JPS6384119A - Cleaning of substrate - Google Patents

Cleaning of substrate

Info

Publication number
JPS6384119A
JPS6384119A JP23101386A JP23101386A JPS6384119A JP S6384119 A JPS6384119 A JP S6384119A JP 23101386 A JP23101386 A JP 23101386A JP 23101386 A JP23101386 A JP 23101386A JP S6384119 A JPS6384119 A JP S6384119A
Authority
JP
Japan
Prior art keywords
cleaning
gas
substrate
liquid
cleaning liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23101386A
Other languages
Japanese (ja)
Other versions
JPH0831435B2 (en
Inventor
Kimiharu Matsumura
松村 公治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Original Assignee
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd filed Critical Tokyo Electron Ltd
Priority to JP61231013A priority Critical patent/JPH0831435B2/en
Publication of JPS6384119A publication Critical patent/JPS6384119A/en
Publication of JPH0831435B2 publication Critical patent/JPH0831435B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To reduce a cleaning cost and a waste liquid amount by injecting a reaction gas containing O radical and cleaning solution to the surface of a substrate to remove the adhered material on the substrate. CONSTITUTION:A cleaning solution and O2 containing O3 are injected from holes 4a, 4b disposed at near positions to a nozzle 4, a vapor/liquid mixture stream is heated by a heater 7 of porous holes 7a to generate O radical to decompose the adhered organic material on an Si wafer 2 into CO2, CO, H2O to be removed, and the adhered material is cleaned with the cleaning solution. Accordingly, the organic material and the inorganic material can be removed in a short time to clean the waste liquid of small amount inexpensively. The temperature of the heater 7 is held at 150-500 deg.C during the cleaning to accelerate the decomposition of O3, and a pipe which contains O3 is held at 25 deg.C or lower by a cooling pipe 5a. The cleaning solution is selected according to the adhered material, and the flow rates of the solution and the gas are selected. After the vapor and the liquid are separated by a separator 15, it is evacuated by a unit 16 to held the vapor pressure in a treating chamber 1 to approx. 700-200 Torr.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、半導体ウェハ等の基板表面の付着物を除去す
る基板の洗浄方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a substrate cleaning method for removing deposits from the surface of a substrate such as a semiconductor wafer.

(従来の技術) 例えば半導体ウェハ等の基板表面には、その製造工程等
において、人体等から発生する有機物からなる付着物、
機械等から発生する無機物からなる付着物等種々の付着
物が付着する。このような付着物を除去する基板の洗浄
方法には、従来洗浄液を用いて行なうウェット洗浄方法
と、プラズマ等を用いて洗浄を行なうドライ洗浄方法等
がある。
(Prior Art) For example, on the surface of a substrate such as a semiconductor wafer, deposits made of organic substances generated from the human body, etc. during the manufacturing process, etc.
Various deposits such as inorganic deposits generated from machinery etc. adhere to the surface. Substrate cleaning methods for removing such deposits include a wet cleaning method using a conventional cleaning liquid and a dry cleaning method using plasma or the like.

ドライ洗浄方法としては、酸素プラズマを用いたものが
一般的である。酸素プラズマによる洗浄方法は、半導体
ウェハを処理室に置き、処理室内に導入された酸素ガス
を高周波の電場によりプラズマ化し、酸素プラズマによ
り有機物からなる付着物を除去する。
A common dry cleaning method uses oxygen plasma. In the cleaning method using oxygen plasma, a semiconductor wafer is placed in a processing chamber, oxygen gas introduced into the processing chamber is turned into plasma by a high-frequency electric field, and deposits made of organic matter are removed by the oxygen plasma.

また、ウェット洗浄方法では、半導体ウェハを処理室に
置き、この半導体ウェハにH2SO4、H202、H2
0,HCJ2、HF 、 NH40H、オゾン水等の洗
浄液を1または複数鍾噴出させるか、または前記洗浄液
中に前記半導体ウェハを浸漬することによって洗浄を行
なう。
In addition, in the wet cleaning method, a semiconductor wafer is placed in a processing chamber, and H2SO4, H202, H2
Cleaning is performed by spouting out one or more cleaning liquids such as 0, HCJ2, HF, NH40H, ozone water, or the like, or by immersing the semiconductor wafer in the cleaning liquid.

(発明が解決しようとする問題点) しかしながら上記説明の従来の洗浄方法のうち、ドライ
洗浄方法では、有機物からなる付着物しか除去すること
ができす、無機物からなる付着物の除去が困難であると
いう問題がある。
(Problems to be Solved by the Invention) However, among the conventional cleaning methods described above, the dry cleaning method can only remove deposits made of organic matter, but it is difficult to remove deposits made of inorganic matter. There is a problem.

また、ウェット洗浄方法では、無機物からなる付着物の
除去は簡単に行なえるが、有機物からなる付着物の除去
に時間を要し、洗浄時間が長くなるという問題と、洗浄
液の消費量が増大し、洗浄コストの増大、廃液量の増大
等を招くという問題がある。
In addition, with the wet cleaning method, it is easy to remove inorganic deposits, but it takes time to remove organic deposits, resulting in longer cleaning times and increased consumption of cleaning solution. However, there are problems such as an increase in cleaning costs and an increase in the amount of waste liquid.

本発明はかかる従来の事情に対処してなされたもので、
有機物からなる付着物および無機物からなる付着物とも
に短時間で洗浄除去を行うことができ、洗浄コストの低
減、廃液量の低減を行なうことのできる基板の洗浄方法
を提供しようとするものである。
The present invention has been made in response to such conventional circumstances,
It is an object of the present invention to provide a method for cleaning a substrate, which can remove both organic and inorganic deposits by cleaning in a short time, reducing cleaning costs, and reducing the amount of waste liquid.

[発明の構成] (問題点を解決するための手段) すなわち本発明の基板の洗浄方法は、基板表面へ向けて
酸素原子ラジカルを含有する反応ガスと洗浄液とを噴出
させ、前記基板表面の付着物を除去することを特徴とす
る。
[Structure of the Invention] (Means for Solving the Problems) That is, the substrate cleaning method of the present invention includes jetting a reactive gas containing oxygen atom radicals and a cleaning liquid toward the substrate surface to remove the adhesion on the substrate surface. It is characterized by removing the kimono.

(作 用) 本発明の基板の洗浄方法では、基板表面へ向けて酸素原
子ラジカルを含有する反応ガスと洗浄液とを噴出させ、
基板表面の付着物を除去する。
(Function) In the substrate cleaning method of the present invention, a reactive gas containing oxygen atom radicals and a cleaning liquid are ejected toward the substrate surface,
Remove deposits from the substrate surface.

例えば基板表面へ向けて酸素原子ラジカルを含有するガ
スと洗浄液とを同時に噴出させ、前記酸素原子ラジカル
を含有するガスと前記洗浄液との気液混相流により基板
表面の付着物を除去する。
For example, a gas containing oxygen atomic radicals and a cleaning liquid are simultaneously ejected toward the substrate surface, and deposits on the substrate surface are removed by a gas-liquid multiphase flow of the gas containing oxygen atomic radicals and the cleaning liquid.

したがって、酸素原子ラジカルと有機物との酸化化学反
応により、有機物からなる付着物を酸化して二酸化炭素
、−酸化炭素および水に分解して除去するとともに、洗
浄液による無機物からなる付着物の除去を同時に行なう
ことができ、短時間で、低コスト、少ない廃液量で洗浄
を行なうことができる。
Therefore, due to the oxidative chemical reaction between oxygen atom radicals and organic matter, deposits made of organic matter are oxidized and decomposed into carbon dioxide, -carbon oxide, and water and removed, and at the same time, deposits made of inorganic matter are removed by the cleaning solution. It is possible to perform cleaning in a short time, at low cost, and with a small amount of waste liquid.

(実施例) 以下、本発明の基板の洗浄方法を図面を参照して実施例
について説明する。
(Example) Hereinafter, an example of the substrate cleaning method of the present invention will be described with reference to the drawings.

第1図は本発明の一実施例の方法に用いる洗浄装置を示
すもので、この実施例の洗浄装置では、処理室1内には
、半導体ウェハ2の周縁部を保持することにより半導体
ウェハ2を立設状態に保持する保持機構3が配置されて
いる。
FIG. 1 shows a cleaning apparatus used in a method according to an embodiment of the present invention. In the cleaning apparatus of this embodiment, a semiconductor wafer 2 is held in a processing chamber 1 by holding the peripheral edge of the semiconductor wafer 2. A holding mechanism 3 is arranged to hold the holder in an upright position.

この保持機構3の両側には、例えば洗浄液を噴出させる
開口4aと、この開口4aの周囲に近接して配置された
ガスを噴出させる開口4bとから構成される2流体ノズ
ル4が、配置されており、2流体ノズル4のガスを噴出
させる開口4bに接続された配管の周囲には、冷却装置
5に接続された冷却配管5aが配置されている。
On both sides of this holding mechanism 3, two-fluid nozzles 4 are arranged, which are composed of, for example, an opening 4a for spouting cleaning liquid and an opening 4b for spouting gas disposed close to the opening 4a. A cooling pipe 5a connected to the cooling device 5 is disposed around the pipe connected to the opening 4b of the two-fluid nozzle 4 through which gas is ejected.

また、保持a楕3と2流体ノズル4との間には、温度制
御装置6によって制御され、第2図にも示すように円板
状に形成され、多数の透孔7aを備えたヒータ7が配置
されている。
Further, between the holding a ellipse 3 and the two-fluid nozzle 4, there is a heater 7 which is controlled by a temperature control device 6 and is formed in a disk shape and has a large number of through holes 7a as shown in FIG. is located.

そして2流体ノズル4の開口4bは、気体流産調節器8
を介して酸素供給源9に接続されたオゾン発生器10に
接続されており、開口4aは、それぞれ洗浄液供給源1
1a、llbに接続された洗浄液流量調節器12a、1
2bとに接続されている。
The opening 4b of the two-fluid nozzle 4 is connected to the gas miscarriage regulator 8.
The openings 4a are connected to an ozone generator 10 which is connected to an oxygen supply source 9 via a cleaning liquid supply source 1.
Cleaning liquid flow rate regulators 12a, 1 connected to 1a, llb
2b.

処理室1の下部には、廃液排出口13が設けられており
、廃液排出口13は、廃液の処理を行なう廃液装置14
に接続されている。また、処理室1の上部には気液分離
装置15が配置されており、この気液分離装置15は、
排気装置16に接続されている。
A waste liquid discharge port 13 is provided at the bottom of the processing chamber 1, and the waste liquid discharge port 13 is connected to a waste liquid device 14 that processes waste liquid.
It is connected to the. Further, a gas-liquid separator 15 is arranged in the upper part of the processing chamber 1, and this gas-liquid separator 15
It is connected to the exhaust device 16.

そして上記構成の洗浄装置を用いて、次のようにして洗
浄を行なう。
Then, using the cleaning device having the above configuration, cleaning is performed in the following manner.

すなわち、まず図示しないウェハ搬送装置等により保持
機構3に半導体ウェハ2を配置し、立設状態に保持する
That is, first, the semiconductor wafer 2 is placed on the holding mechanism 3 using a wafer transfer device (not shown) or the like and held in an upright position.

次に、酸素供給源9から供給される酸素ガスを、気体流
量調節器8によって流量を調節し、オゾン発生器10内
に送り、ここでオゾンを含む酸素ガスとして、冷却装置
5から冷却配管5a内を循環される冷却水等により例え
ば25℃程度に冷却された配管を通して、2流体ノズル
4の開口4bから処理室1内の半導体ウェハ2へ向けて
噴出させる。
Next, the flow rate of the oxygen gas supplied from the oxygen supply source 9 is adjusted by the gas flow rate regulator 8, and the gas is sent into the ozone generator 10, where it is passed from the cooling device 5 to the cooling pipe 5a as oxygen gas containing ozone. The liquid is ejected from the opening 4b of the two-fluid nozzle 4 toward the semiconductor wafer 2 in the processing chamber 1 through a pipe cooled to, for example, about 25° C. by cooling water or the like that is circulated therein.

このとき、同時に洗浄液供給源11a、llbから供給
されるH2 SO4、H202、H20、HCA、HP
、NH4OH、オゾン水等の洗浄液を、洗浄液流量調節
器12a、12bにより流量調節して、2流体ノズル4
の開口4aから半導体ウェハ2に向けて1または複数種
噴出させ、オゾンを含む酸素ガスと、洗浄液との気液混
相流を半導体ウェハ2に向けて噴出させる。
At this time, H2SO4, H202, H20, HCA, and HP are simultaneously supplied from the cleaning liquid supply sources 11a and llb.
, NH4OH, ozone water, etc. are adjusted in flow rate by the cleaning liquid flow rate regulators 12a and 12b, and the two-fluid nozzle 4
One or more types of gas are ejected toward the semiconductor wafer 2 from the opening 4 a , and a gas-liquid multiphase flow of oxygen gas containing ozone and a cleaning liquid is ejected toward the semiconductor wafer 2 .

なお、洗浄液は、付着物の種類等により、従来のウェッ
ト洗浄装置等と同様に組み合わせて用いる。また、オゾ
ンを含む酸素ガスと洗浄液との流量は、例えば縦軸を流
量、横軸を時間とした第3図のグラフに曲線Aで示すよ
うに、オゾンを含む酸素ガスの流量を10j2/1M1
n程度から徐々に減少させ、曲線Bで示すように洗浄液
の流量を徐々に増大させて50λ/nin程度にする等
洗浄中に気液流量比を任意に変化させることもでき、洗
浄初期はドライ洗浄のみ、また洗浄終了直前は、ウェッ
ト洗浄のみ等とすることもできる。    ′また、ヒ
ータ7は温度制御装置6によって例えば150℃乃至5
00°C程度の温度に制御され、2流体ノズル4から流
出される気液混相流を加熱し、排気装置16は、気液分
離装置15で分離された気体を排気して、例えば処理室
1内の気体圧力を700へ200 Torr程度とする
−すなわち、上記説明のこの実施例の基板の洗浄方法で
は、2流体ノズル4の近接して配置された開口4a、4
bから同時に洗浄液とオゾンを含む酸素ガスを噴出させ
、気液混相流を形成し、この気液混相流をヒータ7によ
って加熱して、オゾンから酸素原子ラジカルを発生させ
、酸素原子ラジカルによる酸化化学反応により半導体ウ
ェハ2の表面に付着した有機物からなる付着物を、二酸
化炭素、−酸化炭素および水に分解して除去するととも
に、洗浄液により無機物からなる付着物の洗浄を行なう
、したがって有機物および無機物からなる付着物ともに
短時間で除去することができ、低コスト、少ない廃液量
で洗浄を行なうことができる。
Note that the cleaning liquid is used in combination, depending on the type of deposits, etc., in the same way as in conventional wet cleaning equipment. Further, the flow rate of the oxygen gas containing ozone and the cleaning liquid is determined by, for example, the flow rate of the oxygen gas containing ozone being 10j2/1M1, as shown by curve A in the graph of FIG. 3, where the vertical axis is the flow rate and the horizontal axis is time.
It is also possible to change the air-liquid flow rate ratio arbitrarily during cleaning, such as by gradually decreasing the flow rate of the cleaning liquid from about It is also possible to perform only cleaning, or just wet cleaning immediately before the end of cleaning. 'Furthermore, the heater 7 is controlled to have a temperature of, for example, 150°C to 50°C by the temperature control device 6.
The exhaust device 16 heats the gas-liquid multiphase flow flowing out from the two-fluid nozzle 4 at a temperature of about 00°C, and exhausts the gas separated by the gas-liquid separator 15, for example, into the processing chamber 1. In other words, in the substrate cleaning method of this embodiment described above, the gas pressure in the two-fluid nozzle 4 is set to about 700 to 200 Torr.
The cleaning liquid and oxygen gas containing ozone are simultaneously ejected from b to form a gas-liquid multiphase flow, and this gas-liquid multiphase flow is heated by the heater 7 to generate oxygen atomic radicals from the ozone, resulting in chemical oxidation by the oxygen atomic radicals. The organic matter deposited on the surface of the semiconductor wafer 2 due to the reaction is decomposed into carbon dioxide, -carbon oxide, and water and removed, and the inorganic deposit is also cleaned with the cleaning solution. Both deposits can be removed in a short time, and cleaning can be performed at low cost and with a small amount of waste liquid.

なお、オゾン発生器10で生成されたオゾンの寿命は、
温度に依存し、縦軸をオゾン分解半減期、横軸をオゾン
を含有するガスの温度とした第4図のグラフに示すよう
に温度が高くなるとオゾンの分解は促進され、その寿命
は急激に短くなる。そこで、オゾンが分解して発生する
酸素原子ラジカルによる酸化反応を利用して行なう洗浄
処理中におけるヒータ7の温度は、150℃乃至500
℃程度とし、冷却配管5aによって冷却されるオゾンを
含む酸素ガスが流通される配管の温度は25℃程度以下
とすることが好ましい。
Note that the lifespan of ozone generated by the ozone generator 10 is
As shown in the graph of Figure 4, where the vertical axis is the half-life of ozone decomposition and the horizontal axis is the temperature of the ozone-containing gas, as the temperature increases, ozone decomposition is accelerated and its lifespan rapidly shortens. Becomes shorter. Therefore, the temperature of the heater 7 during the cleaning process, which is performed using the oxidation reaction by oxygen atom radicals generated by decomposition of ozone, is 150°C to 500°C.
It is preferable that the temperature of the pipe through which the oxygen gas containing ozone cooled by the cooling pipe 5a is about 25°C or lower.

また、半導体ウェハ2の乾燥は、ヒータ7による加熱に
よって行なうことができるが、例えば半導体ウェハ2を
回転させる、あるいは窒素ガス等を当てるよう構成して
もよい。
Further, the semiconductor wafer 2 can be dried by heating with the heater 7, but it may also be configured to rotate the semiconductor wafer 2 or apply nitrogen gas or the like, for example.

さらに、ヒータ7は、第5図に示すように複数の同心円
状のスリット20aを備えたヒータ20、第6図に示す
ように直線状のスリット21aを備えたヒータ21、第
7図に示すように大きさの異なる小孔22aを配置され
たし−タ22、第8図に示すように渦巻状のスリット2
3at!−備えなヒータ23、第9図に示すように放射
状のスリット24aを備えたヒータ24、第10図に示
すように多数の小孔25aを配置されたヒータ25等ど
のような形状としてもよい。
Furthermore, the heater 7 includes a heater 20 having a plurality of concentric slits 20a as shown in FIG. 5, a heater 21 having a linear slit 21a as shown in FIG. 6, and a heater 21 having a linear slit 21a as shown in FIG. As shown in FIG.
3at! - The heater 23 may have any shape, such as a heater 23 with a radial slit 24a as shown in FIG. 9, a heater 25 with a large number of small holes 25a as shown in FIG.

第11図は第2の実施例方法における洗浄装置を示すも
ので、処理室31内には、半導体ウェハ32を立設状態
に保持する保持機構33が配置されている。
FIG. 11 shows a cleaning apparatus in the second embodiment method, in which a holding mechanism 33 for holding a semiconductor wafer 32 in an upright position is arranged in a processing chamber 31.

この保持111i33の両側には、第12図にも示すよ
うに半導体ウェハ32よりやや大径の円板状の平面内に
、互いに平行する多数の直線状のスリット34aを配置
された拡散板34を備えたガス・洗浄液流出部35か、
半導体ウェハ32に例えば0.5〜20In1程度の近
接間隔で対向配置されており、ガス・洗浄液流出部35
内には、冷却装置36に接続された冷却配管36aが配
置されている。
On both sides of this holder 111i33, as shown in FIG. 12, there is a diffusion plate 34 in which a large number of parallel linear slits 34a are arranged in a disk-shaped plane having a slightly larger diameter than the semiconductor wafer 32. The gas/cleaning liquid outlet 35 provided with
A gas/cleaning liquid outlet 35 is disposed facing the semiconductor wafer 32 at a close interval of, for example, about 0.5 to 20 In1.
A cooling pipe 36a connected to a cooling device 36 is arranged inside.

また、保持機tR33とガス・洗浄液流出部35との間
には、温度制御装置37によって制御され、第13図に
も示すように拡散板34とほぼ同径の円板からなり多数
の透孔38aを備えたし−タ38が配置されている。
Furthermore, between the retainer tR33 and the gas/cleaning liquid outflow section 35, a temperature control device 37 is used to control the temperature control device 37, and as shown in FIG. A filter 38 with a filter 38a is arranged.

そしてガス・洗浄液流出部35は、ガス・洗浄液切り換
え弁3つを介して、気体流量調節器40を介して酸素供
給源41に接続されたオゾン発生器42と、それぞれ洗
浄液供給源44a、44bに接続された洗浄液流量調節
器43a、43bとに接続されている。
The gas/cleaning liquid outlet 35 is connected to an ozone generator 42 connected to an oxygen supply source 41 via a gas flow rate regulator 40 and to cleaning liquid supply sources 44a and 44b, respectively, through three gas/cleaning liquid switching valves. It is connected to the connected cleaning liquid flow rate regulators 43a and 43b.

処理室31の下部には、廃液排出口45が設けられてお
り、廃液排出口45は、廃液の処理を行なう廃液装置4
6に接続されている。また、処理室31の上部には気液
分離装置47、ガス・洗浄液流出部35の周囲には排気
口48が配置されており、これらの気液分離装置47、
排気口48は、排気装置49に接続されている。
A waste liquid discharge port 45 is provided at the bottom of the processing chamber 31, and the waste liquid discharge port 45 is connected to the waste liquid device 4 that processes waste liquid.
6. Further, a gas-liquid separator 47 is arranged in the upper part of the processing chamber 31, and an exhaust port 48 is arranged around the gas/cleaning liquid outlet 35.
The exhaust port 48 is connected to an exhaust device 49.

、そして上記構成のこの実施例の洗浄装置では、次のよ
うにして洗浄を行なう。
In the cleaning apparatus of this embodiment having the above configuration, cleaning is performed as follows.

すなわち、まず図示しないウェハ搬送装置等により保持
i梢33に半導体ウェハ32が配置され、立役状態に保
持される。
That is, first, the semiconductor wafer 32 is placed on the holding i-top 33 by a wafer transfer device (not shown) and held in an upright position.

次に、ガス・洗浄液切り換え弁3つがオゾン発生器42
側に対して開とされ、酸素供給源41から供給される酸
素ガスが、気体流量調節器40によ1て流量が例えば被
処理面あたり3〜15ぶ/1m1n程度となるよう調節
されて、オゾン発生器42内に送られ、ここでオゾンを
含む酸素ガスとされて、冷却装r!t36から冷却配管
36a内を循環される冷却水等により例えば25℃程度
に冷却されたガス・洗浄液流出部35から処理室31内
の半導体ウェハ32に供給される。
Next, the three gas/cleaning liquid switching valves are connected to the ozone generator 42.
The oxygen gas supplied from the oxygen supply source 41 is adjusted by the gas flow rate regulator 40 so that the flow rate is, for example, about 3 to 15 bu/m1n per surface to be treated. It is sent into the ozone generator 42, where it is converted into oxygen gas containing ozone, and the cooling device r! From t36, the gas/cleaning liquid is supplied to the semiconductor wafer 32 in the processing chamber 31 from the gas/cleaning liquid outlet 35 which has been cooled to, for example, about 25° C. by cooling water or the like that is circulated in the cooling pipe 36a.

ヒータ38は温度制御装置37によって例えば300 
’C程度の温度に制御され、ガス・洗浄液流出部35か
ら流出されるオゾンを含む′#!i累ガスを加熱し、排
気装置49は、例えば処理室31内の気体圧力が700
〜200Torr程度の範囲になるように排気を行なう
The heater 38 is controlled by the temperature control device 37, e.g.
It is controlled at a temperature of about 'C and contains ozone flowing out from the gas/cleaning liquid outlet 35'#! The exhaust device 49 heats the i-cumulative gas until the gas pressure in the processing chamber 31 is, for example, 700.
Evacuation is performed so that the pressure is in the range of ~200 Torr.

この時、ガス・洗浄液流出部35の拡散板34から流出
したオゾンを含む酸素ガスは、ヒータ38によって加熱
され、ガス中のオゾンが急速に分解し、酸素原子ラジカ
ルが多量に発生する。この酸素原子ラジカルは、ガス・
洗浄液流出部35と半導体ウェハ32との間に形成され
る半導体ウェハ32の中央部から周辺部へ向かうガスの
流れにより、半導体ウェハ32の表面に供給され、半導
体ウェハ32の表面に付着した有機物からなる付着物と
反応し、有機物からなる付着物を、二酸化炭素、−酸化
炭素および水に分解して除去する。
At this time, the oxygen gas containing ozone flowing out from the diffusion plate 34 of the gas/cleaning liquid outlet 35 is heated by the heater 38, and the ozone in the gas is rapidly decomposed and a large amount of oxygen atomic radicals are generated. This oxygen atom radical is
A gas flow from the center of the semiconductor wafer 32 to the periphery formed between the cleaning liquid outflow portion 35 and the semiconductor wafer 32 is supplied to the surface of the semiconductor wafer 32 to remove organic substances attached to the surface of the semiconductor wafer 32. The organic matter is decomposed into carbon dioxide, carbon oxide, and water and removed.

なお、オゾン発生器42で生成されたオゾンの寿命は、
前述のように温度に依存するため、ヒータ38の温度は
、150°C乃至500℃程度に加熱することが好まし
く、ガス・洗浄液流出部35の開口の温度は25℃程度
以下とすることが好ましい。
Note that the lifespan of ozone generated by the ozone generator 42 is
As mentioned above, since it depends on the temperature, the temperature of the heater 38 is preferably heated to about 150°C to 500°C, and the temperature of the opening of the gas/cleaning liquid outlet 35 is preferably about 25°C or less. .

上記説明の、オゾンを含む酸素ガスによるドライ洗浄は
、例えば30秒程度行なわれ、次に洗浄液によるウェッ
ト洗浄が行なわれる。
The dry cleaning using oxygen gas containing ozone as described above is performed for about 30 seconds, for example, and then wet cleaning using a cleaning liquid is performed.

洗浄液によるウェット洗浄は、ガス・洗浄液切り換え弁
3つが、洗浄液流量調節器43a、43b側に対して開
とされ、洗浄液供給源44a、44bから供給されるH
2 SO4、H202、H2O、HCi、、HF、NH
40H、オゾン水等の洗浄液が、洗浄液流量調節器43
a、43bにより流量調節され、ガス・薬液流出部35
から半導体ウェハ32に向けて1または複数種噴出させ
ることにより行なわれる。また、乾燥は、ヒータ38に
よって加熱する、半導体ウェハ32を回転させる、ある
いは窒素ガス等を当てるよう構成してもよい、このとき
、被処理基板から蒸発した水分は、気液分離器47を経
て、排気装置49によって排気される。
In wet cleaning using a cleaning liquid, the three gas/cleaning liquid switching valves are opened to the cleaning liquid flow rate regulators 43a and 43b, and the H supplied from the cleaning liquid supply sources 44a and 44b is
2 SO4, H202, H2O, HCi, HF, NH
A cleaning liquid such as 40H or ozone water is supplied to the cleaning liquid flow rate regulator 43.
The flow rate is adjusted by a and 43b, and the gas/chemical liquid outflow part 35
This is carried out by ejecting one or more types of liquid from the liquid toward the semiconductor wafer 32 . Further, drying may be performed by heating with a heater 38, rotating the semiconductor wafer 32, or applying nitrogen gas, etc. At this time, the moisture evaporated from the substrate to be processed is passed through a gas-liquid separator 47. , is exhausted by an exhaust device 49.

上記説明のこの実施例の洗浄装置では、ガス・洗浄液流
出部35から初めにオゾンを含有するガスを基板に向け
て流出させる、¥Ta物からなる付着物の除去を行ない
、この後、ガス・洗浄液流出部35から洗浄液を噴出さ
せウェット洗浄により無機物からなる付着物の除去を行
なうので、有機物および無機物からなる付着物ともに短
時間で除去することができ、低コスト、少ない廃液量で
洗浄を行なうことができる。
In the cleaning apparatus of this embodiment described above, the ozone-containing gas is first flowed out toward the substrate from the gas/cleaning liquid outlet 35 to remove deposits made of ¥Ta. Since the cleaning liquid is ejected from the cleaning liquid outlet 35 to remove inorganic deposits by wet cleaning, both organic and inorganic deposits can be removed in a short time, and cleaning can be performed at low cost and with a small amount of waste liquid. be able to.

第14図は第3の実施例方法における洗浄装置を示して
いる。同図に示す装置のように処理室31をドライ洗浄
を行なう処理室31aとウェット洗浄を行なう処理室3
1bとに分割し、この間を搬送系50により接続して半
導体ウェハ32を移送するよう椙成し、まず処理室31
a内でドライ洗浄を行ない、次に搬送系50により半導
体ウェハ32を処理室31bへ移送し、処理室31b内
でウェット洗浄を行なうよう構成してもよい、また、こ
の例においては、不活性ガス供給源51から供給される
窒素等の不活性ガスを気体流量調節器52によって流量
調節して半導体ウェハ32に向けて噴出させ、乾燥を行
なうよう構成され、洗浄液供給源44および洗浄液流量
調節器43は多数配置されている。なお同図において第
11図に示す洗浄装置と同一部分には、同一符号を付し
である。
FIG. 14 shows a cleaning device in the third embodiment method. In the apparatus shown in the figure, a processing chamber 31a is used for dry cleaning and a processing chamber 3 is used for wet cleaning.
1b and are connected by a transfer system 50 to transfer the semiconductor wafer 32.
The semiconductor wafer 32 may be dry cleaned in the processing chamber 31b, and then the semiconductor wafer 32 is transferred to the processing chamber 31b by the transport system 50, and the wet cleaning is carried out in the processing chamber 31b. A gas flow controller 52 controls the flow rate of an inert gas such as nitrogen supplied from a gas supply source 51 and blows it out toward the semiconductor wafer 32 for drying. 43 are arranged in large numbers. In this figure, the same parts as those of the cleaning device shown in FIG. 11 are given the same reference numerals.

なお、拡散板34は、第15図に示すように複数の同心
円状のスリット60aを備えた拡散板60としてもよく
、第16図に示すように同心的に分割された複数の領域
61aからガスを流出させる金属あるいはセラミック等
の焼結体からなる拡散板61、第17図に示すように多
数の小孔62bを配置され同心的に分割された複数の領
域62aからガスを流出させる拡散板62等としてもよ
い。
Note that the diffusion plate 34 may be a diffusion plate 60 having a plurality of concentric slits 60a as shown in FIG. A diffusion plate 61 made of a sintered body of metal or ceramic, etc., allows the gas to flow out, and a diffusion plate 62, which allows the gas to flow out from a plurality of concentrically divided regions 62a arranged with a large number of small holes 62b, as shown in FIG. etc.

さらに、オゾンを含有するガスは酸素に限らずオゾンと
反応しないようなガス、特にN2、A「、Ne等のよう
な不活性なガスにオゾンを含有させて使用することがで
きる。
Further, the ozone-containing gas is not limited to oxygen, but may also be used by adding ozone to a gas that does not react with ozone, especially an inert gas such as N2, A', Ne, etc.

[発明の効果] 上述のように本発明の基板の洗浄方法では、有機物から
なる付着物および無機物からなる付着物ともに短時間で
洗浄除去を行うことができ、従来に較べて洗浄コストの
低減、廃液量の低減を行なうことができる。
[Effects of the Invention] As described above, in the substrate cleaning method of the present invention, both organic deposits and inorganic deposits can be cleaned and removed in a short time, reducing cleaning costs compared to the conventional method. The amount of waste liquid can be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例方法を説明するための洗浄装
置の構成図、第2図は第1図の要部を示す下面図、第3
図はガスおよび洗浄液の流量制御例を示すグラフ、第4
図はオゾンの半減期と温度の関係を示すグラフ、第5図
〜第10図は第2図の変形例を示す下面図、第11図は
第2の実施例方法を説明するための洗浄装置の構成図、
第12図は第11図の要部を示す下面図、第13図は第
11図の要部を示す下面図、第14図は第3の実施例方
法を説明するための洗浄装置の構成図、第15図〜第1
7図は第12図の変形例を示す下面図である。 2・・・・・・半導体ウェハ、4・・・・・・2流体ノ
ズル、10・・・・・・オゾン発生器、lla、llb
・・・・・・洗浄液供給源。 出願人    東京エレクトロン株式会社代理人 弁理
士  須 山 佐 − 第2図 戎浄吟闇(秒) 第3図 官4図 第5図 第6図 第7図 第8図 箱9図 第℃図 第11図 第12図 ・M7 第15図 第16図 第17図
FIG. 1 is a configuration diagram of a cleaning device for explaining one embodiment of the method of the present invention, FIG. 2 is a bottom view showing the main parts of FIG. 1, and FIG.
The figure is a graph showing an example of flow rate control of gas and cleaning liquid.
The figure is a graph showing the relationship between the half-life of ozone and temperature, Figures 5 to 10 are bottom views showing modifications of Figure 2, and Figure 11 is a cleaning device for explaining the method of the second embodiment. Configuration diagram,
Fig. 12 is a bottom view showing the main parts of Fig. 11, Fig. 13 is a bottom view showing the main parts of Fig. 11, and Fig. 14 is a configuration diagram of a cleaning device for explaining the third embodiment method. , Figure 15-1
FIG. 7 is a bottom view showing a modification of FIG. 12. 2...Semiconductor wafer, 4...2 fluid nozzle, 10...Ozone generator, lla, llb
...Cleaning liquid supply source. Applicant Tokyo Electron Co., Ltd. Agent Patent Attorney Satoshi Suyama - Figure 2 Ebisu Joginya (Second) Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Box Figure 9 Figure ℃ Figure 11 Figure 12/M7 Figure 15 Figure 16 Figure 17

Claims (4)

【特許請求の範囲】[Claims] (1)基板表面へ向けて酸素原子ラジカルを含有する反
応ガスと洗浄液とを噴出させ、前記基板表面の付着物を
除去することを特徴とする基板の洗浄方法。
(1) A method for cleaning a substrate, which comprises jetting a reactive gas containing oxygen atom radicals and a cleaning liquid toward the surface of the substrate to remove deposits on the surface of the substrate.
(2)酸素原子ラジカルを含有する反応ガスと洗浄液と
は、基板表面へ向けて同時に噴出させ、前記酸素原子ラ
ジカルを含有する反応ガスと前記洗浄液との気液混相流
により基板表面の付着物を除去することを特徴とする特
許請求の範囲第1項記載の基板の洗浄方法。
(2) The reaction gas containing oxygen atomic radicals and the cleaning liquid are ejected simultaneously toward the substrate surface, and the gas-liquid multiphase flow of the reaction gas containing oxygen atomic radicals and the cleaning liquid removes deposits on the substrate surface. 2. The method of cleaning a substrate according to claim 1, further comprising removing the substrate.
(3)気液混相流における気液流量比とともに前記気液
混相流の温度を制御することを特徴とする特許請求の範
囲第2項記載の基板の洗浄方法。
(3) The substrate cleaning method according to claim 2, characterized in that the temperature of the gas-liquid multiphase flow is controlled together with the gas-liquid flow rate ratio in the gas-liquid multiphase flow.
(4)酸素原子ラジカルを含有する反応ガスは、前記酸
素原子ラジカルがオゾンを原料として生成することを特
徴とする特許請求の範囲第1項乃至第3項記載の基板の
洗浄方法。
(4) The method for cleaning a substrate according to any one of claims 1 to 3, wherein the reactive gas containing oxygen atom radicals is generated using ozone as a raw material.
JP61231013A 1986-09-29 1986-09-29 Substrate cleaning method Expired - Lifetime JPH0831435B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61231013A JPH0831435B2 (en) 1986-09-29 1986-09-29 Substrate cleaning method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61231013A JPH0831435B2 (en) 1986-09-29 1986-09-29 Substrate cleaning method

Publications (2)

Publication Number Publication Date
JPS6384119A true JPS6384119A (en) 1988-04-14
JPH0831435B2 JPH0831435B2 (en) 1996-03-27

Family

ID=16916877

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61231013A Expired - Lifetime JPH0831435B2 (en) 1986-09-29 1986-09-29 Substrate cleaning method

Country Status (1)

Country Link
JP (1) JPH0831435B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0225030A (en) * 1988-06-01 1990-01-26 Wacker Chemitronic Ges Elektron Grundstoffe Mbh Wet chemical surfa ce treatment of semiconductor wafer
JPH02246217A (en) * 1989-03-20 1990-10-02 Fujitsu Ltd Cleaning device
JPH04305927A (en) * 1991-02-19 1992-10-28 Shimada Phys & Chem Ind Co Ltd Washer
EP0708981A1 (en) * 1993-07-16 1996-05-01 Legacy Systems, Inc. Process and apparatus for the treatment of semiconductor wafers in a fluid
US5911837A (en) * 1993-07-16 1999-06-15 Legacy Systems, Inc. Process for treatment of semiconductor wafers in a fluid
JP2007227878A (en) * 2006-01-26 2007-09-06 Dainippon Screen Mfg Co Ltd Substrate processing apparatus and substrate processing method
JP2009158666A (en) * 2007-12-26 2009-07-16 Dainippon Screen Mfg Co Ltd Substrate treating apparatus
JPWO2020235438A1 (en) * 2019-05-23 2020-11-26

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6077430A (en) * 1983-10-04 1985-05-02 Oki Electric Ind Co Ltd Separating method of organic material
JPS61210637A (en) * 1985-03-15 1986-09-18 Hitachi Ltd Washing apparatus
JPS62213127A (en) * 1986-03-13 1987-09-19 Nec Corp Semiconductor wafer washing equipment

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6077430A (en) * 1983-10-04 1985-05-02 Oki Electric Ind Co Ltd Separating method of organic material
JPS61210637A (en) * 1985-03-15 1986-09-18 Hitachi Ltd Washing apparatus
JPS62213127A (en) * 1986-03-13 1987-09-19 Nec Corp Semiconductor wafer washing equipment

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0225030A (en) * 1988-06-01 1990-01-26 Wacker Chemitronic Ges Elektron Grundstoffe Mbh Wet chemical surfa ce treatment of semiconductor wafer
JPH02246217A (en) * 1989-03-20 1990-10-02 Fujitsu Ltd Cleaning device
JPH04305927A (en) * 1991-02-19 1992-10-28 Shimada Phys & Chem Ind Co Ltd Washer
EP0708981A1 (en) * 1993-07-16 1996-05-01 Legacy Systems, Inc. Process and apparatus for the treatment of semiconductor wafers in a fluid
US5727578A (en) * 1993-07-16 1998-03-17 Legacy Systems, Inc. Apparatus for the treatment and drying of semiconductor wafers in a fluid
US5776296A (en) * 1993-07-16 1998-07-07 Legacy Systems, Inc. Apparatus for the treatment of semiconductor wafers in a fluid
US5911837A (en) * 1993-07-16 1999-06-15 Legacy Systems, Inc. Process for treatment of semiconductor wafers in a fluid
JP2007227878A (en) * 2006-01-26 2007-09-06 Dainippon Screen Mfg Co Ltd Substrate processing apparatus and substrate processing method
JP2009158666A (en) * 2007-12-26 2009-07-16 Dainippon Screen Mfg Co Ltd Substrate treating apparatus
JPWO2020235438A1 (en) * 2019-05-23 2020-11-26
WO2020235438A1 (en) * 2019-05-23 2020-11-26 東京エレクトロン株式会社 Substrate processing method

Also Published As

Publication number Publication date
JPH0831435B2 (en) 1996-03-27

Similar Documents

Publication Publication Date Title
KR100644000B1 (en) Method and apparatus for processing substrates
US20190074163A1 (en) Conditioning remote plasma source for enhanced performance having repeatable etch and deposition rates
US6325857B1 (en) CVD apparatus
EP0235256A1 (en) Gaseous process and apparatus for removing films from substrates.
KR102397199B1 (en) Dry cleaning method of susceptor and substrate processing apparatus
TW201126596A (en) Vacuum processing apparatus and vacuum processing method
JP2005064305A (en) Substrate processing device and method of manufacturing semiconductor device
JP3627451B2 (en) Surface treatment method and apparatus
WO2001073832A1 (en) Method of surface treatment of semiconductor
JPS6384119A (en) Cleaning of substrate
KR20030065953A (en) Equipment for cleaning process of the semiconductor wafer using vaporizing chemicals and cleaning process using the same equipment
KR20190047616A (en) Film forming apparatus and operation method of film forming apparatus
US10985024B2 (en) Simultaneous hydrophilization of photoresist and metal surface preparation: methods, systems, and products
US6830631B2 (en) Method for the removing of adsorbed molecules from a chamber
WO2005066387A1 (en) Method for cleaning film-forming apparatuses
KR102584068B1 (en) Cleaning method and substrate processing device
CN111719137A (en) Method for cleaning film forming apparatus
JP2017139297A (en) Film growth method and film growth apparatus
JPH01114043A (en) Cleaning method
JP4495472B2 (en) Etching method
JP6680190B2 (en) Film forming equipment
JPH0691059B2 (en) Cleaning equipment
JP4010307B2 (en) Surface treatment method and apparatus
JPS6358933A (en) Ashing apparatus
JP7407162B2 (en) Etching method and etching device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term