JPS6383242A - Arc-resistant conductive material - Google Patents

Arc-resistant conductive material

Info

Publication number
JPS6383242A
JPS6383242A JP61224999A JP22499986A JPS6383242A JP S6383242 A JPS6383242 A JP S6383242A JP 61224999 A JP61224999 A JP 61224999A JP 22499986 A JP22499986 A JP 22499986A JP S6383242 A JPS6383242 A JP S6383242A
Authority
JP
Japan
Prior art keywords
rare earth
arc
conductive material
resistant conductive
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61224999A
Other languages
Japanese (ja)
Other versions
JP2511660B2 (en
Inventor
Takao Sasaki
佐々木 卓男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nok Corp
Original Assignee
Nok Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nok Corp filed Critical Nok Corp
Priority to JP61224999A priority Critical patent/JP2511660B2/en
Publication of JPS6383242A publication Critical patent/JPS6383242A/en
Application granted granted Critical
Publication of JP2511660B2 publication Critical patent/JP2511660B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H1/00Contacts
    • H01H1/02Contacts characterised by the material thereof
    • H01H1/021Composite material
    • H01H1/023Composite material having a noble metal as the basic material

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Contacts (AREA)

Abstract

PURPOSE:To improve consumption resistance, low contact resistance, electrical conductivity, and machinability, by adding specific amounts of rare earth elements of oxides of rare earth elements to an arc-resistant conductive material composed of W-base or WC-base alloy. CONSTITUTION:In the arc-resistant conductive material composed of W- or WC-base alloy, 0.1-10wt%, of rare earth elements and/or oxides of rare earth elements are incorporated so as to improve various characteristics of the above material and to enable the prolongation of the service lives of electric contacts, electrodes for electric discharge machining, etc. It is preferable that one or more elements among Y, La, and Ce and one or more kinds among the oxides of the above elements are used as the above rare earth elements and the oxides of them, respectively. It is also preferable to use Ag-WC alloys containing 30-70% Ag as the above WC-base alloy and, as the W-base alloy, it is preferable to use Ag-W alloys containing 20-60% Ag and further Cu-W alloys containing 20-60% Cu can also be used. Moreover, it is preferable that wettability to Ag is improved by incorporating <=2% of iron group elements and/or Cu to the above arc-resistant conductive material.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、電気接点あるいは放電加工電極等に使用され
る耐アーク性導電材料に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an arc-resistant conductive material used for electrical contacts, electrical discharge machining electrodes, and the like.

〈従来の技術) 従来、電気接点あるいは放電加工用電極に使用される耐
アーク性導電材料として、各種W基又はWC基合金が知
られており、特にkg−WC,Ag−W、Cu−W系焼
結合金は好ましいものである。
<Prior art> Various W-based or WC-based alloys have been known as arc-resistant conductive materials used for electrical contacts or electrodes for electrical discharge machining, especially kg-WC, Ag-W, Cu-W. Sintered alloys are preferred.

これら合金において、Ag;Cuは導電性、熱伝導性に
富み、W、WCは高硬度、高融点のものであって、これ
らを組み合わせることにより、耐熱性、導電性が良好で
、消耗が少なく、接触抵抗が低くかつ耐溶着性が良い材
料となるのである。
In these alloys, Ag; Cu has high electrical conductivity and thermal conductivity, and W and WC have high hardness and high melting points. By combining these, they have good heat resistance and conductivity, and have low wear and tear. This results in a material with low contact resistance and good welding resistance.

また、これら合金において、AHとCuとを比較すると
、AHは酸素に対する親和力が小さいことと、Ag酸化
物は非常に不安定で分解し易いことのため、Ag含有W
基焼結合金は気中で使用される電気接点、放電加工用電
極として好適である。
In addition, when comparing AH and Cu in these alloys, AH has a small affinity for oxygen, and Ag oxide is very unstable and easily decomposed, so Ag-containing W
The base sintered alloy is suitable for electrical contacts used in air and electrodes for electrical discharge machining.

Agに比較して、Cuは酸素に対する親和力が大きいた
め気中での使用には好ましくはないが、融点が高く、安
価であるため、Cu含有W基焼結合金は酸化の問題が無
いS F sガス開閉器用接点として現在多用されてい
る。
Compared to Ag, Cu has a greater affinity for oxygen, so it is not preferable to use in air, but since it has a high melting point and is inexpensive, Cu-containing W-based sintered alloys have no oxidation problems. It is currently widely used as a contact for gas switches.

WとWCとの比較では、WCは耐食性に富む安定なもの
で酸化速度が小さく、したがってアークが生じても接触
抵抗の増加が少ない。さらにWCは融点が高く、蒸気圧
が低く、消耗が少ない。
Comparing W and WC, WC is stable with high corrosion resistance and has a low oxidation rate, so even if arcing occurs, the contact resistance increases little. Furthermore, WC has a high melting point, low vapor pressure, and low consumption.

これらの理由から、WC使用のものの方が接点材料とし
て優れているが、高硬度であることがらその機械加工性
が悪く、放電加工用電極としては好ましくない。
For these reasons, WC is better as a contact material, but its high hardness results in poor machinability, making it undesirable as an electrode for electrical discharge machining.

(発明が解決しようとする問題点) 上記のごとく、W基又はWC基合金は耐アーク性導電材
料としては好ましいものであるが、従来のものは未だ充
分に満足し得るものでない。
(Problems to be Solved by the Invention) As described above, W-based or WC-based alloys are preferable as arc-resistant conductive materials, but conventional materials are still not fully satisfactory.

すなわち、耐アーク性の点についていえば、本来この種
の材料はアーク放電によって消耗変形することはやむを
得ないところであるが、導電性がより優れ、消耗がより
少なく、使用寿命がより長い優良な材料の提供が要望さ
れている。
In other words, in terms of arc resistance, it is unavoidable that this type of material is subject to wear and deformation due to arc discharge, but it is a superior material with better conductivity, less wear and tear, and a longer service life. is requested to be provided.

放電加工用電極では、加工時間を短縮し、電極の長寿命
化を図るため、加工速度が大きく電極消耗比の小さい材
料の開発が要望されていた。
For electrical discharge machining electrodes, in order to shorten machining time and extend the life of the electrode, there has been a demand for the development of a material that has a high machining speed and a low electrode wear ratio.

(問題点を解決するための手段) 本発明は上記に鑑みなされたもので、耐アーク消耗性を
向上させた接触抵抗の少ない導電性に優れた、電気接点
あるいは放電加工用電極に好適に′使用される合金材料
を提供するものである。
(Means for Solving the Problems) The present invention has been made in view of the above, and is suitable for electrical contacts or electrodes for electric discharge machining, which have improved arc wear resistance, low contact resistance, and excellent conductivity. It provides the alloy material used.

すなわち本発明は、W基又はWC基合金からなる耐アー
ク性導電材料において、希土類元素及び/又は希土類元
素酸化物を0.1〜10重量%含有していることを特徴
とする耐アーク性導電材料である。
That is, the present invention provides an arc-resistant conductive material made of a W base or a WC base alloy, which contains 0.1 to 10% by weight of a rare earth element and/or a rare earth element oxide. It is the material.

ここで希土類元素は、Y、La、Ceのうちから選ばれ
た1種又は2種以上であることが好ましく、また希土類
元素酸化物は、Y、La、Ceの酸化物のうちから選ば
れた1種又は2種以上であることが好ましい。
Here, the rare earth element is preferably one or more selected from Y, La, and Ce, and the rare earth element oxide is preferably selected from oxides of Y, La, and Ce. It is preferable that one kind or two or more kinds are used.

この場合、添加含有量が0.1重量%よりも少ないと、
添加効果が現れず、10重量%を越えると焼結性を阻害
し、製品材料中に巣が発生し、機械的性質、耐アーク消
耗性が共に劣化する。
In this case, if the added content is less than 0.1% by weight,
If the addition effect does not appear, and the amount exceeds 10% by weight, sinterability is inhibited, cavities are generated in the product material, and both mechanical properties and arc wear resistance are deteriorated.

W基合金はこの種導電材料として常用のものが使用され
、その−例はAg−Wで、Ag含量が20〜60重量%
であり、他側はCu−Wで、Cu含量が20〜60重量
%のものである。
W-based alloys are commonly used as this type of conductive material, an example of which is Ag-W, with an Ag content of 20 to 60% by weight.
The other side is Cu-W with a Cu content of 20 to 60% by weight.

またWC基合金の例は、Ag−W(:で、Ag含量が3
0〜70重量%である。
An example of a WC-based alloy is Ag-W (:, with an Ag content of 3
It is 0 to 70% by weight.

この場合、AgあるいはCu含量は、本発明耐アーク性
導電材料が使用される機器(電気容量)にしたがって決
定される。すなわち、中電流用には含量の多い範囲を、
また大電流用には含量の少ない範囲の量を採用する。
In this case, the Ag or Cu content is determined according to the equipment (capacity) in which the arc-resistant conductive material of the present invention is used. In other words, for medium current use, select a high content range.
In addition, for large current applications, a smaller amount is used.

AgあるいはCu含量の数値範囲については、その上限
値を越えると、合金の耐熱性が充分でなく、硬度が低下
し耐溶着性、耐アーク消耗性が劣るようになる。また、
下限値より少ないと、合金の導電性が低下し、好ましく
ない。
Regarding the numerical range of the Ag or Cu content, if the upper limit is exceeded, the alloy will not have sufficient heat resistance, the hardness will decrease, and the welding resistance and arc wear resistance will deteriorate. Also,
When it is less than the lower limit, the conductivity of the alloy decreases, which is not preferable.

さらに、本発明のW基又はWC基合金からなる耐アーク
性導電材料は、鉄族元素及び/又はCuを2重量%以下
含有していることが好ましい。
Further, the arc-resistant conductive material made of the W-based or WC-based alloy of the present invention preferably contains 2% by weight or less of iron group elements and/or Cu.

(実施例) 以下に本発明を、いくつかの実施例によって具体的に説
明する。
(Examples) The present invention will be specifically explained below using some examples.

実施例1: 本例は、A g−W C系のものについての実施例であ
る。
Example 1: This example concerns an A g-W C type product.

Ag−WC合金中に、少なくとも1種以上の希土類元素
又は希土類元素酸化物を0.1〜10重量%含有せしめ
ることによって、特に耐アーク性を効果的に改善できた
By containing 0.1 to 10% by weight of at least one rare earth element or rare earth element oxide in the Ag-WC alloy, arc resistance in particular could be effectively improved.

添加により含有せしめることが可能な希土類元素として
は、Y 、La、Ce、Pr、Nd、Pm、Sm、IF
、u。
Rare earth elements that can be added include Y, La, Ce, Pr, Nd, Pm, Sm, IF
, u.

G d 、 T b 、 D y 、 Ho 、 E 
r 、 T m 、 Y b 、 L u等があり、本
発明の目的に合致するものであるが、これらの中には入
手の困難性、経済性等による制限を有するものがある。
G d , T b , D y , Ho , E
There are r, Tm, Yb, Lu, etc., which meet the purpose of the present invention, but some of these have limitations due to difficulty in obtaining them, economic efficiency, etc.

したがって、取り扱いが容易で、一定品位のものが比較
的安価に入手できるという点から、Y。
Therefore, Y is easy to handle and can be obtained at a relatively low price with a certain quality.

La及びCeが有利に選択使用できる。La and Ce can be advantageously selectively used.

希土類元素酸化物としては、前記理由と同じくしてY、
La、Ceの酸化物(Y2O2、La2O3、Ce20
3)が有利に選択使用される。
As the rare earth element oxide, for the same reason as above, Y,
Oxides of La, Ce (Y2O2, La2O3, Ce20
3) is advantageously used selectively.

A g −W C合金は、粉末冶金的手法によって製造
されるが、一般にAg30〜70重量%、WC70〜3
0重量%からなる組成のものが使用されている。
A g -W C alloy is manufactured by powder metallurgy, and generally contains 30-70% by weight of Ag and 70-3% of WC.
A composition consisting of 0% by weight is used.

本発明実施例では、この中に更に希土類元素又は希土類
元素酸化物を0.1〜10重量%含有せしめるものであ
るが、希土類元素又はその酸化物は1種でもあるいは2
〜3種同時に添加含有させてもよい。
In the embodiment of the present invention, 0.1 to 10% by weight of a rare earth element or a rare earth element oxide is further contained in this.
~3 types may be added and contained at the same time.

ところで、WC及び希土類元素酸化物はAgと濡れが悪
く、そのため巣を形成し易いものである。
By the way, WC and rare earth element oxides have poor wettability with Ag, and therefore easily form cavities.

この濡れ性を向上させるためには、これに鉄族元素(F
 e、N i、Co)及び/又は銅を添加すると良く、
その結果、巣の無い良質なWC基合金からなる耐アーク
性が得られるのである。
In order to improve this wettability, iron group elements (F
It is good to add e, Ni, Co) and/or copper,
As a result, the arc resistance of a high-quality WC-based alloy without cavities can be obtained.

この場合、鉄族元素又は銅の添加含有量は、2重量%以
下が好ましく、2重量%を越えると、製品材料の導電性
を許容できない程に低下せしめる弊害が生じる。
In this case, the added content of the iron group element or copper is preferably 2% by weight or less, and if it exceeds 2% by weight, there will be a problem that the conductivity of the product material will be reduced to an unacceptable level.

次ぎに具体的な試験結果について説明をする。Next, we will explain the specific test results.

最終組成が、第1表となるように各原料を配合し、湿式
振動ボールミルにて充分混合した。
Each raw material was blended so that the final composition would be as shown in Table 1, and thoroughly mixed in a wet vibrating ball mill.

各原料粉末は、平均粒径数ミクロンの微粉末を用いた。Each raw material powder used was a fine powder with an average particle size of several microns.

   □ この混合物を型枠に入れ、成形圧3 ton/ cm2
で加圧して成形体を得た後、その成形体を水素雰囲気中
で1250℃で2時間加熱して、焼結体を作成した。
□ Put this mixture into a mold and molding pressure 3 ton/cm2
After pressing to obtain a molded body, the molded body was heated at 1250° C. for 2 hours in a hydrogen atmosphere to create a sintered body.

この焼結体から、16X16X4mmの試験片を切り出
し、これをタフピッチ銅の台金上に銀ろう付けして、電
気接点開閉試験を行った。
A test piece of 16 x 16 x 4 mm was cut out from this sintered body, silver-brazed onto a tough pitch copper base metal, and an electrical contact opening/closing test was performed.

試験条件は下記のとおりであり、その結果は第2表に示
すとおりであった。
The test conditions were as follows, and the results were as shown in Table 2.

= 上記試験片を電磁開閉器を用い、下記条件で試験した。= The above test piece was tested under the following conditions using an electromagnetic switch.

(条件) 電 圧、  AC220V 電  流:   480A 力  率:O,,35 接触圧力+3kg 開閉頻度+1200回/時 開閉回数:50 、OOO同 第   2   表 *消耗量:試験前後の白金を含めた接点の重量を測定し
、その差を接点の消耗量とした。
(Conditions) Voltage, AC220V Current: 480A Power factor: O, 35 Contact pressure + 3kg Opening/closing frequency + 1200 times/hour Number of openings/closing: 50, OOO Table 2 *Consumption amount: Contacts including platinum before and after the test The weight was measured and the difference was taken as the amount of contact wear.

固定側接点3個、可動側接点3個のトータル消耗量で示
す。
It is shown as the total amount of wear of 3 fixed side contacts and 3 movable side contacts.

*接触抵抗:固定側、可動側両接点を接触圧力3kgで
閉じた後、30Aの電流を通電させ、両接点間の電圧降
下を測定し、求めた。
*Contact resistance: After closing both fixed side and movable side contacts with a contact pressure of 3 kg, a current of 30 A was applied, and the voltage drop between both contacts was measured and determined.

接触抵抗は3相の平均値で示す。Contact resistance is shown as an average value of three phases.

第2表の結果から明らかなように、従来の比較材に比べ
て、希土類元素又はその酸化物を含有させた本発明実施
例材は、いずれの場合でも消耗量がかなり少ない。特に
希土類酸化物を含有せしめたものは消耗量が大巾に低下
している。
As is clear from the results in Table 2, compared to the conventional comparative materials, the inventive example materials containing rare earth elements or their oxides had considerably less wear in all cases. In particular, those containing rare earth oxides have significantly reduced consumption.

また、接触抵抗についても、本発明実施例材は比較材に
比べて、低い、数値を示し、多数回開閉時の導電性に優
れていることが判る。
Furthermore, regarding contact resistance, the materials of the examples of the present invention showed lower numerical values than the comparative materials, and it can be seen that they have excellent conductivity when opened and closed many times.

実施例2: 本例は、Ag−W系のものについての実施例である。Example 2: This example is an example of an Ag-W type material.

Ag−W合金中に、少なくとも1種以上の希土類元素又
は希土類元素酸化物を0.1〜10重量%含有せしめる
ことによって、電気接点又は放電加工用電極として好適
な耐アーク性導電材料を製造した。
An arc-resistant conductive material suitable as an electrical contact or an electrode for electric discharge machining was manufactured by containing 0.1 to 10% by weight of at least one rare earth element or rare earth element oxide in an Ag-W alloy. .

添加により含有せしめることが可能な、あるいは有利に
選択使用できる希土類元素及び希土類元素酸化物は、実
施例1のものと同様である。
The rare earth elements and rare earth element oxides that can be added or selectively used are the same as those in Example 1.

Ag−W合金は、粉末冶金的手法によって製造されるが
、一般にAg2O〜60重量%、WC80〜40重量%
からなる組成のものが使用されている。
Ag-W alloys are manufactured by powder metallurgy, and generally contain Ag2O ~ 60% by weight and WC 80 ~ 40% by weight.
A composition consisting of is used.

本発明実施例では、この中に更に希土類元素又は希土類
元素酸化物を0.4〜10重量%、好ましくは0.3〜
5重量%含有せしめるものであるが、希土類元素又はそ
の酸化物は1種でもあるいは2〜3種同時に添加含有さ
せてもよい。
In the examples of the present invention, 0.4 to 10% by weight of rare earth elements or rare earth element oxides, preferably 0.3 to 10% by weight,
Although the content is 5% by weight, one kind or two or three kinds of rare earth elements or their oxides may be added and contained at the same time.

この場合、添加含有量が0.1重量%よりも少ないと、
添加効果が現れず、10重量%を越えると焼結性を阻害
し、製品材料中に巣が発生し、機械的性質、耐アーク消
耗性が共に劣化する。
In this case, if the added content is less than 0.1% by weight,
If the addition effect does not appear, and the amount exceeds 10% by weight, sinterability is inhibited, cavities are generated in the product material, and both mechanical properties and arc wear resistance are deteriorated.

ところで、W及び希土類元素酸化物はAgと濡れが悪く
、そのため巣を形成し易いものである。
By the way, W and rare earth element oxides have poor wettability with Ag, and therefore easily form cavities.

この濡れ性を向上させるなめには、これに鉄族元素(F
 e、N i、Co)及び/又は銅を添加すると良く、
その結果、巣の無い良質なW基合金からなる耐アーク性
が得られるのである。
In order to improve this wettability, iron group elements (F
It is good to add e, Ni, Co) and/or copper,
As a result, arc resistance made of a high-quality W-based alloy without cavities can be obtained.

この場合、鉄族元素及び/又は銅の添加含有量は、2重
量%以下が好ましく、2重量%を越えると、製品材料の
導電性を許容できない程に低下せしめる弊害が生じる。
In this case, the added content of iron group elements and/or copper is preferably 2% by weight or less, and if it exceeds 2% by weight, there will be a problem that the conductivity of the product material will be reduced to an unacceptable level.

次ぎに具体的な試験結果について説明をする。Next, we will explain the specific test results.

実施例2の1= Ag、W、希土類元素あるいはその酸化物、及び鉄族元
素、銅を所定量配合し、湿式振動ボールミルにて充分混
合した。なお各原料粉末は、平均粒径数ミクロンの微粉
末を用いた。
1 of Example 2 = Ag, W, rare earth elements or their oxides, iron group elements, and copper were blended in predetermined amounts and thoroughly mixed in a wet vibrating ball mill. Note that each raw material powder used was a fine powder with an average particle size of several microns.

それに更にバインダーを添加混合した後、この混合物を
型枠に入れ、成形圧3 ton/ cm2で加圧して成
形体を得た。次いで、その成形体を700℃でバインダ
ー抜きした後、目的とする第3表の各組成となるように
、銀溶浸材を上置して水素ガス雰囲気中、1250℃で
2時間溶浸を行って合金体を得た。 この合金体から、
16X16X4mmの試験片を切り出し、これをタフピ
ッチ銅の白金上に銀ろう付けして、電気接点開閉試験を
行った。
After further adding and mixing a binder, this mixture was placed in a mold and pressed at a molding pressure of 3 ton/cm2 to obtain a molded body. Next, after removing the binder from the molded body at 700°C, silver infiltration material was placed on top and infiltration was carried out at 1250°C for 2 hours in a hydrogen gas atmosphere so as to achieve the desired compositions shown in Table 3. I went there and got an alloy body. From this alloy body,
A test piece of 16 x 16 x 4 mm was cut out, silver-brazed onto platinum tough pitch copper, and an electrical contact opening/closing test was performed.

試験条件は下記のとおりであり、その結果は第4表に示
すとおりであった。
The test conditions were as follows, and the results were as shown in Table 4.

上記試験片を5F6(6弗化硫黄)ガス封入型電磁開閉
器を用い、下記条件で試験した。
The above test piece was tested under the following conditions using a 5F6 (sulfur hexafluoride) gas-filled electromagnetic switch.

(条件) 電 圧:  AC220V 電  流:   480A 力  率:0.35 接触圧カニ3kg 開閉頻度:1200回/時 開閉回数+50,000回 雰囲気ガス=6弗化硫黄(S F s)ガスガス封入圧
カニ 1 、5 kg/ cn+2(ゲージ圧)第  
 4   表 *消耗量:試験前後の台金を含めた接点の重量を測定し
、その差を接点の消耗量とした。
(Conditions) Voltage: AC220V Current: 480A Power factor: 0.35 Contact pressure crab 3kg Opening/closing frequency: 1200 times/hour Number of openings and closings + 50,000 times Atmosphere gas = 6 sulfur fluoride (SFs) gas Gas-filled pressure crab 1.5 kg/cn+2 (gauge pressure)
4 Table *Amount of wear: The weight of the contact including the base metal before and after the test was measured, and the difference was taken as the amount of wear of the contact.

固定側接点3個、可動側接点3個のトータル消耗量で示
す。
It is shown as the total amount of wear of 3 fixed side contacts and 3 movable side contacts.

*接触抵抗:固定側、可動側両接点をSF、ガス封入中
、接触圧力3kgで閉じた後、30Aの電流を通電させ
、両接点間の電圧降下を測定し、求めた。接触抵抗は3
相の平均値で示す。
*Contact resistance: After closing both fixed side and movable side contacts with SF and gas filling at a contact pressure of 3 kg, a current of 30 A was applied, and the voltage drop between both contacts was measured and determined. Contact resistance is 3
Shown as the average value of the phases.

第4表の結果から明らかなように、従来の比較材に比べ
て、希土類元素又はその酸化物を含有させた本発明実施
例材は、いずれの場合でも消耗量がかなり少ない。特に
希土類酸化物を含有せしめたものは消耗量が大巾に低下
している。
As is clear from the results in Table 4, compared to the conventional comparative materials, the inventive example materials containing rare earth elements or their oxides had considerably less wear in all cases. In particular, those containing rare earth oxides have significantly reduced consumption.

また、接触抵抗についても、本発明実施例材は比較材に
比べて、低い数値を示し、多数回開閉時の導電性に優れ
ていることが判る。
Furthermore, regarding the contact resistance, the materials of the examples of the present invention showed lower values than the comparative materials, indicating that they have excellent conductivity when opened and closed many times.

実施例2の2: Ag、W、イツトリウムの酸化物(Y2O2)、及びニ
ッケル粉末を用い、実施例2の1と同様にして、第5表
の組成となる合金体を作成した。
Example 2-2: An alloy body having the composition shown in Table 5 was prepared in the same manner as in Example 2-1 using Ag, W, yttrium oxide (Y2O2), and nickel powder.

この合金体のほぼ中央部から、直径11mm、高さ91
の円柱状の試験片を切り出し、これを直径8II1m、
高さ60mn+の円柱状黄銅製シャンクの上面に銀ろう
付けして放電加工用電極とした。そして、被加工物(工
作物)に超硬合金G2枚く厚さ10mm、下孔径2 m
m)を用いて、放電加工試験を行った。
From approximately the center of this alloy body, the diameter is 11 mm and the height is 91 mm.
Cut out a cylindrical test piece with a diameter of 8II1m,
An electrode for electric discharge machining was prepared by soldering silver to the upper surface of a cylindrical brass shank having a height of 60 mm+. Then, put two sheets of cemented carbide G on the workpiece (workpiece) with a thickness of 10 mm and a pilot hole diameter of 2 m.
An electric discharge machining test was conducted using m).

用いた放電加工機及び放電加工条件を下記に示し、その
結果は第6表に示す。
The electric discharge machine and electric discharge machining conditions used are shown below, and the results are shown in Table 6.

、LL乳二1 本体:ジャバックスDH−150A 電源:UF105C 放」L孤ユJ」伴− 加工セット:CuW−WC(MWS)、RI (MC3
)MA切換器=3.ジャンプなし 加工電圧:5〜28■(中心値) 液圧:噴流0 、2〜0 、25kg/c+s2(ゲー
ジ圧)セレクター:未使用 極性:電極(−)、工作物(十) 加圧液;ダフニーH135 放電加工時間=30分00秒 ただし、(1)加工速度は、 加  工  時  間 (2)重量消耗比は、 (3)端面消耗比は、 第6表の結果から明らかなように、従来の比較材に比べ
て、希土類元素又はその酸化物を含有させた本発明実施
例の放電加工用電極材は、電極の消耗量が大巾に減少し
、加工速度がかなり向上している。特に耐消耗性が向上
したことは、放電加工用電極の長寿命化を達成すること
となり、工業的価値が高い。
, LL Milk 2 1 Main body: Jabax DH-150A Power supply: UF105C ``L Koyu J'' processing set: CuW-WC (MWS), RI (MC3
)MA switch=3. Machining voltage without jump: 5~28■ (center value) Liquid pressure: Jet 0, 2~0, 25kg/c+s2 (gauge pressure) Selector: Unused Polarity: Electrode (-), Workpiece (10) Pressurized liquid; Daphne H135 Electric discharge machining time = 30 minutes 00 seconds However, (1) Machining speed is Machining time (2) Weight consumption ratio is (3) End face consumption ratio As is clear from the results in Table 6, Compared to conventional comparative materials, the electrode materials for electrical discharge machining of the examples of the present invention containing rare earth elements or their oxides have a significantly reduced amount of electrode wear and a considerably improved machining speed. In particular, the improvement in wear resistance means that the life of the electrode for electrical discharge machining can be extended, which is of high industrial value.

実施例3; 本例は、Cu −W系のものについての実施例である。Example 3; This example is an example of a Cu-W type material.

Cu−W合金中に、少なくとも1種以上の粘土類元素又
は希土類元素酸化物を0.1〜10重量%含有せしめる
ことによって、特に耐アーク性を効果的に改善できた。
By including 0.1 to 10% by weight of at least one clay element or rare earth element oxide in the Cu-W alloy, arc resistance in particular could be effectively improved.

添加により含有せしめることが可能な、あるいは有利に
選択使用できる希土類元素及び希土類元素酸化物は、実
施例1.のちのと同様である。
The rare earth elements and rare earth element oxides that can be added or selectively used are shown in Example 1. Same as later.

Cu−W合金は、粉末冶金的手法によって製造されるが
、一般にCu2O〜60重量%、W80〜40重量%か
らなる組成のものが使用されている。
Cu-W alloys are manufactured by powder metallurgy, and generally have a composition of 60% by weight of Cu2O and 80-40% by weight of W.

本発明実施例では、この中に更に希土類元素又は希土類
元素酸化物を0.1〜10重量%、好ましくは0.3〜
5重量電食有せしめるものであるが、希土類元素又はそ
の酸化物は1種でもあるいは2〜3種同時に添加含有さ
せてもよい。
In the examples of the present invention, a rare earth element or a rare earth element oxide is further added in an amount of 0.1 to 10% by weight, preferably 0.3 to 10% by weight.
5 weight electrolytic corrosion, one kind or two or three kinds of rare earth elements or their oxides may be added and contained at the same time.

この場合、添加含有量が0.1重量%よりも少ないと、
添加効果が現れず、10重量%を越えると焼結性を阻害
し、製品材料中に巣が発生し、機械的性質、耐アーク消
耗性が共に劣化する。
In this case, if the added content is less than 0.1% by weight,
If the addition effect does not appear, and the amount exceeds 10% by weight, sinterability is inhibited, cavities are generated in the product material, and both mechanical properties and arc wear resistance are deteriorated.

ところで、W及び希土類元素酸化物はCuと濡れが悪く
、そのため巣を形成し易いものである。
By the way, W and rare earth element oxides have poor wettability with Cu, and therefore easily form cavities.

この濡れ性を向上させるなめには、これに鉄族元素(F
 e、N i、Co)を添加すると良く、その結果、巣
の無い良質なW基合金からなる耐アーク性が得られるの
である。
In order to improve this wettability, iron group elements (F
As a result, the arc resistance of a high-quality W-based alloy without cavities can be obtained.

この場合、鉄族元素の添加含有量は、2重量%以下が好
ましく、2重量%を越えると、製品材料の導電性を許容
できない程に低下せしめる弊害が生じる。
In this case, the added content of the iron group element is preferably 2% by weight or less, and if it exceeds 2% by weight, there will be a problem that the conductivity of the product material will be unacceptably lowered.

次ぎに具体的な試験結果について説明をする。Next, we will explain the specific test results.

実施例3の1= Ag、W、希土類元素あるいはその酸化物、及び鉄族元
素を所定量配合し、湿式振動ボールミルにて充分継合し
た。なお各原料粉末は、平均粒径数ミクロンの微粉末を
用いた。
1 of Example 3 = Predetermined amounts of Ag, W, rare earth elements or their oxides, and iron group elements were blended and thoroughly joined using a wet vibrating ball mill. Note that each raw material powder used was a fine powder with an average particle size of several microns.

それに更にバインダーを添加混合した後、この混合物を
型枠に入れ、成形圧3 ton/ 0m2で加圧して成
形体を得た。次いで、その成形体を700℃でバインダ
ー抜きした後、目的とする第7表の各組成となるように
、銀溶浸材を上置して水素ガス雰囲気中、1250℃で
約2時間溶浸を行って合金体を得た。この合金体から、
16X16X4mmの試験片を切り出し、これをタフピ
ッチ銅の台金上に銀ろう付けして、電気接点開閉試験を
行った。
After further adding and mixing a binder, this mixture was placed in a mold and pressurized at a molding pressure of 3 ton/0 m2 to obtain a molded body. Next, after removing the binder from the molded body at 700°C, silver infiltration material was placed on top and infiltrated for about 2 hours at 1250°C in a hydrogen gas atmosphere so that each desired composition in Table 7 was obtained. An alloy body was obtained. From this alloy body,
A test piece of 16 x 16 x 4 mm was cut out, silver-brazed onto a tough pitch copper base metal, and an electrical contact opening/closing test was performed.

試験条件は下記のとおりであり、その結果は第8表に示
すとおりであった。
The test conditions were as follows, and the results were as shown in Table 8.

−−験 上記試験片を5F6(6弗化硫黄)ガス封入型電磁開閉
器を用い、下記条件で試験した。
--Experiment The above test piece was tested under the following conditions using a 5F6 (sulfur hexafluoride) gas-filled electromagnetic switch.

(条件) 電 圧:  AC220V 電  流:   48OA 力  率:0.35 接触圧カニ3kg 開閉頻度:1200回/時 開閉回数:50.000回 雰囲気ガス:六弗化硫黄(S F s)ガスガス封入圧
カニ 1 、5 kg/ cm2(ゲージ圧)策−一一
影−−」1 *消耗量:試験前後の台金を含めた接点の重量を測定し
、その差を接点の消耗量とした。
(Conditions) Voltage: AC220V Current: 48OA Power factor: 0.35 Contact pressure Crab 3kg Opening/closing frequency: 1200 times/hour Opening/closing frequency: 50,000 times Atmosphere gas: Sulfur hexafluoride (SFs) gas Gas filling pressure Crab 1, 5 kg/cm2 (gauge pressure) Measures - 11 Impressions - 1 *Amount of wear: The weight of the contact including the base metal before and after the test was measured, and the difference was taken as the amount of wear of the contact.

固定側接点3個、可動側接点3個のトータル消耗量で示
す。
It is shown as the total amount of wear of 3 fixed side contacts and 3 movable side contacts.

*接触抵抗:固定側、可動側両接点をS F sガス封
入中、接触圧力3kgで閉じた後、30Aの電流を通電
させ、両接点間の電圧降下を測定し、求めた。接触抵抗
は3相の平均値で示す。
*Contact resistance: After closing both the fixed side and movable side contacts at a contact pressure of 3 kg while SF gas was being filled, a current of 30 A was applied, and the voltage drop between both contacts was measured. Contact resistance is shown as an average value of three phases.

第8表の結果から明らかなように、従来の比較材1こ比
べて、希土類元素又はその酸化物を含有させた本発明実
施例材は、いずれの場合でも消耗量がかなり少ない。特
に希土類酸化物を含有せしめたものは消耗量が大巾に低
下している。
As is clear from the results in Table 8, compared to the conventional comparative material, the material of the present invention containing a rare earth element or its oxide exhibits considerably less wear in all cases. In particular, those containing rare earth oxides have significantly reduced consumption.

また、接触抵抗についても、本発明実施例材は比較材に
比べて、低い数値を示し、多数回開閉時の導電性に優れ
ていることが判る。
Furthermore, regarding the contact resistance, the materials of the examples of the present invention showed lower values than the comparative materials, indicating that they have excellent conductivity when opened and closed many times.

実施例3の2: Cu、W、イツトリウムの酸化物(Y2O2)、及びニ
ッケル粉末を用いて実施例3の1の場合と同様にして、
最終組成が第9表組成となる、合金体を得た。 この合
金体のほぼ中央部から、直径11■、高さ91の円柱状
の試験片を切り出し、これを直径8ml1l、高さ60
Iの円柱状黄銅製シャンクの上面に銀ろう付けして放電
加工用電極とした。
Example 3-2: In the same manner as in Example 3-1 using Cu, W, yttrium oxide (Y2O2), and nickel powder,
An alloy body having a final composition as shown in Table 9 was obtained. A cylindrical test piece with a diameter of 11 cm and a height of 9 cm was cut out from approximately the center of this alloy body, and this was
The upper surface of the cylindrical brass shank of I was soldered with silver to form an electrode for electric discharge machining.

そして被加工物(工作物)に超硬合金02枚(厚さ10
mm、下孔径2 mm)を用いて、放電加工試験を行っ
た。用いた放電加工機及び放電加工条件は次のとおりで
あり、その結果は第10表に示すとおりであった。
Then, the workpiece (workpiece) is 02 pieces of cemented carbide (thickness 10
An electric discharge machining test was conducted using a diameter of 2 mm and a prepared hole diameter of 2 mm. The electric discharge machine and electric discharge machining conditions used were as follows, and the results were as shown in Table 10.

本体:ジャバックスDH−150A 電源:UF105C 放」L孤ユ〕1許− 加工セット:CuW−WC(MWS)、RI (MC8
)MA切換器二3.ジャンプなし 加工電圧:5〜28■(中心値) 液圧:噴流0.2〜0 、25 kg/ Cm2(ゲー
ジ圧)セレクター二未使用 極性:電極(−)、工作物(→−) 加圧液:ダフニーHL35 放電加工時間:30分OO秒 ただし、(1)加工速度は、 (2)重量消耗比は、 (3)端面消耗比は、 第10表の結果から明らかなように、従来材料であるC
u−W合金中にイツトリウム酸化物(Y2O2)を含有
せしめることにより、放電加工性能が大巾に向上した。
Main body: JAVAX DH-150A Power supply: UF105C [L-Kyu]1 processing set: CuW-WC (MWS), RI (MC8
)MA switch 23. Machining voltage without jump: 5 to 28 ■ (center value) Fluid pressure: Jet flow 0.2 to 0, 25 kg/ Cm2 (gauge pressure) Selector 2 unused polarity: Electrode (-), workpiece (→-) Pressure Fluid: Daphne HL35 Electrical discharge machining time: 30 minutes OO seconds However, (1) machining speed, (2) weight consumption ratio, (3) end face consumption ratio are as follows.As is clear from the results in Table 10, conventional materials is C
By incorporating yttrium oxide (Y2O2) into the u-W alloy, the electrical discharge machining performance was greatly improved.

特に電極消耗比は、従来のCu−27= −W合金に比較すると1/3以下となった。In particular, the electrode consumption ratio of conventional Cu-27= -It was less than 1/3 compared to W alloy.

以上のごとく、Cu−W合金に希土類元素あるいはその
酸化物を含有せしめた本発明材料は、従来材に比較し、
電気接点では多数回開閉時の消耗量を大巾に減じ、かつ
接触抵抗も低く導電性に優れており、また放電加工用電
極においては、電極の消耗を大巾に減じ、加工速度を向
上させることができた。特に、耐消耗性を向上させるこ
とは、電気接点、放電加工用電極の長寿命化を図ること
になり、工業的価値は高い。
As described above, the material of the present invention, which contains a rare earth element or its oxide in a Cu-W alloy, has the following characteristics compared to conventional materials:
For electrical contacts, it greatly reduces the amount of wear and tear when opening and closing multiple times, and has low contact resistance and excellent conductivity.For electrical discharge machining electrodes, it also greatly reduces the amount of wear and tear on the electrodes and increases machining speed. I was able to do that. In particular, improving wear resistance will extend the life of electrical contacts and electrodes for electrical discharge machining, and has high industrial value.

〈発明の効果) 以上詳細に説明したとおり、本発明はW基又はWC基合
金からなる耐アーク性導電材料において、希土類元素及
び/又は希土類元素酸化物を0.1〜10重量%含有し
ているものであって、従来材に比較し、電気接点では多
数回開閉時の消耗量を大11に減じ、かつ接触抵抗も低
く導電性に優れており、また放電加工用電極においては
、電極の消耗を大巾に減じ、加工速度を向上させること
ができる。 特に、耐消耗性の向上により、電気接点、
−28= 放電加工用電極の長寿命化を達成できることとなり、工
業的な価値の高いものである。
<Effects of the Invention> As explained in detail above, the present invention provides an arc-resistant conductive material made of W-based or WC-based alloy containing 0.1 to 10% by weight of rare earth elements and/or rare earth element oxides. Compared to conventional materials, the amount of wear when opening and closing electrical contacts many times is reduced by a factor of 11, and the contact resistance is low and the conductivity is excellent. It can greatly reduce wear and tear and improve machining speed. In particular, due to improved wear resistance, electrical contacts,
-28= It is possible to achieve a longer lifespan of the electrode for electrical discharge machining, which is of high industrial value.

Claims (8)

【特許請求の範囲】[Claims] (1)W基又はWC基合金からなる耐アーク性導電材料
において、希土類元素及び/又は希土類元素酸化物を0
.1〜10重量%含有していることを特徴とする耐アー
ク性導電材料。
(1) In arc-resistant conductive materials made of W-based or WC-based alloys, rare earth elements and/or rare earth element oxides are
.. An arc-resistant conductive material containing 1 to 10% by weight.
(2)希土類元素が、Y、La、Ceのうちから選ばれ
た1種又は2種以上であることを特徴とする特許請求の
範囲第1項記載の耐アーク性導電材料。
(2) The arc-resistant conductive material according to claim 1, wherein the rare earth element is one or more selected from Y, La, and Ce.
(3)希土類元素酸化物が、Y、La、Ceの酸化物の
うちから選ばれた1種又は2種以上であることを特徴と
する特許請求の範囲第1項記載の耐アーク性導電材料。
(3) The arc-resistant conductive material according to claim 1, wherein the rare earth element oxide is one or more selected from oxides of Y, La, and Ce. .
(4)WC基合金が、Ag−WCであり、Ag含量が3
0〜70重量%であることを特徴とする特許請求の範囲
第1項ないし第3項のいずれかに記載の耐アーク性導電
材料。
(4) The WC-based alloy is Ag-WC, and the Ag content is 3
The arc-resistant conductive material according to any one of claims 1 to 3, characterized in that the content is 0 to 70% by weight.
(5)W基合金が、Ag−Wであり、Ag含量が20〜
60重量%であることを特徴とする特許請求の範囲第1
項ないし第3項のいずれかに記載の耐アーク性導電材料
(5) The W-based alloy is Ag-W, and the Ag content is from 20 to
Claim 1 characterized in that the amount is 60% by weight.
The arc-resistant conductive material according to any one of items 1 to 3.
(6)W基又はWC基合金からなる耐アーク性導電材料
が、鉄族元素及び/又はCuを2重量%以下含有してい
ることを特徴とする特許請求の範囲第4項又は第5項記
載の耐アーク性導電材料。
(6) Claims 4 or 5, characterized in that the arc-resistant conductive material made of W-based or WC-based alloy contains 2% by weight or less of iron group elements and/or Cu. The arc-resistant conductive material described.
(7)W基合金が、Cu−Wであり、Cu含量が20〜
60重量%であることを特徴とする特許請求の範囲第1
項ないし第3項のいずれかに記載の耐アーク性導電材料
(7) The W-based alloy is Cu-W, and the Cu content is from 20 to
Claim 1 characterized in that the amount is 60% by weight.
The arc-resistant conductive material according to any one of items 1 to 3.
(8)W基合金からなる耐アーク性導電材料が、鉄族元
素を2重量%以下含有していることを特徴とする特許請
求の範囲第7項記載の耐アーク性導電材料。
(8) The arc-resistant conductive material according to claim 7, wherein the arc-resistant conductive material made of a W-based alloy contains 2% by weight or less of iron group elements.
JP61224999A 1986-09-25 1986-09-25 Arc resistant conductive material Expired - Lifetime JP2511660B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61224999A JP2511660B2 (en) 1986-09-25 1986-09-25 Arc resistant conductive material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61224999A JP2511660B2 (en) 1986-09-25 1986-09-25 Arc resistant conductive material

Publications (2)

Publication Number Publication Date
JPS6383242A true JPS6383242A (en) 1988-04-13
JP2511660B2 JP2511660B2 (en) 1996-07-03

Family

ID=16822497

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61224999A Expired - Lifetime JP2511660B2 (en) 1986-09-25 1986-09-25 Arc resistant conductive material

Country Status (1)

Country Link
JP (1) JP2511660B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03146636A (en) * 1989-10-30 1991-06-21 Tokyo Tungsten Co Ltd Electrode material for electric discharge machining
WO2009041246A1 (en) * 2007-09-25 2009-04-02 A.L.M.T.Corp. Process for producing contact member, contact member, and switch
DE102010022888A1 (en) * 2010-06-07 2011-12-08 Kennametal Inc. Alloy for a penetrator and method of making a penetrator of such an alloy
CN103325583A (en) * 2012-03-22 2013-09-25 日本钨合金株式会社 Electric contact material, method for manufacturing same and electric contact
CN103894600A (en) * 2014-04-22 2014-07-02 合肥工业大学 High-strength and high-conductivity W-Cu/Lu2O3 composite material and preparation method thereof
CN105118702A (en) * 2015-07-17 2015-12-02 河南科技大学 Powder composition for copper alloy material, composite material layer, electric contact and preparation method of electric contact
CN106011519A (en) * 2016-06-20 2016-10-12 仙居县南大合金科技有限公司 Rare earth carbide copper-based contact material for low voltage electric appliances and processing method thereof
WO2018076987A1 (en) * 2016-10-25 2018-05-03 林海英 Tungsten-copper alloy and preparation method therefor
CN112059175A (en) * 2020-08-12 2020-12-11 西安理工大学 Preparation method of WC (wolfram carbide) reinforced WCu dual-gradient structure composite material

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5884944A (en) * 1981-11-13 1983-05-21 Sumitomo Electric Ind Ltd Electrical contact material
JPS5884937A (en) * 1981-11-13 1983-05-21 Sumitomo Electric Ind Ltd Electrical contact material
JPS5884941A (en) * 1981-11-13 1983-05-21 Sumitomo Electric Ind Ltd Electrical contact material
JPS5940214A (en) * 1982-08-31 1984-03-05 Teraoka Seiko Co Ltd Automatic span adjusting method in combination measuring apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5884944A (en) * 1981-11-13 1983-05-21 Sumitomo Electric Ind Ltd Electrical contact material
JPS5884937A (en) * 1981-11-13 1983-05-21 Sumitomo Electric Ind Ltd Electrical contact material
JPS5884941A (en) * 1981-11-13 1983-05-21 Sumitomo Electric Ind Ltd Electrical contact material
JPS5940214A (en) * 1982-08-31 1984-03-05 Teraoka Seiko Co Ltd Automatic span adjusting method in combination measuring apparatus

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03146636A (en) * 1989-10-30 1991-06-21 Tokyo Tungsten Co Ltd Electrode material for electric discharge machining
WO2009041246A1 (en) * 2007-09-25 2009-04-02 A.L.M.T.Corp. Process for producing contact member, contact member, and switch
DE102010022888A1 (en) * 2010-06-07 2011-12-08 Kennametal Inc. Alloy for a penetrator and method of making a penetrator of such an alloy
DE102010022888B4 (en) * 2010-06-07 2012-05-03 Kennametal Inc. Alloy for a penetrator and method of making a penetrator of such an alloy
CN103325583A (en) * 2012-03-22 2013-09-25 日本钨合金株式会社 Electric contact material, method for manufacturing same and electric contact
JP2013224484A (en) * 2012-03-22 2013-10-31 Nippon Tungsten Co Ltd Electric contact material, manufacturing method thereof and electric contact
CN103894600A (en) * 2014-04-22 2014-07-02 合肥工业大学 High-strength and high-conductivity W-Cu/Lu2O3 composite material and preparation method thereof
CN105118702A (en) * 2015-07-17 2015-12-02 河南科技大学 Powder composition for copper alloy material, composite material layer, electric contact and preparation method of electric contact
CN105118702B (en) * 2015-07-17 2017-11-21 河南科技大学 Cu alloy material powder composition, composite layer, electrical contact and preparation method thereof
CN106011519A (en) * 2016-06-20 2016-10-12 仙居县南大合金科技有限公司 Rare earth carbide copper-based contact material for low voltage electric appliances and processing method thereof
WO2018076987A1 (en) * 2016-10-25 2018-05-03 林海英 Tungsten-copper alloy and preparation method therefor
CN112059175A (en) * 2020-08-12 2020-12-11 西安理工大学 Preparation method of WC (wolfram carbide) reinforced WCu dual-gradient structure composite material

Also Published As

Publication number Publication date
JP2511660B2 (en) 1996-07-03

Similar Documents

Publication Publication Date Title
US4162160A (en) Electrical contact material and method for making the same
US2983996A (en) Copper-tungsten-molybdenum contact materials
JP3280968B2 (en) Silver-based contact material for use in switches in the power industry and a method for producing contact pieces from this material
JPS6383242A (en) Arc-resistant conductive material
JPH11269579A (en) Silver-tungsten/wc base sintered type electric contact material and its production
US2818633A (en) Electrical contact
US4784829A (en) Contact material for vacuum circuit breaker
JP4129304B2 (en) Contact material for vacuum circuit breaker, manufacturing method thereof, and vacuum circuit breaker
JPS63118032A (en) Contact material for vacuum circuit breaker
EP0460680A2 (en) Contact for a vacuum interrupter
JP2003155530A (en) Electric contact material
JPH036211B2 (en)
KR0171607B1 (en) Vacuum circuit breaker and contact
US4249944A (en) Method of making electrical contact material
JP6381860B1 (en) Contact material, manufacturing method thereof and vacuum valve
JPS59197539A (en) Electric contact material for sealing
JPS58207348A (en) Electrical contact material for sealing
JPS59197538A (en) Electric contact material for sealing
JPH05230565A (en) Long life contact material
JPH0250972B2 (en)
JPS6056321A (en) Method of producing contact for vacuum breaker
JPS60110832A (en) Contact point material of vacuum interruptor
JPS59205438A (en) Electric contact material
JP2004076141A (en) Vacuum valve used for vacuum interrupter, and manufacturing method of electric contact
JPH0250971B2 (en)