cable.
It is easy to understand that if both are used in common, the influence of the ultrasonic transmission signal will be greatly affected by the received signal, degrading the flaw detection performance, so it is impossible to share them.

また、電源線を1本として交流信号を送り、プ
ローブ内で整流、平滑して正、負電圧を得ること
も考えられるが、そうするとチヤネル切換用のケ
ーブルが必要となるのでケーブル本数は減少しな
い。
It is also possible to use a single power line to send an AC signal and rectify and smooth it within the probe to obtain positive and negative voltages, but this would require a cable for channel switching, so the number of cables would not be reduced.

要するに、探傷性能に影響を与えることなく本
発明装置以下にケーブル本数を減少させること
は、非常に困難なのである。
In short, it is extremely difficult to reduce the number of cables to a level lower than that of the apparatus of the present invention without affecting the flaw detection performance.

以上説明したように本発明の探傷装置では、円
周方向に励振子と受信子を分離して複数個配列し
たことにより、小径の管や薄肉の管においても表
面反射波や底面反射波が明瞭に識別され欠陥の検
出性が向上する。また、複数の励振子を同時に励
振し、受信子を順次切換えるように構成し、これ
らの励振子、受信子、マルチプレクサを管内に挿
入するようにしてプローブと管の外に設置された
探傷装置の間の伝送ケーブルを大幅に削減し挿入
性を改善したことにより、ヘリカルコイル状細管
の全長に亘つて探傷できる効果を有する、なお、
複数の励振子を同時に励振することにより管全周
を超音波ビームが照射すると共に、励振用ケーブ
ルが1本で済む他、マルチプレクサ等とのスキヤ
ンニング要求も低減でき、プローブ自体が小型軽
量に構成し得る。又、特許請求の範囲第2項の内
容によれば、さらに信号線を電源線に重畳する手
段によつてケーブル本数を一層減らすことにより
ヘリカルコイル状細管の管内探傷を容易にする効
果も付加され。
As explained above, in the flaw detection device of the present invention, by arranging a plurality of exciters and receivers separated in the circumferential direction, surface reflected waves and bottom reflected waves are clearly detected even in small-diameter or thin-walled pipes. This improves the detectability of defects. In addition, it is configured to excite multiple exciters simultaneously and switch receivers sequentially, and these exciters, receivers, and multiplexers are inserted into the tube to connect the probe and flaw detection equipment installed outside the tube. By significantly reducing the number of transmission cables in between and improving insertion ease, it has the effect of being able to detect flaws over the entire length of the helical coiled tube.
By simultaneously exciting multiple exciters, the entire circumference of the tube is irradiated with an ultrasonic beam. In addition to requiring only one excitation cable, scanning requirements for multiplexers, etc. can be reduced, and the probe itself is small and lightweight. It is possible. Furthermore, according to the content of claim 2, there is an additional effect of facilitating the inspection of defects inside the helical coiled tube by further reducing the number of cables by superimposing the signal line on the power line. .

なお第4図の実施例において、リセツトパルス
とチヤネル切換パルスを得る電源線を、正負逆に
してもまつたく同一の効果が得られる。
In the embodiment shown in FIG. 4, the same effect can be obtained even if the power supply lines for obtaining the reset pulse and the channel switching pulse are reversed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の超音波探傷装置の一例図、第2
図は本発明超音波探傷装置の具体的一実施例図、
第3図は第2図実施例の動作波形図、第4図は第
2図実施例の一部詳細図である。 1……細管、……振動子、3……マルチプレ
クサ、4……プリアンプ、5……チヤネルセレク
タ、……プローブ、10……制御回路、11…
…チヤネル切換回路、12……励振回路、13…
…受信回路、14……電源。
Figure 1 is an example of a conventional ultrasonic flaw detection device, Figure 2
The figure is a diagram of a specific embodiment of the ultrasonic flaw detection device of the present invention.
3 is an operational waveform diagram of the embodiment shown in FIG. 2, and FIG. 4 is a partially detailed diagram of the embodiment shown in FIG. DESCRIPTION OF SYMBOLS 1... Thin tube, 2 ... Vibrator, 3... Multiplexer, 4... Preamplifier, 5... Channel selector, 6 ... Probe, 10... Control circuit, 11...
...Channel switching circuit, 12...Excitation circuit, 13...
...Receiving circuit, 14...Power supply.

Claims (1)

【特許請求の範囲】 1 複数個の超音波振動子を周方向にならべて備
えたプローブと、前記振動子を探傷装置へ切換接
続するマルチプレクサと、前記マルチプレクサの
切換先を指示するチヤネルセクタとを有する管用
超音波探傷装置において、前記超音波振動子を励
振子と受信子とに分けて並設し、前記受信子に限
つて前記マルチプレクサを接続し、前記励振子と
受信子とマルチプレクサとチヤネルセレクタとを
前記プローブに設けたことを特徴としたヘリカル
コイル状細管用超音波探傷装置。 2 特許請求の範囲の第1項において、前記プロ
ーブ内の機器への電源線に前記チヤネルセルクタ
への送信信号の重畳手段を備えたことを特徴とし
たヘリカルコイル状細管用超音波探傷装置。
[Scope of Claims] 1. A probe equipped with a plurality of ultrasonic transducers arranged in a circumferential direction, a multiplexer that switches and connects the transducers to a flaw detection device, and a channel sector that indicates the switching destination of the multiplexer. In the ultrasonic flaw detection device for pipes, the ultrasonic transducer is divided into an exciter and a receiver and arranged in parallel, the multiplexer is connected only to the receiver, and the exciter, the receiver, the multiplexer, and the channel selector are connected. An ultrasonic flaw detection device for a helical coiled thin tube, characterized in that the probe is provided with: 2. The ultrasonic flaw detection device for a helical coiled thin tube according to claim 1, characterized in that a power supply line to a device in the probe is provided with means for superimposing a transmission signal to the channel selector.
JP2872878A 1978-03-15 1978-03-15 Ultrasonic flaw detector for capillaries Granted JPS54121789A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2872878A JPS54121789A (en) 1978-03-15 1978-03-15 Ultrasonic flaw detector for capillaries

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2872878A JPS54121789A (en) 1978-03-15 1978-03-15 Ultrasonic flaw detector for capillaries

Publications (2)

Publication Number Publication Date
JPS54121789A JPS54121789A (en) 1979-09-21
JPS638424B2 true JPS638424B2 (en) 1988-02-23

Family

ID=12256484

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2872878A Granted JPS54121789A (en) 1978-03-15 1978-03-15 Ultrasonic flaw detector for capillaries

Country Status (1)

Country Link
JP (1) JPS54121789A (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5879154A (en) * 1981-11-06 1983-05-12 Hitachi Ltd Ultrasonic wave probe
JPS58112959U (en) * 1982-01-28 1983-08-02 三菱重工業株式会社 Ultrasonic sensor for capillary flaw detection
JPS58182550A (en) * 1982-04-19 1983-10-25 Agency Of Ind Science & Technol Pig for flaw detection of pipeline
JPS59103270U (en) * 1982-12-25 1984-07-11 動力炉・核燃料開発事業団 Pressure pipe inspection equipment that can be separated and combined
JPS59126946A (en) * 1983-01-10 1984-07-21 Hitachi Ltd Ultrasonic probe to be inserted into pipe
JPS6088263U (en) * 1983-11-24 1985-06-17 株式会社クボタ Transmission cable for pipe inspection equipment
JPS6088264U (en) * 1983-11-24 1985-06-17 株式会社クボタ Transmission cable for pipe inspection equipment
JPS61111462A (en) * 1984-11-06 1986-05-29 Nippon Kokan Kk <Nkk> Pitting corrosion detector

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5146501A (en) * 1974-10-18 1976-04-21 Tokyo Shibaura Electric Co

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5146501A (en) * 1974-10-18 1976-04-21 Tokyo Shibaura Electric Co

Also Published As

Publication number Publication date
JPS54121789A (en) 1979-09-21

Similar Documents

Publication Publication Date Title
US5932807A (en) Device for the non-destructive testing of hollow tubular objects by means of ultrasound
JP3747921B2 (en) Nondestructive inspection apparatus and nondestructive inspection method using guide wave
US4727321A (en) Method and device for magnetic and ultrasonic testing of ferro-magnetic objects
CN108508085A (en) A kind of torsion mode magneto strictive sensor, pipe detection system and method
JPH0319504B2 (en)
KR20060131748A (en) Method and system for torsional wave inspection of heat exchanger tubes
JPH022923A (en) Ultrasonic non-destructive inspector for tube
JPS638424B2 (en)
JP2960741B2 (en) Inspection method
JP2009075101A (en) Method and apparatus for detecting defect in tooth of generator rotor
CN1005502B (en) Ultrasonic flaw detector
WO2018128225A1 (en) Eddy current array probe having an insulted transceiver unit and eddy current examination method using same
JP5193720B2 (en) Non-contact aerial ultrasonic tube ultrasonic inspection apparatus and method
CN116539731B (en) Primary and secondary co-located transceiver transducer, imaging system and imaging method
CN107907592A (en) A kind of supersonic detection device for live line work insulating rod
JPH0156717B2 (en)
JP3769067B2 (en) Defect detection method and apparatus for stretched workpiece
CN113567992A (en) Method and system for detecting inner lead of transformer bushing focused by ultrasonic synthetic aperture
JP4423158B2 (en) Electromagnetic ultrasonic flaw detection method
JP2611084B2 (en) How to select an ultrasonic probe
KR100360978B1 (en) Nondestructive RFEC inspection system for tube in tubes
JP5750066B2 (en) Non-destructive inspection method using guided waves
JPH0142375B2 (en)
JPS6080761A (en) Ultrasonic diagnosing device
JPH0444953B2 (en)