JPS6384074A - Photovoltaic device - Google Patents

Photovoltaic device

Info

Publication number
JPS6384074A
JPS6384074A JP61228797A JP22879786A JPS6384074A JP S6384074 A JPS6384074 A JP S6384074A JP 61228797 A JP61228797 A JP 61228797A JP 22879786 A JP22879786 A JP 22879786A JP S6384074 A JPS6384074 A JP S6384074A
Authority
JP
Japan
Prior art keywords
amorphous silicon
semiconductor film
type layer
light
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61228797A
Other languages
Japanese (ja)
Other versions
JPH07105513B2 (en
Inventor
Kaneo Watanabe
渡邉 金雄
Yukio Nakajima
行雄 中嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP61228797A priority Critical patent/JPH07105513B2/en
Publication of JPS6384074A publication Critical patent/JPS6384074A/en
Publication of JPH07105513B2 publication Critical patent/JPH07105513B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/075Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PIN type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells

Abstract

PURPOSE:To prevent a diffusion under the state of a high temperature of a backplate constituent element by forming a semiconductor film by amorphous silicon and shaping an impurity layer on the side where the semiconductor film is brought into contact with a backplate in an n-type layer containing nitrogen of mean content of 1-20 atom %. CONSTITUTION:A semiconductor film 3 mainly comprising amorphous silicon irradiated with beams passing through a light-receiving surface electrode 2 is formed to a translucent and insulating glass substrate 1 through the light- receiving surface electrode 2 having a single layer or laminated structure consisting of a translucent conductive oxide, and a backplate 4 composed of a metal is shaped on the rear side of the film 3. The semiconductor film 3 is made up of an amorphous silicon carbide p-type layer 3p brought into contact with the light-receiving surface electrode 2 and functioning as a window layer, an amorphous silicon non-doped i-type layer 3i generating the optical carriers of electrons and holes when receiving the projection of beams, and an amorphous silicon nitride n-type layer 3n having nitrogen of mean content of 1-20 atom %.

Description

【発明の詳細な説明】 (イ) 肢業上の利用分野 本発明は太陽光等の光照射を受けると起電力を発生する
光起電力装置(二関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of industrial application The present invention relates to a photovoltaic device (2) that generates an electromotive force when irradiated with light such as sunlight.

−1従来の技術 この授光起電力装置(二於いてSiH4,Si2H6,
81Fa等のシリコン化合物ガスを原料ガスとして得ら
れる非晶質シリコンを主体としたものが現存する。斯る
非晶質シリコンを主体とした光起電力装置は、太渚光発
電に要求さnる大面積化と低コスト化を可能とする利点
を備える反面。
-1 Conventional technology This photovoltaic device (2) SiH4, Si2H6,
Currently, there are those mainly made of amorphous silicon obtained using a silicon compound gas such as 81Fa as a raw material gas. On the other hand, such a photovoltaic device mainly made of amorphous silicon has the advantage of making it possible to have a large area and reduce costs, which are required for Taiyuan photovoltaic power generation.

経時的な光電変換効率の劣化が著しい。The photoelectric conversion efficiency deteriorates significantly over time.

光電変換効率の経時劣化は1強い光照射C:よる光劣化
と、高温状態C二よる熱劣化の2種類が存花することが
知られている(日経マイクロデバイス。
It is known that there are two types of deterioration of photoelectric conversion efficiency over time: photodeterioration caused by intense light irradiation (1) and thermal deterioration caused by high-temperature conditions C2 (Nikkei Microdevice).

1986年2月号第81頁〜WI9!1頁参照)。(See February 1986 issue, pages 81 to WI9!1).

(/−J 発明が解決しようとする問題点本発明は斯る
光電変換効率の経時劣化の内、高温状態(−よる熱劣化
を解決しようとするものである。
(/-J Problems to be Solved by the Invention The present invention attempts to solve the problem of thermal deterioration caused by high temperature conditions (-) among the deterioration of photoelectric conversion efficiency over time.

に)問題点を解決するための手段 本発明は上記問題点を解決するため(−1少なくとも1
つの半導体接合を備える半導体膜と、該半導体膜の光入
射(1)1)に設けられた受光面電極と、上把手導体膜
の背面側に設けられた背面電極と、からなる光起電力装
置であって、上記半導体膜は非晶質シリコンを主体とす
ると共に、上記背面電極と接する側の不純物層はその不
純物層内C:平均含有率1at、%〜2ONm−チ の
窒素を含むn型層であることを特徴とする。
2) Means for Solving the Problems The present invention solves the above problems by (-1 at least 1
A photovoltaic device comprising a semiconductor film having two semiconductor junctions, a light-receiving surface electrode provided at the light incidence (1) 1) of the semiconductor film, and a back electrode provided on the back side of the upper handle conductor film. The semiconductor film is mainly made of amorphous silicon, and the impurity layer on the side in contact with the back electrode is an n-type film containing nitrogen at an average content of C: 1at, % to 2ONm-chi in the impurity layer. It is characterized by being a layer.

(ホ)作 用 上述の如く窒素の平均含有率が1at−チ〜20at、
% のn型層を背面電極と接する側の不純物層として用
いること(;よって、斯るn型層は背面電極構成元素の
高温状態に於ける拡散を阻止する。
(e) Effect As mentioned above, the average nitrogen content is 1 at-chi to 20 at,
% of the n-type layer is used as an impurity layer on the side in contact with the back electrode; therefore, such an n-type layer prevents the diffusion of elements constituting the back electrode at high temperatures.

(へ)実施例 $1)!il!、1は本発明光起電力装置の一実施例を
示し。
(to) Example $1)! Il! , 1 shows an embodiment of the photovoltaic device of the present invention.

(1)はガラス等の透光性且つ絶縁性の基板、(2)は
工TOや8n02+二代表される透光性導電酸化物(T
oo )の単層或いは積層構造の受光固型t=M、(3
)は該受光面電極(2)を通過した光の照射を受ける非
晶質シリコンを主体とする半導体膜、(4)は該半導体
膜(3)の背面側(:設けられた金属或いは’I’00
/金属の背面電極である。上記半導体膜(3)は1つの
pin接合を形成すべく1元入射側である受光面電極(
2;と接して窓層として作用するワイドバンドギャップ
材料の非晶質シリコンカーバイドのp型層(3p)と、
該p型層(5p)を透過した光の照射を受けると主とし
て電子及び正孔の光キャリアを発生する非晶質シリコン
のノンドープ(1型)層(51)と、一端面がノンドー
プ層(31)と接し他端面が背面電極(4)と接する窒
素の平均含有率が1at−%〜2Qat−チの非晶質シ
リコンナイトライドのn型層(5n)と、からなってい
る。
(1) is a transparent and insulating substrate such as glass, and (2) is a transparent conductive oxide (T
oo ) single-layer or laminated structure light-receiving solid t=M, (3
) is a semiconductor film mainly made of amorphous silicon that is irradiated with light that has passed through the light-receiving surface electrode (2), and (4) is a semiconductor film mainly made of amorphous silicon that is irradiated with light that has passed through the light-receiving surface electrode (2). '00
/Metal back electrode. The semiconductor film (3) is attached to the light-receiving surface electrode (
2; a p-type layer (3p) of amorphous silicon carbide, which is a wide bandgap material, and acts as a window layer in contact with;
A non-doped (type 1) layer (51) of amorphous silicon that generates photocarriers mainly electrons and holes when irradiated with light transmitted through the p-type layer (5p), and a non-doped layer (31) on one end surface. ) and an n-type layer (5n) of amorphous silicon nitride having an average nitrogen content of 1 at-% to 2 Qat-1, the other end surface of which is in contact with the back electrode (4).

斯るpin接合を備える非晶質シリコンを主体として半
導体膜(3)は5例えば1′5.56MHzの高周波電
諒1:よるプラズマO”/D法C二よシ得られる。
A semiconductor film (3) mainly made of amorphous silicon having such a pin junction can be obtained using a plasma O''/D method C2 using a high frequency wave of, for example, 1'5.56 MHz.

代表的な反応条件及び各膜の膜厚は以下の通りである。Typical reaction conditions and film thicknesses of each film are as follows.

共通反応条件 0 基板温度:200〜500℃ 0 高周波パワm:10〜5OW O反応圧カニ0.1〜0.5torr 而して1本発明の特徴は、 At、Ag、Au。Common reaction conditions 0 Substrate temperature: 200-500℃ 0 High frequency power m: 10~5OW O reaction pressure 0.1 to 0.5 torr One feature of the present invention is At, Ag, and Au.

T OO/ A g 、 A l / T i等の単層
或いは積層構造からなる背面電極(4)と接する側の不
純物層として、その不純物層の総合膜厚中1−平均含有
率1at・S 〜201t、%の窒素を含むn型II(
3n)を用いたところにある。第2図は本発明光起電力
装置と従来の光起電力装置の150℃の高温状態C:於
ける光電変換効率の経時変化、即ち熱劣化特性を調べた
ものである。本発明及び従来の光起電力装置の構造は第
1図Cユ示した如く一つのpin接合を備えた非晶質シ
リコンを主体とする半導体膜(3)を、Tooの受光面
電極(2)とAfの背面電極(4)で挾んだものでらシ
、Alの背面電極(4)と接するn型ff1(3n)と
して本発明装置は窒素含有率10at、%  の非晶質
シリコンナイトライドを用い。
As an impurity layer on the side in contact with the back electrode (4) consisting of a single layer or a laminated structure such as TOO/Ag, Al/Ti, etc., the impurity layer has an average content of 1at.S in the total thickness of the impurity layer. 201t, n-type II containing % nitrogen (
3n) is used. FIG. 2 shows an investigation of the change over time in photoelectric conversion efficiency, that is, the thermal deterioration characteristics, of the photovoltaic device of the present invention and the conventional photovoltaic device at a high temperature of 150° C. (C:). The structure of the present invention and the conventional photovoltaic device is as shown in FIG. The device of the present invention uses amorphous silicon nitride with a nitrogen content of 10 at% as the n-type ff1 (3n) in contact with the Al back electrode (4). using.

従来装置は窒素を含まない非晶質シリコンを使用した以
外は同一構成とした。そして、光tC変換効率はそれぞ
れ初期値を1として規格化した。斯る測定の結果、10
時間経過に於ける光電変換効率の劣化率は本発明装置C
二あっては10%以下であったのに対し、従来装置では
約70チ低下した。
The conventional device had the same configuration except that nitrogen-free amorphous silicon was used. The optical tC conversion efficiencies were each normalized with an initial value of 1. As a result of such measurement, 10
The deterioration rate of photoelectric conversion efficiency over time is the deterioration rate of the device C of the present invention.
While it was less than 10% with the conventional device, it was about 70 inches lower with the conventional device.

従って、非晶質シリコンナイトクィドは非晶質シリコン
(ユ較べ熱劣化に極めて有効的であることが判明した。
Therefore, it has been found that amorphous silicon nightquid is extremely effective against thermal deterioration compared to amorphous silicon.

即ち、熱劣化の主たる要因は背面電極(4)の構成元素
が高温状態に置かれたためC二手導体膜(3)中を拡散
し、遂には受光面電極f21 C到達して部分的な短絡
を形成することI:ある。
In other words, the main cause of thermal deterioration is that the constituent elements of the back electrode (4) are placed in a high temperature state, so they diffuse through the C two-handed conductor film (3) and eventually reach the light receiving surface electrode f21 C, causing a partial short circuit. Forming I: Yes.

ところで1本発明装置のn型層in)は上述の如く非晶
質シリコンナイトライドからなり、その膜中にはシリコ
ン(Sl)と窒素(Nlとの結合(Si−N)があり、
−万、従来装置のn型層は非晶質シリコンであるためC
3i−Hの結合は存在せず、Si同上の結合(Si−3
i)である。この5i−N結合と、5i−3i結合とを
その結合力について比較した場合、5i−N結合が勝る
ことが知られている。即ち、従来装置に於ける背面電極
(4)の構成元素の拡散は、上記31−31結合の結合
力が弱いため4:発生し、その結果光電変換効率の低下
を招いていたのに対し5本発明装置C:於ける5i−H
の結合力は強く拡散が阻止される結果、光電変換効率の
熱劣化が殆ど発生しなかったものと考えられる。
By the way, the n-type layer (in) of the device of the present invention is made of amorphous silicon nitride as described above, and there is a bond (Si-N) between silicon (Sl) and nitrogen (Nl) in the film.
- 10,000, since the n-type layer of the conventional device is amorphous silicon, C
There is no 3i-H bond, and the Si ditto bond (Si-3
i). It is known that when this 5i-N bond and 5i-3i bond are compared in terms of bonding strength, the 5i-N bond is superior. That is, in the conventional device, diffusion of the constituent elements of the back electrode (4) occurred due to the weak bonding force of the 31-31 bond, resulting in a decrease in photoelectric conversion efficiency, whereas 5. Inventive device C: 5i-H in
It is thought that the bonding force was strong and diffusion was inhibited, so that almost no thermal deterioration of photoelectric conversion efficiency occurred.

この様にn型層(5n)l二窒素を含有せしめることに
より背面電極(4)の構成元素の高温状態に於ける拡散
を阻止し、光電変換効率の熱劣化に対して有効的である
ことが判明した。然し、斯るn型層(5n)への窒素含
有は熱劣化に対して有効的である反面、多量に含有せし
めると、直列抵抗成分の増大や、ノンドープ層(51)
との界面特性の低下をもたらすためt二初期の光電変換
効率の低下を招く。即ち、熱劣化を防止するため(:多
量の窒素を含有せしめても、光電変換効率の初期値が低
ければ仕方がない。第5図は斯る窒素含有量と150℃
10時間経過後の光1!変換効率との関係C二ついて調
べたものである。窒素含有1LOat−チは従来装置の
光電変換効率である。即ち、窒素含有毎が少ないときは
熱劣化率が大きく、窒素含有毎が多くなると熱劣化率は
殆んどゼロに近づくものの初期値が低いためC:、窒素
含有量(二して20at、%を越えると従来装置の光1
!変換効率を下回った。従って、熱劣化後の光電変換効
率(=於いて従来装置を上回ったのは窒素含有量がia
t・96〜2Qat、%の範囲であった。
By containing dinitrogen in the n-type layer (5n) in this way, diffusion of constituent elements of the back electrode (4) at high temperatures is prevented, and it is effective against thermal deterioration of photoelectric conversion efficiency. There was found. However, while nitrogen inclusion in the n-type layer (5n) is effective against thermal deterioration, if it is included in a large amount, the series resistance component increases and the non-doped layer (51)
This results in a decrease in the photoelectric conversion efficiency at the initial stage of t2. In other words, in order to prevent thermal deterioration (: Even if a large amount of nitrogen is contained, it cannot be helped if the initial value of the photoelectric conversion efficiency is low. Figure 5 shows the relationship between nitrogen content and 150℃
Light 1 after 10 hours! The relationship with conversion efficiency was investigated using two methods. Nitrogen-containing 1LOat-chi is the photoelectric conversion efficiency of the conventional device. That is, when the nitrogen content is small, the thermal deterioration rate is large, and when the nitrogen content is large, the thermal deterioration rate approaches zero, but the initial value is low. When the light exceeds 1, the light of the conventional device
! The conversion efficiency was below. Therefore, the reason why the photoelectric conversion efficiency after thermal deterioration (=) exceeded that of the conventional device was because the nitrogen content was ia
It was in the range of t·96 to 2Qat,%.

第4図Ta1−44図[(1)はn型層(3Kl)内C
二於ける窒素の分布を示したものである。即ち1本発明
装置に於ける窒素の分布はn型層(3n)の厚み全体に
亘って均一である必要はなく、第4図(alのようにノ
ンドープM(31)との界面をB i / nとしたと
き、該B i / nがゼロで背面電極(4) C向っ
て漸次高く背面電極(4)との界面E n / mで最
高となっても良いし、また第4図(triのように膜の
途中まで窒素を含まず背面電極(4)側にのみ窒素を含
んでも艮い。更C二、第4図[Ql及び第4図((1)
の如く。
Figure 4 Ta1-44 [(1) is C in the n-type layer (3Kl)
This figure shows the distribution of nitrogen in two locations. That is, the nitrogen distribution in the device of the present invention does not need to be uniform over the entire thickness of the n-type layer (3n), and the interface with the non-doped M (31) as shown in FIG. /n, the B i /n may be zero and gradually increase toward the back electrode (4) C, reaching the maximum at the interface E n /m with the back electrode (4), or as shown in FIG. It is acceptable even if the film does not contain nitrogen halfway through the film and contains nitrogen only on the back electrode (4) side like tri.
Like.

膜中心が高濃度となるべく、ガウス分布したり。It has a Gaussian distribution so that the concentration is high in the center of the membrane.

矩形分布したりしても良い。ただ、何れの窒素分布であ
っても、n型層(3n)全体C二含まれる窒素の含有率
が平均1匹℃、チ〜2Qat、% となるようC:設定
されている。
It may be distributed in a rectangular manner. However, regardless of the nitrogen distribution, C: is set so that the content of nitrogen contained in the entire n-type layer (3n) is 1° C., 2 Qat, % on average.

以上の説明では、半導体膜(3)は一つの半導体接合を
備えていたが、複数の半導体接合を備えた所謂タンデム
構造(:も本発明は適用できる。その場合、最終段の半
導体接合(=於ける背面電極と接する側の不純物層とし
て、窒素の平均含有率1at・チ〜2Qat、%のn型
非晶質シリコンナイトライドを用いれば良い。
In the above explanation, the semiconductor film (3) was equipped with one semiconductor junction, but the present invention can also be applied to a so-called tandem structure (:) equipped with a plurality of semiconductor junctions. In that case, the semiconductor film (3) in the final stage (= As the impurity layer on the side in contact with the back electrode, n-type amorphous silicon nitride with an average nitrogen content of 1 at.chi to 2 Qat.% may be used.

尚、背面電極と接する側の不純物層としてn型の非晶質
シリコンナイトクィドを用いる構造自体は特開昭57−
136377号公報(:開示されているものの、斯る公
開公報は非晶質シリコンナイトライドがワイドバンドギ
ャップ材料であることに着目して、窓層、即ち受光面電
極と接する(jlQの不純物層として用いることを目旧
としたちのであり、本発明のように熱劣化(二対する有
効性(二ついては何の記載もなく、また示唆も与え台な
い。更に、背面側不純物層として用いたときの窒素の含
有率については何らぎ及されておらず、従って本発明と
全く別異なものである。
The structure itself, which uses n-type amorphous silicon nightquid as the impurity layer on the side in contact with the back electrode, is described in Japanese Patent Application Laid-Open No. 57-1999.
No. 136377 (:Although disclosed, this publication focuses on the fact that amorphous silicon nitride is a wide bandgap material, and uses it as an impurity layer of jlQ in contact with the window layer, that is, the light-receiving surface electrode. However, as in the present invention, there is no mention or suggestion of effectiveness against thermal deterioration (two). There is no mention of the content of , which is therefore completely different from the present invention.

(ト)発明の効果 本発明光起電力装置は以上の説明から明らかな如く、窒
素の平均含有率が1 at、%〜2Qat−チのn型層
を背面電極と接する側の不純物層として用いることによ
って、斯るn型層は背面電極構成元素の高温状態C二於
ける拡散を阻止するので、背面電極構成元素の拡散を主
たる要因とする光電変換効率の熱劣化合抑圧することが
できる。
(G) Effects of the Invention As is clear from the above description, the photovoltaic device of the present invention uses an n-type layer with an average nitrogen content of 1 at.% to 2 Qat. as an impurity layer on the side in contact with the back electrode. As a result, such an n-type layer prevents diffusion of elements constituting the back electrode in the high-temperature state C2, thereby suppressing thermal deterioration of photoelectric conversion efficiency mainly caused by diffusion of elements constituting the back electrode.

【図面の簡単な説明】[Brief explanation of the drawing]

第1因は本発明光起電力装置の一実施例を示す模式的断
面図、!J2図は本発明装置と従来装置C:於ける光電
変換効率の熱劣化5二よる経時変化を示す曲線図、第6
図は熱劣化後の光電変換効率と窒素含有率との関係を示
す曲線図、第41N[al乃至第4図(alは各々n型
層中に於ける窒素濃度分布図。 である。 (2)・・・受光面電極、(3)・・・半導体膜、(5
n)・・・n型層、(4)・・・背面電極。
The first reason is a schematic sectional view showing an embodiment of the photovoltaic device of the present invention! Figure J2 is a curve diagram showing the temporal change in photoelectric conversion efficiency due to thermal deterioration 52 in the device of the present invention and the conventional device C:
The figures are curve diagrams showing the relationship between photoelectric conversion efficiency and nitrogen content after thermal deterioration, and Figures 41N[al to 4 (al is each nitrogen concentration distribution diagram in the n-type layer. (2) )... Light-receiving surface electrode, (3)... Semiconductor film, (5
n)...n-type layer, (4)...back electrode.

Claims (2)

【特許請求の範囲】[Claims] (1)少なくとも1つの半導体接合を備える半導体膜と
、該半導体膜の光入射側に設けられた受光面電極と、上
記半導体膜の背面側に設けられた背面電極と、からなる
光起電力装置であつて、上記半導体膜は非晶質シリコン
を主体とすると共に、上記背面電極と接する側の不純物
層はその不純物層内に平均含有率1at.%〜20at
.%の窒素を含むn型層であることを特徴とした光起電
力装置。
(1) A photovoltaic device comprising a semiconductor film having at least one semiconductor junction, a light-receiving surface electrode provided on the light incident side of the semiconductor film, and a back electrode provided on the back side of the semiconductor film. The semiconductor film is mainly made of amorphous silicon, and the impurity layer on the side in contact with the back electrode has an average content of 1 at. %~20at
.. A photovoltaic device characterized in that it is an n-type layer containing % of nitrogen.
(2)上記n型層の窒素含有率は背面電極側が高いこと
を特徴とする特許請求の範囲第1項記載の光起電力装置
(2) The photovoltaic device according to claim 1, wherein the nitrogen content of the n-type layer is higher on the back electrode side.
JP61228797A 1986-09-26 1986-09-26 Photovoltaic device Expired - Lifetime JPH07105513B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61228797A JPH07105513B2 (en) 1986-09-26 1986-09-26 Photovoltaic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61228797A JPH07105513B2 (en) 1986-09-26 1986-09-26 Photovoltaic device

Publications (2)

Publication Number Publication Date
JPS6384074A true JPS6384074A (en) 1988-04-14
JPH07105513B2 JPH07105513B2 (en) 1995-11-13

Family

ID=16882004

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61228797A Expired - Lifetime JPH07105513B2 (en) 1986-09-26 1986-09-26 Photovoltaic device

Country Status (1)

Country Link
JP (1) JPH07105513B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003017724A (en) * 2001-06-29 2003-01-17 Canon Inc Photovoltaic element
JP2009065217A (en) * 2008-12-22 2009-03-26 Sharp Corp Photoelectric conversion device and manufacturing method thereof
JP2009076939A (en) * 2008-12-22 2009-04-09 Sharp Corp Photoelectric conversion device and its manufacturing method
WO2009081713A1 (en) * 2007-12-26 2009-07-02 Mitsubishi Heavy Industries, Ltd. Photoelectric converting device and process for producing the photoelectric converting device
WO2010067704A1 (en) * 2008-12-09 2010-06-17 三洋電機株式会社 Photovoltaic device and method for manufacturing same
JP2010225735A (en) * 2009-03-23 2010-10-07 Mitsubishi Electric Corp Photosensor and method of manufacturing the same
US7915520B2 (en) 2004-03-24 2011-03-29 Sharp Kabushiki Kaisha Photoelectric conversion device and manufacturing method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57136377A (en) * 1981-02-17 1982-08-23 Kanegafuchi Chem Ind Co Ltd Amorphous silicon nitride/amorphous silicon heterojunction photoelectric element

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57136377A (en) * 1981-02-17 1982-08-23 Kanegafuchi Chem Ind Co Ltd Amorphous silicon nitride/amorphous silicon heterojunction photoelectric element

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003017724A (en) * 2001-06-29 2003-01-17 Canon Inc Photovoltaic element
JP4560245B2 (en) * 2001-06-29 2010-10-13 キヤノン株式会社 Photovoltaic element
US7915520B2 (en) 2004-03-24 2011-03-29 Sharp Kabushiki Kaisha Photoelectric conversion device and manufacturing method thereof
WO2009081713A1 (en) * 2007-12-26 2009-07-02 Mitsubishi Heavy Industries, Ltd. Photoelectric converting device and process for producing the photoelectric converting device
JP2009158667A (en) * 2007-12-26 2009-07-16 Mitsubishi Heavy Ind Ltd Photoelectric converter and method of producing the same
WO2010067704A1 (en) * 2008-12-09 2010-06-17 三洋電機株式会社 Photovoltaic device and method for manufacturing same
JP2010140935A (en) * 2008-12-09 2010-06-24 Sanyo Electric Co Ltd Photoelectromotive force device, and method of manufacturing the same
JP2009065217A (en) * 2008-12-22 2009-03-26 Sharp Corp Photoelectric conversion device and manufacturing method thereof
JP2009076939A (en) * 2008-12-22 2009-04-09 Sharp Corp Photoelectric conversion device and its manufacturing method
JP2010225735A (en) * 2009-03-23 2010-10-07 Mitsubishi Electric Corp Photosensor and method of manufacturing the same

Also Published As

Publication number Publication date
JPH07105513B2 (en) 1995-11-13

Similar Documents

Publication Publication Date Title
US4900369A (en) Solar cell
AU700200B2 (en) Multilayer solar cells with bypass diode protection
JP2740284B2 (en) Photovoltaic element
EP1724840B1 (en) Photoelectric cell
US4781765A (en) Photovoltaic device
JPH02216874A (en) Silicon crystalline solar cell
JPH0795603B2 (en) Photovoltaic device
JPS6384074A (en) Photovoltaic device
US7352044B2 (en) Photoelectric transducer, photoelectric transducer apparatus, and iron silicide film
JP6334871B2 (en) Solar cell module
JP2614561B2 (en) Photovoltaic element
JP2661676B2 (en) Solar cell
JP4243046B2 (en) Photovoltaic element
JP2015119008A (en) Solar battery module and method for manufacturing the same
JPS6252975A (en) Amorphous solar battery
JPH11274527A (en) Photovoltaic device
JP2669834B2 (en) Stacked photovoltaic device
JPS62209871A (en) Manufacture of photovoltaic device
JPH073876B2 (en) Photovoltaic device
JP2958491B2 (en) Method for manufacturing photoelectric conversion device
JPS63318166A (en) Photovoltaic device
JPH046880A (en) Amorphous silicon carbide film, formation thereof and photovoltaic device using same
JP2012138556A (en) Multi-junction solar cell
JPH0559590B2 (en)
JPH04355971A (en) Laminated type photovoltaic device

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term