JPS61111462A - Pitting corrosion detector - Google Patents

Pitting corrosion detector

Info

Publication number
JPS61111462A
JPS61111462A JP59232361A JP23236184A JPS61111462A JP S61111462 A JPS61111462 A JP S61111462A JP 59232361 A JP59232361 A JP 59232361A JP 23236184 A JP23236184 A JP 23236184A JP S61111462 A JPS61111462 A JP S61111462A
Authority
JP
Japan
Prior art keywords
time
probe
pitting corrosion
probes
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59232361A
Other languages
Japanese (ja)
Other versions
JPH058780B2 (en
Inventor
Toshiaki Hosoe
利昭 細江
Hironobu Akusawa
阿久沢 広信
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP59232361A priority Critical patent/JPS61111462A/en
Publication of JPS61111462A publication Critical patent/JPS61111462A/en
Publication of JPH058780B2 publication Critical patent/JPH058780B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/07Analysing solids by measuring propagation velocity or propagation time of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B17/00Measuring arrangements characterised by the use of infrasonic, sonic or ultrasonic vibrations
    • G01B17/02Measuring arrangements characterised by the use of infrasonic, sonic or ultrasonic vibrations for measuring thickness
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/34Generating the ultrasonic, sonic or infrasonic waves, e.g. electronic circuits specially adapted therefor
    • G01N29/341Generating the ultrasonic, sonic or infrasonic waves, e.g. electronic circuits specially adapted therefor with time characteristics
    • G01N29/343Generating the ultrasonic, sonic or infrasonic waves, e.g. electronic circuits specially adapted therefor with time characteristics pulse waves, e.g. particular sequence of pulses, bursts
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/02854Length, thickness
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/02872Pressure

Abstract

PURPOSE:To detect many points efficiently by connecting plural probes and pulsers to a pair of measuring circuits, driving respective pulses successively at a fixed time interval, and synchronously with the driving, connecting respective probes to the measuring circuits successively. CONSTITUTION:When a controller 9 switches both a multiplexer 8 and a circuit 7 to the 1st channel simultaneously and sends a driving signal after very short period (a), a pulser 31 is driven, an ultrasonic wave is radiated from a probe 11 and a pulse wave voltages corresponding to T, S and B echoes are generated and amplified to measure the time between the echoes T and S by a circuit 5 and the time between the echoes S and B by a circuit. After the passage of time tau, the 2nd-n-th channels are successively switched. The time interval tauis expressed by the equation I when the maximum distance between the probe and the periphery of a pipe is dmax and the maximum thickness of the pipe is tmax. Provided that a sound speed in a solution is VL, a sound speed in the pipe body is VS and a constant fixed by the measuring circuits is alpha. Consequently, the number of measuring circuits can be reduced and the pitting corrosion of a pipe line having a large diameter can be detected with a small pitch.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 る。[Detailed description of the invention] [Industrial application field] Ru.

〔従来の技術〕[Conventional technology]

従来、地中または海底に布設されたパイプラインの孔食
を検出する方法として、検出装置を搭載したカプセル(
以下、慣用に従って検査ピグと称する)をパイプライン
中(こ挿入し、パイプライン内を流れる流体で検査ピグ
を輸送し、その途中で。
Traditionally, a capsule equipped with a detection device (
A test pig (hereinafter referred to as a test pig according to common usage) is inserted into a pipeline, and the test pig is transported by the fluid flowing inside the pipeline, and is transported along the way.

搭載した検査装置で孔食を検出し、パイプラインの出口
で検査ピグを取出してデータを再生し、孔食の情報を得
るよう(こしたものが知られている(例えば、Pipe
s & Pipetine Internationa
tAspects of theBritish Ga
s Chtin In5pection 5ervic
e )nまた、使用される検出器としては、前記文献に
記載されている如く漏洩磁束方式を用いたものが一般的
であり1例えば日本鋼管技報1983年、N199.p
l[]]9〜115−’バイブライン管内探査装置等に
記載されているように、超音波厚み計や超音波距離計等
が用いられている。
The on-board inspection equipment detects pitting corrosion, the inspection pig is taken out at the exit of the pipeline, the data is reproduced, and information on pitting corrosion is obtained.
s & Pipetine International
tAspects of the British Ga
s Chtin In5pection 5ervic
e)nIn addition, the detector used is generally one using the leakage flux method as described in the above-mentioned literature.1 For example, Nippon Kokan Giho 1983, N199. p
l[]]9 to 115-' As described in Vibrine Pipe Exploration Device, etc., an ultrasonic thickness meter, an ultrasonic distance meter, etc. are used.

第5図は、従来の孔食検出装置のブロック図である0図
において、(1)は検査ビグ内に収納されて超音波を発
・受信する探触子、(2)は管体の一部断面、(3)は
探触子にパルス状の高N、FEを印加するパルサー、(
4)は探触子(1)からの受信信号を増巾する増巾器、
(5)はパルサー(3)を駆動するTパルスと探触子(
1)で受信するSエコーとの間の時間を計測する回路、
(6)は探触子(1)で受信するSエコーとB工1  
 コーとの間の時間を計測する回路、(7)はノ(イブ
ライン管内に満たされた流体である。
Figure 5 is a block diagram of a conventional pitting corrosion detection device, in which (1) is a probe housed in the inspection vig and emits and receives ultrasonic waves, and (2) is a part of the tube body. (3) is a pulsar that applies pulsed high N and FE to the probe, (
4) is an amplifier that amplifies the received signal from the probe (1);
(5) shows the T pulse that drives the pulser (3) and the probe (
1) A circuit that measures the time between the received S echo and
(6) shows the S echo received by the probe (1) and the B echo 1
The circuit (7) that measures the time between the line and the line is the fluid filled in the line tube.

従来の孔食検査装置は上記のように構成され、通常、増
巾器4の出力側で得られる波形は、第6図に示すように
一般IこAスコープと呼ばれている波形で、Tパルスは
探触子(1)ζこパルサー(3)より印加されるパルス
宙1王であり、Sエコーは管体(2)の表面で反射され
て再び探触子(1)1こ到達した超音波を、Sエコーは
管体(2)の外周面で反射されて再び探触子(1)に到
達した超音波を、それぞれ探触子(1)によって検出し
て電気信号Eこ変換されたパルス波である。
The conventional pitting corrosion inspection apparatus is constructed as described above, and the waveform obtained at the output side of the amplifier 4 is generally called the I-A scope as shown in FIG. The pulse is a pulse applied by the ζ pulser (3) on the probe (1), and the S echo is reflected from the surface of the tube body (2) and reaches the probe (1) again. Ultrasonic waves are detected by the probe (1), and ultrasonic waves that are reflected by the outer peripheral surface of the tube (2) and reach the probe (1) again are converted into electrical signals. This is a pulse wave.

今、探触子(1)と管体(2)の表面との間の距離をd
Now, the distance between the probe (1) and the surface of the tube body (2) is d
.

管体(2)の厚みをtとし、TパルスとSエコーとの間
の時間をT、、SエコーとSエコーとの間の時間をT8
Bとし、液体(7)中の音速をV。、管体(2)中の音
速をv8とすると。
The thickness of the tube body (2) is t, the time between T pulse and S echo is T, and the time between S echo and S echo is T8.
B and the speed of sound in liquid (7) is V. , assuming that the sound velocity in the tube body (2) is v8.

となり、それぞれd及びtを求めることができる。Therefore, d and t can be obtained respectively.

ここで、管体(2)に孔食が発生している場合、その孔
食発生が内周面であるとd及びtが、外周面であるとt
のみが変化するので、その変化の程度に応じて孔食の位
置及び深さを計測することができる。
Here, when pitting corrosion occurs on the tube body (2), d and t are when the pitting corrosion occurs on the inner circumferential surface, and t when it is on the outer circumferential surface.
Since only the pitting corrosion changes, the position and depth of the pitting corrosion can be measured according to the degree of the change.

〔発−が解決しようとする問題点〕[Problems that the project is trying to solve]

上記のような従来の孔食検査装置にあっては。 In the conventional pitting corrosion inspection apparatus as described above.

検査しようとするパイプラインの径は1200Aにも及
ぶことがあり、一方、1つの探触子で検査できる範囲は
せいぜい20龍ダ程度が普通であるので、1200Aの
パイプラインの全円周をくまなく探査しようとすれば、
180個以上の超音波厚み計、超音波距離計を装備する
必要があり、コスト的な問題ばかりでなく、このような
多数の検出装置がビグに搭載されて管内を走行すること
を考えると、到底芙現できないという問題があった。
The diameter of the pipeline to be inspected can reach up to 1200A, and on the other hand, the range that can be inspected with one probe is usually about 20 mm at most, so it is necessary to cover the entire circumference of a 1200A pipeline. If you try to explore without
It is necessary to equip more than 180 ultrasonic thickness gauges and ultrasonic distance meters, which is not only a cost issue, but also considering that such a large number of detection devices will be mounted on the VIG and travel inside the pipe. There was a problem that it could not be realized at all.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係る孔食検1出装置は、1組の測定回路に複
数の探触子とパルサーとを接続し、各パルサーを順次に
一定時間間隔で駆動し、これに同期して、各探触子を測
定回路Iこ効率的な時分割で順次接続するようEこした
ことを特徴とする・〔作用〕 この発明においては、検査ピグ内に収納された複数のパ
ルサーを順次に、定量時に考えられる最大の探触子と管
体との間の液体距離および最大肉厚の管体中を音波が往
復する時間と計測上の余裕時間の和τ2と、定常時fこ
考えられる最小の探触子と管体との間の液体距離を音波
が往復する時間τ1との差(τ2−τlz一定時間間隔
で駆動し、その駆動によるTパルス発生後から時間τ!
だけ経過してから、時間(τ2−τ1)だけ対応するチ
ャンネルの探触子を測定回路に接続する。従って、測定
回路は、各探触子からのSエコー及びSエコーのパルス
波形を時分割的Eこ入力し、1組の測定装置で多数の点
を効率よく検出するものである。
The pitting corrosion detection device according to the present invention connects a plurality of probes and pulsers to one set of measurement circuits, drives each pulser sequentially at fixed time intervals, and synchronizes with this to drive each probe and pulser. [Function] In this invention, a plurality of pulsers housed in the test pig are sequentially connected to the measurement circuit in an efficient time-sharing manner. The maximum conceivable liquid distance between the probe and the tube, the time for the sound wave to travel back and forth in the tube with the maximum wall thickness, and the sum of the measurement margin time τ2, and the minimum conceivable probe during steady state f. The difference between the time τ1 and the time it takes for the sound wave to travel back and forth along the liquid distance between the tentacle and the tube body (τ2 - τlz) is driven at a constant time interval, and the time τ!
After the lapse of time, the probe of the corresponding channel is connected to the measurement circuit for a time (τ2-τ1). Therefore, the measurement circuit inputs the S-echo and S-echo pulse waveforms from each probe in a time-division manner, and efficiently detects a large number of points with one set of measurement devices.

〔実施例〕〔Example〕

第1図はこの発明fこよる一実施例の孔食検出装置を示
すブロック図である。図fこおいで、(I)〜(6)は
上記従来装置と同一のものであるが、この実施例1こお
いては、探触子(1)およびパルサー(3)はそれぞれ
n個用意されている。 (7)はパルサー選択回路。
FIG. 1 is a block diagram showing a pitting corrosion detection apparatus according to an embodiment of the present invention. In FIG. ing. (7) is a pulsar selection circuit.

(8)はマルチプレクサ、 (9)はタイミング・コン
トロール回路であり、複数の探触子(1)およびパルサ
ー(3)は、1組の構成回路(4)〜(9)に接続され
ている。
(8) is a multiplexer, (9) is a timing control circuit, and the plurality of probes (1) and pulsers (3) are connected to a set of component circuits (4) to (9).

また、以上のようIこ構成された孔食検出装置の作動の
タイムチャートを第2図に示す7図において。
Further, FIG. 7 shows a time chart of the operation of the pitting corrosion detection device configured as described above.

(D−パルサー出力は第1チヤンネルのパルサー(31
)より探触子(11)へ出力される電圧パルス、(D−
探触子出力は探触子(11)より出力されるT、S、B
パルスを含むパルス信号、山−マルチプレクサはこのレ
ベルが上にあるときにマルチプレクサ(8)の入力が第
1チヤンネルに割当てられていることを示を以下、第2
.第3〜第nチヤンネルについても同様である。
(D-pulsar output is the first channel pulsar (31
) to the probe (11), (D-
The probe outputs are T, S, and B output from the probe (11).
A pulse signal containing pulses, a peak - the multiplexer indicates that the input of the multiplexer (8) is assigned to the first channel when this level is above the second, below.
.. The same applies to the third to nth channels.

上記のように構成された孔食検出装置においては、増巾
器(4)の入力端子は、時間の初期状態からτまでの間
は、マルチプレクサ(8)を介して第1チ!  ヤンネ
ルの探触子(11)に接続されており、τから2τまで
の間は第2チヤンネルの探触子(’h)fこ、2τ〜3
τまでの間は第3チヤンネルの探触子(13)に、以下
同様に順次第nチャンネルまで接続される。そして、タ
イミング・コントローラ(9)ハ、先スプルチプレクサ
(8)を、同時にパルサー選択回路(7)を第1チヤン
ネルfこ切換え、それより微少時間&後にパルサー駆動
信号を送ると、第1チヤンネルのパルサー(61)が駆
動されて探触子(1□)より超音波が発射され、その反
射ζこより探触子(11)よりT、S、Sエコーに対応
するパルス波電圧が発生し、マルチプレクサ(8)を介
して増巾5 (4)に送られ、従来と同様に回路(5)
でTパルスとSエコーとの間の時間を計測し、回路(6
)でSエコーとSエコーとの間の時間を計測する。次ζ
こ7時間経過すると、タイミング・コントロール回路(
9)はマルチプレクサ(8)およびパルサー選択回路(
力を第2チヤンネルに切換え、その微少時間&後にパル
サ駆動信号をパルサー(32)へ送り、探触子(12)
からのパルス波電圧を増巾器(4)に入力する。以下、
7時間経過毎に順次に第3〜第nチヤンネルと切換える
。      7この時間間隔τは、測定に必要な最大
の時間を考慮して決定すれば良い。即ち、考えられる探
触子と管内周面との最大距離をdmax= ’iiFの
最大厚さをtmaxとすると、トリガパルスを発してか
らSエコーが受信されるまでの時間’I’maxは。
In the pitting corrosion detection device configured as described above, the input terminal of the amplifier (4) is connected to the first chip through the multiplexer (8) from the initial state to τ. It is connected to the channel probe (11), and from τ to 2τ, the second channel probe ('h)f is connected, and from 2τ to 3
Up to τ, the probe (13) of the third channel is connected, and in the same way, up to n channels are connected sequentially. Then, when the timing controller (9) switches the first channel multiplexer (8) and the pulser selection circuit (7) to the first channel f at the same time, and sends the pulser drive signal a minute time later than that, the pulser of the first channel (61) is driven to emit ultrasonic waves from the probe (1□), and from the reflected ζ, pulse wave voltages corresponding to T, S, and S echoes are generated from the probe (11), and the multiplexer ( 8) to the amplifying circuit 5 (4), and is sent to the circuit (5) as before.
The time between the T pulse and the S echo is measured, and the circuit (6
) to measure the time between S echoes. Next ζ
After these 7 hours have passed, the timing control circuit (
9) is a multiplexer (8) and a pulser selection circuit (
Switch the force to the second channel, send the pulser drive signal to the pulser (32) a short time after that, and send the pulser drive signal to the probe (12).
The pulse wave voltage from is input to the amplifier (4). below,
The channels are sequentially switched to the 3rd to nth channels every 7 hours. 7 This time interval τ may be determined by considering the maximum time required for measurement. That is, if the maximum possible distance between the probe and the inner circumferential surface of the tube is dmax='iiF's maximum thickness is tmax, then the time 'I'max from when the trigger pulse is emitted until the S-echo is received is: 'I'max.

となるので、 ただし、αは測定回路によって定まる余裕時間で定数と
すれば良い6なお、882図においては探触子(1)お
よびパルサー(3)をそれぞれ3組配置した枦1で示し
であるが、nチャンネル設けた場合も同様(こ作動する
Therefore, α can be set as a constant with the margin time determined by the measurement circuit 6 In addition, in Fig. 882, three sets of probes (1) and three sets of pulsers (3) are each arranged as shown in Fig. 1. However, it works similarly when n channels are provided.

次に、このような回路で構成される孔食検査装置の4成
を第6図に示す。図1こおいて、α〔は計測器を中に収
納して管内を走行する検査ピグの外殻(11)は外殻0
Qを支えかつ流体からの推進力を受けるためのカップで
、可撓性を有するウレタンゴム等で形成される。この外
殻(1〔の後部円周面(こは管体(2)の内周面に対向
して多数の探触子(1)が配置され、また内部に探触子
(1)と同数のパルサー(3)及び1組の測定回路(1
2) 、(4)〜(9)が収納され、更にテープレコー
ダ等からなるデータ記録装置(16)及び電池(14)
等が収納されている。
Next, FIG. 6 shows the four components of a pitting corrosion inspection apparatus composed of such a circuit. In Figure 1, α [ is the outer shell (11) of the test pig that stores the measuring instrument inside and travels inside the pipe, and the outer shell 0
A cup for supporting Q and receiving propulsive force from the fluid, and is made of flexible urethane rubber or the like. A large number of probes (1) are arranged facing the inner circumferential surface of the tube body (2), and the same number of probes (1) are placed inside the outer shell (1). pulsar (3) and a set of measurement circuits (1
2) , (4) to (9) are housed, and further includes a data recording device (16) consisting of a tape recorder etc. and a battery (14).
etc. are stored.

例えば、 1200Aのパイプラインを円周方向ζこお
いて15mピッチで探査するとして、256個の探触子
(1)およびパルサー(3)を配置し、1組の測定回路
で64個の探触子(1)およびパルサー(3)を切換え
て走査する場合ζこは、4組の測定回路(12)を搭載
する。ここで、τ=250μsとすれば1名詞定回路(
12)が64チャンネル全部を測定し終る時間は250
μSX64=16mS  であり、検査ピグα0の走行
速度を1mAとすれば、約16龍のピッチで長さ方向の
検査を行うことができる。
For example, if a 1200A pipeline is to be surveyed at a pitch of 15m in the circumferential direction, 256 probes (1) and pulsars (3) are arranged, and 64 probes are installed in one set of measurement circuit. When scanning is performed by switching between the pulser (1) and the pulser (3), this device is equipped with four sets of measuring circuits (12). Here, if τ = 250 μs, one noun constant circuit (
12) takes 250 minutes to complete measuring all 64 channels.
If μSX64=16 mS and the running speed of the inspection pig α0 is 1 mA, longitudinal inspection can be performed at a pitch of about 16 dragons.

しかし、実際のパイプラインにおいては、パイプに凹凸
があり、これを避けるためには探触子(1)と管内周面
との距離dを、ある場合1こは(tmax =150B
程度に、また検査ピグの走行速度も31/S程度にする
必要があり、更fこ長さ方向および円周方向ともに10
皿ピッチで検査を行いたい場合fこ。
However, in actual pipelines, the pipe has unevenness, and in order to avoid this, the distance d between the probe (1) and the inner circumferential surface of the pipe must be adjusted by 1 (tmax = 150B).
In addition, the running speed of the inspection pig must be approximately 31/S, and the length and circumferential direction of the
If you want to perform inspection with dish pitch.

パイプの最大厚さtma420話、流体が水であるとし
て音速を1300 m/S、管体内の音速を5.900
m/gとすると、まず円周方向検査ピッチIQ*mで必
要とする探触子の数nは1200xπ/10=377個
以上となり、かつ1個の探触子(1)での測定に必要な
時間τは。
The maximum thickness of the pipe is TMA420, assuming that the fluid is water, the speed of sound is 1300 m/s, and the speed of sound inside the pipe is 5.900.
m/g, the number n of probes required for the circumferential inspection pitch IQ*m is 1200 x π/10 = 377 or more, and is necessary for measurement with one probe (1). The time τ is.

計測上の余裕時間−μS程度として、(4)式より求め
ると約210μsとなる。一方、長さ方向を100ピツ
チで検出するためには、検査ピグの走行速度3m/3か
ら各接触子は3,3 ms毎に計測を行わねばならず、
従って1組の測定回路(12)には最高12個の接触子
(1)およびパルサー6しか接続できないので、測定回
路(12)の数は26個も必要となり、到底検査ビグの
外殻Ql内ζこ収納しきれないという問題が生じる。
Assuming that the measurement margin time is approximately −μS, it is approximately 210 μs when calculated from equation (4). On the other hand, in order to detect 100 pitches in the length direction, each contact must be measured every 3.3 ms since the test pig travels at a speed of 3 m/3.
Therefore, only a maximum of 12 contacts (1) and pulsers 6 can be connected to one set of measurement circuits (12), so 26 measurement circuits (12) are required, and it is impossible to fit inside the outer shell Ql of the inspection big. A problem arises in that ζ cannot be completely stored.

そこで、この問題を解決するために、この発明において
は、パルサー選択回路(7)およびマルチプレクサ(8
)の切換周期τを、定常時考えられる最小1   の探
触子(1)と管体(2)との間の流体距離を音波が往復
する時間τ1と、定常時考えられる最大の探触子(1)
と管体(2)との間の流体距離および最大肉厚の管体(
2)中を音波が往復する時間τ2との差(τ2−τ1)
とし、かつ、あるチャンネルに関して、マルチプレクサ
(8)への入力を割当てるタイミングのτ1時間前に、
そのチャンネルのパルサー(3)を駆動するようにする
Therefore, in order to solve this problem, the present invention provides a pulser selection circuit (7) and a multiplexer (8).
) is defined as the minimum 1 conceivable switching period τ in steady state, and the time τ1 for the sound wave to travel back and forth in the fluid distance between the probe (1) and the tube body (2), and the maximum conceivable probe in steady state. (1)
and the tube body (2) and the tube body of maximum wall thickness (
2) Difference from the time τ2 for the sound wave to travel back and forth inside (τ2-τ1)
And for a certain channel, τ1 hours before the timing of assigning the input to the multiplexer (8),
The pulser (3) of that channel is driven.

この動作は、1組の測定回路に接続されたnチャンネル
のうち、途中の第扉〜第(m+2 )チャンネルの作動
としで駅明すると、第4図に示すようになる。今、第九
チャンネルを例にとると、ノくルサ−(3m)が選択駆
動されてから予め定められた時間τ1後に、マルチプレ
クサ(8)(こよって第mチャンネルの探触子(1りが
増巾器(4)に接続され、更に(τ2−τl)時間経過
後に接続は切り雛なされる。そして。
This operation is as shown in FIG. 4 when the operation of the intermediate door to (m+2)th channel among the n channels connected to one set of measurement circuits is performed. Now, taking the ninth channel as an example, after a predetermined time τ1 after the probe (3m) is selectively driven, the multiplexer (8) (thus, the mth channel probe (1ri) It is connected to the amplifier (4), and the connection is cut off after a further (τ2-τl) time has elapsed.

第九チャンネルのパルサー(3m)が駆動されてから(
τクーτi)時間ff1fこi(m+1)チャンネルの
ノくルサー(3m+1功j駆動され、11時間後(こ同
様fこマルチプレクサ(8)は第(+n+1)チャンネ
ルに切換えられ、以下同様に第(rIL+2)・・・と
順次Eこ同様な!11作を行う。   ゛このτ1およ
びτ2は、定常部、即ち測定を行わなければならない部
分において、考えられる最小の探触子(1)と管内周面
との距離をd=とすると、2dμ τ1”−一一一        ………■L 次に、定常部で考えられる最大の探触子(1)と管内周
面との距離をamax 、管体(2)の最大肉厚をtm
axとして、 となり、即ち、tlは探触子(1)を駆動してからSエ
コーが受信されるまでの最短時間、τ2は探触子(1)
が駆動されてからSエコーが受信されるまでの最大時間
に余裕時間αを加えたものとなる。そして、探触子(1
)が増巾器(4)に接続されてから75時間後にSエコ
ーが、更に74時間後にSエコーが検出されたとすると
、 Vsx  τ4 t=□  ・・・・・・・・・■ となる。今、前述のパイプラインの仕様について考え、
更Eこ探触子(1)と管内周面との距離の最小値を12
0鶴として考えると、■式よりτ1=160μs。
After the 9th channel pulsar (3m) is activated (
After 11 hours, the multiplexer (8) is switched to the (+n+1)th channel, and the same goes for the (+n+1)th channel. rIL+2)..., and then perform !11 operations similar to E. ``This τ1 and τ2 are the minimum possible probe (1) and the inner circumference of the tube in the stationary part, that is, the part where the measurement must be performed. If the distance to the surface is d=, then 2dμ τ1”−111 ………■L Next, the distance between the largest possible probe (1) in the stationary part and the inner peripheral surface of the tube is amax, and the tube body The maximum wall thickness of (2) is tm
ax, that is, tl is the shortest time from driving the probe (1) until the S echo is received, and τ2 is the probe (1)
It is the maximum time from when the is driven until the S echo is received plus the margin time α. And the probe (1
) is connected to the amplifier (4), and if an S echo is detected 75 hours later, and another 74 hours later, then Vsx τ4 t=□ ......■. Now, thinking about the pipeline specifications mentioned above,
Furthermore, set the minimum distance between the probe (1) and the inner peripheral surface of the tube to 12
Considering 0 Tsuru, τ1 = 160μs from formula (■).

(6) 式ヨリT2= (2D6+(り”210μ8 
トfl リ、 (Tl−711:50μSとなる。従っ
て、50μS毎にチャンネルを切換えることができ、第
2図に示した切換え方式iこ較べて1組の測定回路fこ
66個の探触子(1)を接続することが可能となり、全
体で377個の探触子(1)が必要となる場合でも測定
回路の数は6組でよく、これらの回路を検査ビグの外殻
(if)内Eこ容易に収納することができる。
(6) From the formula T2= (2D6+(ri”210μ8
(Tl-711: 50 μS. Therefore, the channel can be switched every 50 μS, and compared to the switching method shown in Figure 2, one set of measuring circuits and 66 probes are required. (1), even if a total of 377 probes (1) are required, the number of measurement circuits is only 6, and these circuits can be connected to the outer shell of the inspection vig (if). It can be easily stored inside.

なお、この発明の実施にあたっては、mチャンネルと(
m+1)チャンネルとは必ずしも隣り合う必要はなく、
むしろ物理的に離れていた方が音波の干渉がなく、安定
したエコーの検出が行えるe (”えば、全部で66チ
ヤンネルを1組の測定回路に接続する場合、探触子(1
)の物理的な配列順を1〜66とするとlj  1−2
3−45−2−24−46−3・・・というような順に
駆動すればより効果的となる。
In addition, in carrying out this invention, m channel and (
m+1) channels do not necessarily have to be adjacent to each other,
In fact, if they are physically separated, there will be no interference of sound waves, and stable echo detection will be possible.
) is 1 to 66, then lj 1-2
It will be more effective to drive in the order of 3-45-2-24-46-3...

〔発明の効果〕〔Effect of the invention〕

この発明は、以上説明したとおり、1組の測定回路に複
数の探触子およびパルサーを接続して各パルサー順次一
定時間間隔で駆動し、これに同期して各探触子を測定回
路に効率的な時分割で順次(こ接続するようにしたので
、測定回路の数を減らして多数の探触子およびパルサー
を検査ビグに搭載することができ、大口径のパイプライ
ンの孔食検出を小ピツチで行えるという効果が得られる
As explained above, this invention connects a plurality of probes and pulsers to a set of measurement circuits, drives each pulser sequentially at fixed time intervals, and synchronizes each probe to the measurement circuit efficiently. By connecting them sequentially in a time-sharing manner, it is possible to reduce the number of measurement circuits and mount a large number of probes and pulsers on the inspection vig, reducing pitting detection in large diameter pipelines. You can get the effect of being able to do it in a pitch.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明による一実施例の構成を示すブロック
図、第2図はそのタイミングチャート、第3図はこの発
明による一実施例の検査ビグの構成図、第4図は更に改
良されたチャンネル切換えを示すタイミングチャート、
第5図は従来の孔食検出装置、第6図は探触子で得られ
る超音波の反射エコーの説明図である。 図において、(1)は探触子、(2)は管体、(3)は
パル! サー、(4)は増巾器、(5)はTパルスとS
エコー間の時間計測回路、(6)はSエコーとSエコー
間の時間計測回路、(7)はパルサー選択回路、(8)
はマルチプレクサ、 (9)はタイミング・コントロー
ル回路、(11は検査ビグの外殻、  (111は推進
用カップ、(12)は測定回路、  (13)はデータ
記録装置、  (14)は冒1池である。 鵠人弁理土木村三朗 第5図 第6図□ 手続補正書。自発、 特許庁長官殿        昭和60年1 月18゜
1、事件の表示 特鳳昭59−232361号 2、発明の名称 孔食検出装置 名 称 (412) tI本鋼管株式会社4、代理人 6°補正tn文=ti  明細書の「特許請求の範囲」
及(1)特許請求の範囲の欄を別紙の通り補正する。 (2)発明の詳細な説明の欄を次の通り補正する。 補正後の特許請求の範囲         別紙(1)
カプセル内1こ収納されてパイプライン内を走行し、管
内節に対向して上記カプセルの外側に配列された複数の
探触子から超音波を発射すること1こよりパイプライン
内の孔食を検出する孔食検出装置1こおいで、1組の測
定回路に複数の上記探触子とパルサーとを接続して上記
各パルサーを順次に一定時間間隔で駆動し、これIこ同
期しで上記各探触子を上記測定回路に時分割的に順次に
接続することにより、1組の測定装置で多数の点を検出
できるようにしたことを特徴とする孔食検出装置。 (2)上記各パルサーを駆動する順次の一定時間間隔を
、定常時に考えられる最大の上記探触子と管体との間の
液体距離および最大肉厚の管体中を音波が往復する時間
と計測上の余裕時間との和τ2と。 定常時に考えられる最小の上記探触子と管体との間の液
体距離を音波が往復する時間τ□との差(τ2イ1)と
し、上記各パルサーの駆動後時間τ1だけ経過してから
時間(τ2−τl)だけ対応するチャンネルの上記探触
子を上記測定回路に接続することにより。 上記1組の測定装置で多数の点を検出できるようにした
ことを特徴とする特許請求の範囲第1項記載の孔食検出
装置。
Fig. 1 is a block diagram showing the configuration of an embodiment according to the present invention, Fig. 2 is a timing chart thereof, Fig. 3 is a block diagram of an inspection vig of an embodiment according to the invention, and Fig. 4 is a further improved one. Timing chart showing channel switching,
FIG. 5 is a conventional pitting corrosion detection device, and FIG. 6 is an explanatory diagram of reflected echoes of ultrasonic waves obtained by a probe. In the figure, (1) is the probe, (2) is the tube, and (3) is the PAL! (4) is the amplifier, (5) is the T pulse and S
Time measurement circuit between echoes, (6) is a time measurement circuit between S echoes, (7) is a pulsar selection circuit, (8)
(9) is the multiplexer, (9) is the timing control circuit, (11 is the outer shell of the test vig, (111 is the propulsion cup, (12) is the measurement circuit, (13) is the data recording device, (14) is the test tube 5, Figure 6 □ Procedural amendment written by Kuto Patent Attorney Saburo Dokimura. Spontaneous, Commissioner of the Japan Patent Office, January 18, 1985 1, Case Indication Special Ho 59-232361 No. 2, Title of the invention Pitting corrosion detection device name (412) tI Honkoukan Co., Ltd. 4, agent 6° correction tn statement = ti “Claims” in the specification
(1) Amend the scope of claims as shown in the attached sheet. (2) The Detailed Description of the Invention column is amended as follows. Scope of claims after amendment Attachment (1)
Pitting corrosion in the pipeline is detected by emitting ultrasonic waves from multiple probes housed in a capsule and traveling inside the pipeline and arranged on the outside of the capsule facing the inner pipe joints. In a pitting corrosion detection device 1, a plurality of the probes and pulsers are connected to a set of measurement circuits, and each of the pulsers is driven sequentially at a fixed time interval, and each of the probes and the pulsers are driven synchronously with each other. A pitting corrosion detection device characterized in that a plurality of points can be detected by one set of measuring devices by sequentially connecting the probes to the measuring circuit in a time-sharing manner. (2) The sequential fixed time intervals for driving each of the above pulsars are defined as the maximum liquid distance between the probe and the tubular body and the time for the sound wave to travel back and forth through the tubular body with the maximum wall thickness that can be considered in steady state. The sum τ2 with the measurement margin time. Let the minimum possible liquid distance between the probe and the tube in steady state be the difference between the time τ□ for the sound wave to travel back and forth (τ2i1), and after the time τ1 has elapsed after each pulsar is driven. By connecting the probe of the corresponding channel to the measuring circuit for a time (τ2-τl). 2. The pitting corrosion detection device according to claim 1, wherein said one set of measuring devices is capable of detecting a large number of points.

Claims (2)

【特許請求の範囲】[Claims] (1)カプセル内に収納されてパイプライン内を走行し
、管内面に対向して上記カプセルの外側に配列された複
数の探触子から超音波を発射することによりパイプライ
ン内の孔食を検出する孔食検出装置において、1組の測
定回路に複数の上記探触子とパルサーとを接続して上記
各パルサーを順次に一定時間間隔で駆動し、これに同期
して上記各探触子を上記測定回路に時分割的に順次に接
続することにより、1組の測定装置で多数の点を検出で
きるようにしたことを特徴とする孔食検出装置
(1) Pitting corrosion in the pipeline is prevented by emitting ultrasonic waves from a plurality of probes housed in a capsule and traveling inside the pipeline and arranged on the outside of the capsule facing the inner surface of the pipe. In the pitting corrosion detection device, a plurality of the probes and pulsers are connected to one set of measurement circuits, and each of the pulsers is sequentially driven at a fixed time interval, and in synchronization with this, each of the probes is driven. A pitting corrosion detection device characterized in that a large number of points can be detected with one set of measuring devices by sequentially connecting the above measuring circuits in a time-sharing manner.
(2)上記各パルサーを駆動する順次の一定時間間隔を
、定量時に考えられる最大の上記探触子と管体との間の
液体距離および最大肉厚の管体中を音波が往復する時間
と計測上の余裕時間との和τ_2と、定量時に考えられ
る最小の上記探触子と管体との間の液体距離を音波が往
復する時間τ_1との差(τ_2−τ_1)とし、上記
各パルサーの駆動後時間τ_1だけ経過してから時間(
τ_2−τ_1)だけ対応するチャンネルの上記探触子
を上記測定回路に接続することにより、上記1組の測定
装置で多数の点を検出できるようにしたことを特徴とす
る特許請求の範囲第1項記載の孔食検査装置。
(2) The sequential fixed time intervals for driving each of the above pulsers are defined as the maximum liquid distance between the probe and the tube and the time for the sound wave to travel back and forth through the tube with the maximum wall thickness that can be considered during quantification. The difference (τ_2 - τ_1) between the sum τ_2 of the measurement margin time and the time τ_1 for the sound wave to travel back and forth between the minimum liquid distance between the probe and the tube that can be considered at the time of quantification, and Time (
Claim 1 characterized in that by connecting the probes of channels corresponding to τ_2 - τ_1) to the measuring circuit, it is possible to detect a large number of points with the one set of measuring devices. The pitting corrosion inspection device described in .
JP59232361A 1984-11-06 1984-11-06 Pitting corrosion detector Granted JPS61111462A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59232361A JPS61111462A (en) 1984-11-06 1984-11-06 Pitting corrosion detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59232361A JPS61111462A (en) 1984-11-06 1984-11-06 Pitting corrosion detector

Publications (2)

Publication Number Publication Date
JPS61111462A true JPS61111462A (en) 1986-05-29
JPH058780B2 JPH058780B2 (en) 1993-02-03

Family

ID=16938004

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59232361A Granted JPS61111462A (en) 1984-11-06 1984-11-06 Pitting corrosion detector

Country Status (1)

Country Link
JP (1) JPS61111462A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63221240A (en) * 1986-11-14 1988-09-14 ケルンフオルシユングスツエントルム・カールスルーエ・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング Method and device for detecting corrosion, etc. of pipe
EP3173733A1 (en) 2015-11-27 2017-05-31 Hitachi-GE Nuclear Energy, Ltd. Ultrasonic thickness reduction inspection method/apparatus
CN107032005A (en) * 2017-06-07 2017-08-11 合肥汇之新机械科技有限公司 A kind of fluid reservoir detection device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54121789A (en) * 1978-03-15 1979-09-21 Hitachi Ltd Ultrasonic flaw detector for capillaries
JPS5879154A (en) * 1981-11-06 1983-05-12 Hitachi Ltd Ultrasonic wave probe

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54121789A (en) * 1978-03-15 1979-09-21 Hitachi Ltd Ultrasonic flaw detector for capillaries
JPS5879154A (en) * 1981-11-06 1983-05-12 Hitachi Ltd Ultrasonic wave probe

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63221240A (en) * 1986-11-14 1988-09-14 ケルンフオルシユングスツエントルム・カールスルーエ・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング Method and device for detecting corrosion, etc. of pipe
EP3173733A1 (en) 2015-11-27 2017-05-31 Hitachi-GE Nuclear Energy, Ltd. Ultrasonic thickness reduction inspection method/apparatus
US10309772B2 (en) 2015-11-27 2019-06-04 Hitachi-Ge Nuclear Energy, Ltd. Ultrasonic thickness reduction inspection method/apparatus
CN107032005A (en) * 2017-06-07 2017-08-11 合肥汇之新机械科技有限公司 A kind of fluid reservoir detection device

Also Published As

Publication number Publication date
JPH058780B2 (en) 1993-02-03

Similar Documents

Publication Publication Date Title
GB1453789A (en) Inside diameter outside diameter and wall thickness tube gauge
GB1133519A (en) Material tester
US3555889A (en) Ultrasonic inspection apparatus
SU1561833A3 (en) Automatic ultrasonic system for detecting cracks in steel pipes
JPS61111462A (en) Pitting corrosion detector
US3999422A (en) Ultrasonic test method and apparatus for testing thick-walled workpieces
ATE20402T1 (en) PROCEDURE FOR DETECTING DEFECTIVE FUEL TUBE USING ULTRASONIC.
GB1129655A (en) Improvements in or relating to ultrasonic measuring apparatus
RU2362993C2 (en) Method and device for acoustic testing of objects
US3166930A (en) Ultrasonic testing
JPH08271485A (en) Method and device for detecting defect of drawn processed material
SU1727050A1 (en) Method of ultrasound inspection of articles and device to implement it
SU1247650A1 (en) Acoustic hydrostatic level
RU2195635C1 (en) Method of measurement of level of liquid and loose media
SU714159A1 (en) Level measuring device
US3353149A (en) Acoustic ranging system
GB778166A (en) Improvements in ultrasonic testing apparatus
SU1295327A1 (en) Ultrasonic device for quality control of materials
SU926588A1 (en) Ultrasonic velocity meter
JPH05172793A (en) Sound characteristic value measuring device
SU1758541A1 (en) Method of ultrasonic testing of articles
SU1619064A1 (en) Method of measuring speed of ultrasonic waves
SU1249449A1 (en) Device for ultrasonic echo testing of articles
SU1044995A1 (en) Ultrasonic device for measuring boundary of two non-mixing liquid separation
RU2297646C1 (en) Acoustic distance meter