JPS6381990A - Materials for light emitting element - Google Patents

Materials for light emitting element

Info

Publication number
JPS6381990A
JPS6381990A JP61226276A JP22627686A JPS6381990A JP S6381990 A JPS6381990 A JP S6381990A JP 61226276 A JP61226276 A JP 61226276A JP 22627686 A JP22627686 A JP 22627686A JP S6381990 A JPS6381990 A JP S6381990A
Authority
JP
Japan
Prior art keywords
layer
ingap
mixed crystal
substrate
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61226276A
Other languages
Japanese (ja)
Inventor
Tokuzo Sukegawa
助川 徳三
Masakazu Kimura
雅和 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP61226276A priority Critical patent/JPS6381990A/en
Publication of JPS6381990A publication Critical patent/JPS6381990A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)
  • Led Devices (AREA)
  • Light Receiving Elements (AREA)

Abstract

PURPOSE:To provide materials and manufacturing processes that are more economical and applicable for an optical communication than those having GaAsyP1-y inclined layer on a GaAs substrate by being composed of an InGaP mixed crystal for a green emission diode, a GeSi mixed crystal interfacing with lattice, and InGaP mixed crystal layer and causing a mixed crystal composition of InGaP layer to be 0.50-0.75 in terms of mol fraction of GaP and InGaP layer to have a pn junction. CONSTITUTION:A three layer structure is composed of an n-type GeSi substrate 1, an n-type InGaP layer 2 that grow on the above substrate 1, and a p-type InGaP layer 3 that is prepared on the above layer 3 or composed of a p-type GeSi substrate 1', a p-type InGaP layer 2' that grows on the above substrate 1', and an n-type InGaP layer 3' that is prepared on the above layer 2'. Yet, it is preferable for a mixed crystal composition of a GeSi substrate to be 0.6 in terms of mol fraction of Ge and for the mixed crystal composition of InGaP layer to be 0.70-0.74 in terms of mol fraction and furthermore, at interfaces 2 and 3 as well as 2' and 3', pn junctions are formed. The materials can grow by interfacing InGaP layer with a lattice without installing an inclined layer such as GaAsP and the like, so that no aspects such as misfitted dislocations and so on occur and such an arrangement saves operator's labor as well. If, for instance, a green emission diode is manufactured as one of these materials with a vacuum deposition process and the like for materials of a p-side and an n-side electrode, this approach helps reduced a manufacturing cost.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、光通信用発光素子の材料に関し、詳細には、
プラスチック光フアイバ通信の光源として用いられる光
通信用発光ダイオードに最適な発光素子用材料に関する
ものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a material for a light emitting element for optical communication, and in particular,
The present invention relates to materials for light emitting elements that are optimal for light emitting diodes for optical communications used as light sources for plastic optical fiber communications.

〔従来の技術〕[Conventional technology]

従来、光通信に用いられているプラスチック光ファイバ
、特にコア部がポリメタクリル酸メチル(PMMA)か
らなり、クラッド部がより低損失のポリメタクリル酸メ
チルにたとえばフッ素(F)を分子鎖に導入したものか
らなるプラスチック光ファイバの伝送損失は、第3図に
示すように、波長が640〜670nm(以下、660
 nm帯波長と呼ぶ)、及び550〜600nm(以下
、570 nm帯波長と呼ぶ)のところに顕著な低損失
領域があることが知られている。この伝送損失は、66
0 nm帯波長で150〜280 dB/km1570
 nm帯波長では120〜170dB/kmとなる。
Conventionally, plastic optical fibers used for optical communications, especially the core part, are made of polymethyl methacrylate (PMMA), and the cladding part is polymethyl methacrylate, which has a lower loss, with for example fluorine (F) introduced into the molecular chain. As shown in Figure 3, the transmission loss of a plastic optical fiber made of
It is known that there are significant low loss regions in the wavelength range of 550 to 600 nm (hereinafter referred to as the 570 nm band wavelength). This transmission loss is 66
150-280 dB/km1570 at 0 nm band wavelength
In the nm band wavelength, it is 120 to 170 dB/km.

また、低損失領域の幅を見ると、66 Q nm帯波長
よシも570 nm帯波長の方が幅広−。この事は、発
光ダイオードの発光波長に分布があることを考えると、
よシ広い低損失領域を有する5 70 nm帯波長の発
光ダイオードであれば光ファイバによる伝送損失が少な
くな、ることを示すものである。
Also, looking at the width of the low loss region, the 570 nm band wavelength is wider than the 66 Q nm band wavelength. Considering that there is a distribution in the emission wavelength of light emitting diodes, this means that
This shows that a light-emitting diode with a wavelength in the 570 nm band, which has a wider low-loss region, has less transmission loss due to the optical fiber.

このように、プラスチック光ファイバを用いた光通信の
場合、発光中心波長が660 nm帯の赤色発光ダイオ
ードよりも、発光中心波長が570 nm帯の緑色発光
ダイオードを光源として用いた方が、伝送損失が少なく
なることは明白であ′る。
In this way, in the case of optical communication using plastic optical fibers, the transmission loss is higher when a green light emitting diode with a center emission wavelength in the 570 nm band is used as a light source than a red light emitting diode with a center emission wavelength in the 660 nm band. It is clear that there will be less.

ところで従来、660 nm帯波長の赤色発光ダイオー
ド古しては、間接遷移型のGaAsP s及び直接遷移
型のGaAlAsがあり、発光効率はそれぞれ0.1〜
0.2%(発光輝度でioo〜300 /lW ) 、
及び2〜8チ(発光輝度で500〜2,000 /#)
である。これに対し、570 nm帯波長の緑色発光ダ
イオードとしては、間接遷移型のGaPやGaAsPが
あるだけで、その発光効率は0.1〜0.2%(発光輝
度で25〜50pW )という低い値である。そのため
、従来の緑色発光ダイオードは、プラスチック光7アイ
パの伝送損失の点では有利であるが、低輝度のために光
通信用には不適当であった。
By the way, conventional red light emitting diodes with a wavelength in the 660 nm band include indirect transition type GaAsPs and direct transition type GaAlAs, each of which has a luminous efficiency of 0.1 to 0.1.
0.2% (luminance luminance: ioo~300/lW),
and 2 to 8 inches (500 to 2,000/# in luminance brightness)
It is. On the other hand, as green light emitting diodes with a wavelength in the 570 nm band, there are only indirect transition type GaP and GaAsP, and their luminous efficiency is as low as 0.1 to 0.2% (25 to 50 pW in luminance). It is. Therefore, although conventional green light emitting diodes are advantageous in terms of transmission loss for plastic optical 7-eyes, they are unsuitable for optical communications due to their low brightness.

そこで現在、GaP基板またはGaAs基板上にGaA
sP金成長させた5 70 nmm帯波付付近黄色〜緑
色)の発光ダイオードが提供されているが、全て表示用
として使用されるものである。また、上記GaPやGa
As Pの発光ダイオードは、間接遷移型であるため、
発光出力及び変調速度が低く、660 nm帯波長の赤
色発光ダイオードのように使用できず、光通信用として
は実用化されていない。
Therefore, currently GaA is used on GaP or GaAs substrates.
SP gold-grown 570 nm band (near yellow to green) light emitting diodes have been provided, all of which are used for display purposes. In addition, the above GaP and Ga
Since the AsP light emitting diode is an indirect transition type,
Due to its low light emitting output and modulation speed, it cannot be used like a red light emitting diode with a wavelength in the 660 nm band, and has not been put into practical use for optical communications.

そのため、上記のGaP或いはGaA、sPからなる緑
色発光ダイオードの欠点を克服I〜、570 nm帯波
長の有利性を活用することができる光通信用緑色発光ダ
イオードが提供されている。この緑色発光ダイオードは
、GaAsPO代わりにInGaPからなる眉をGaA
s基板上に成長させたもので、直接遷移型であるため、
発光効率が良く、発光出力が高く、変調も高速である。
Therefore, a green light emitting diode for optical communication has been provided which can overcome the drawbacks of the green light emitting diode made of GaP, GaA, or sP described above and can take advantage of the advantage of the wavelength in the 570 nm band. This green light emitting diode is made of InGaP instead of GaAsPO.
Since it is grown on an s substrate and is a direct transition type,
It has good luminous efficiency, high luminous output, and fast modulation.

用途的には、プラスチック光フアイバ短距離通信用(移
動体内、家庭内、建物内など)、数字及び文字表示用(
大型表示灯、大型表示装置など)、OA機器用(ファッ
クス、複写機など)など多様に渡っている。
Applications include plastic optical fiber for short-distance communication (in moving vehicles, homes, buildings, etc.), and for displaying numbers and characters (
They are used in a wide variety of applications, including large indicator lights, large display devices, etc.) and office automation equipment (fax machines, copy machines, etc.).

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

一般に、半導体デバイスを製作する場合、バルク結晶よ
り得られる基板上にエピタキシャル成長を行う等の方法
によっているが、混晶半導体を用いる場合は現在のとこ
ろ、そのバルク結晶がないのが実情である。そのため、
化合半導体混晶のバルク結晶を得るために多くの研究が
なされているが、各元素の偏析係数が異ることと蒸気圧
の高い構成元素を含んでいるために未だ基板となるよう
なバルク結晶が得られていない。そのためInGaP混
晶の成長にはGaAs基板あるいはGaP基板等の緑色
発光ダイオード用InGaP混晶とは格子定数の異った
基板が用いられ、基板とInGaPエピタキシャル成長
層との間に格子定数を整合するためのGaAsP等の組
成傾斜層を設ける必要があった。
Generally, when manufacturing a semiconductor device, a method such as epitaxial growth is performed on a substrate obtained from a bulk crystal is used, but when using a mixed crystal semiconductor, there is currently no such bulk crystal. Therefore,
Many studies have been carried out to obtain bulk crystals of compound semiconductor mixed crystals, but bulk crystals that can be used as substrates are still difficult to obtain because the segregation coefficients of each element are different and they contain constituent elements with high vapor pressure. is not obtained. Therefore, to grow the InGaP mixed crystal, a substrate such as a GaAs substrate or a GaP substrate, which has a different lattice constant from that of the InGaP mixed crystal for green light emitting diodes, is used, and in order to match the lattice constant between the substrate and the InGaP epitaxial growth layer. It was necessary to provide a compositionally graded layer of GaAsP or the like.

傾斜層は、別の材料を用いて基板の格子定数と同一の格
子定数の層をまず基板上に成長させ、その層上に徐々に
格子定数を変化させた層を順次成長させて、最後に発光
層であるエピタキシャル成長層の格子定数と同一の格子
定数の層を成長させたものである。それ故、GaAs基
板上に発光材料のInGaP層をエピタキシャル成長さ
せる場合は、GaAsyPl−yからなる傾斜層を設け
る。すなわち、このyの値を徐々に小さくした層(Pの
含有量を徐々に大きくした層)を基板上に順次に成長さ
せたものを傾斜層とすることにより、GaAsの格子定
数とInGaPの格子定数との相違を緩和することがで
きる。
A graded layer is created by first growing a layer with the same lattice constant as that of the substrate on a substrate using another material, then sequentially growing layers with gradually changing lattice constants on top of that layer. A layer with the same lattice constant as that of the epitaxially grown layer that is the light emitting layer is grown. Therefore, when an InGaP layer of a light emitting material is epitaxially grown on a GaAs substrate, a gradient layer made of GaAsyPl-y is provided. In other words, the lattice constant of GaAs and the lattice of InGaP can be changed by forming a gradient layer in which layers in which the value of y is gradually decreased (layers in which the P content is gradually increased) are grown on the substrate in sequence. Differences from constants can be alleviated.

ところで、傾斜層を設けた緑色発光ダイオードでは、G
aAs基板上にGaAsyPl−、傾斜層を設けた緑色
発光素子用材料が市販されている。しか17ながら、こ
の傾斜層を設けた市販の発光素子用材料はGaAs基板
のみに比べて非常に高価であり、結果として製造される
種々の発光素子、たとえば発光ダイオードやレーデダイ
オードなども高価になる。
By the way, in a green light emitting diode with a gradient layer, G
A green light-emitting element material in which a GaAsyPl-graded layer is provided on an aAs substrate is commercially available. However, commercially available materials for light emitting devices provided with this graded layer are much more expensive than GaAs substrates alone, and as a result, the various light emitting devices manufactured, such as light emitting diodes and LED diodes, are also expensive. Become.

従って本発明の目的は、上述の問題点を解決し、GaA
s基板上にGaAs y P 1−y傾斜層を設けた緑
色発光素子用材料よシも安価で経済的な光通信に最適な
発光素子用材料を提供することにある。
Therefore, it is an object of the present invention to solve the above-mentioned problems and to
It is an object of the present invention to provide a material for a light emitting device that is inexpensive and suitable for economical optical communication, as well as a material for a green light emitting device in which a GaAs y P 1-y gradient layer is provided on an S substrate.

〔問題を解決するための手段〕[Means to solve the problem]

前記目的は、緑色発光ダイオード用I nGaP混晶と
格子整合するゲルマニウムシリコン(GeSi)!晶と
InGaP混晶層からなシ、該InGaP層の混晶組成
が燐化ガリウム(GaP )のモル分率で0.50〜0
.75であり、該InGaP層がpn接合を有すること
を特徴とする発光素子用材料によって達成される。本発
明において、GeSi基板上のInGaP層の混晶組成
は、GaPのモル分率で表わすと0.50〜0.75で
あシ、好ましくは0.70〜0.74である。GaP(
7)モル分率が0.70〜0.74の材料は発光出力及
び変調速度に優れたものである。
The purpose is to lattice match germanium silicon (GeSi) with InGaP mixed crystal for green light emitting diodes! The mixed crystal composition of the InGaP layer is 0.50 to 0 in mole fraction of gallium phosphide (GaP).
.. 75, and is achieved by a light emitting device material characterized in that the InGaP layer has a pn junction. In the present invention, the mixed crystal composition of the InGaP layer on the GeSi substrate is 0.50 to 0.75, preferably 0.70 to 0.74, expressed as a GaP mole fraction. GaP(
7) Materials with a mole fraction of 0.70 to 0.74 are excellent in light emission output and modulation speed.

InGaP層は液相成長法あるいは気相成長法などの既
知の手段によって基板上に成長させることができる。I
nGa P混晶においては燐(p)の蒸気圧が高い等の
理由からバルク結晶を得ることは大変困難であるが、G
eSi混晶のバルク結晶は、GeおよびSiのそれぞれ
のバルク結晶は様々な方法で充分に研究開発されて工業
化に至っているので、それらの組み合わせにより高品位
な結晶を得ることが可能である。第2図にGeSi混晶
とInGaP混晶の格子定・数の関係を示す。第2図よ
、!l) GeSiとInGaPは広い組成範囲で格子
整合していることが分る。特にGaPのモル分率が0.
74であるInGaP混晶はG。
The InGaP layer can be grown on the substrate by known means such as liquid phase epitaxy or vapor phase epitaxy. I
In the nGaP mixed crystal, it is very difficult to obtain bulk crystals due to the high vapor pressure of phosphorus (p).
As for bulk crystals of eSi mixed crystals, bulk crystals of Ge and Si have been sufficiently researched and developed by various methods and have been industrialized, so it is possible to obtain high-quality crystals by combining them. FIG. 2 shows the relationship between the lattice constant and number of GeSi mixed crystal and InGaP mixed crystal. Figure 2! l) It can be seen that GeSi and InGaP are lattice matched over a wide composition range. Especially when the mole fraction of GaP is 0.
74, the InGaP mixed crystal is G.

のモル分率で0.6であるGeSi混晶と格子整合する
It is lattice matched with GeSi mixed crystal with a molar fraction of 0.6.

すなわち、Geのモル分率で0.5〜0,7、好ましく
は0.6のGeSi混晶基板上にGaPのモル分率で0
.5〜0.75、好ましくは0.70〜0.74のIn
GaP混晶層を既知の成長方法によって作製するので、
安価な材料と既知の方法によシ大量製産の可能である基
板を用いることと、GaAsP等の傾斜層を成長する手
間が省けることから、本発明により、前記目的を全て達
成した、安価で経済的な光通信に最適な発光素子用材料
が得られることが明かとなった。
That is, on a GeSi mixed crystal substrate with a Ge mole fraction of 0.5 to 0.7, preferably 0.6, a GaP mole fraction of 0.
.. 5 to 0.75, preferably 0.70 to 0.74 In
Since the GaP mixed crystal layer is produced by a known growth method,
By using inexpensive materials and a substrate that can be mass-produced by known methods, and by eliminating the need to grow a graded layer such as GaAsP, the present invention achieves all of the above objectives and is inexpensive. It has become clear that a material for light emitting devices that is optimal for economical optical communications can be obtained.

〔実施例〕〔Example〕

以下、本発明の発光素子用材料の実施例を図面に基づい
て説明する。
Examples of the light emitting element material of the present invention will be described below based on the drawings.

第1図に本発明の一実施例を示す。FIG. 1 shows an embodiment of the present invention.

本発明の材料は、第1図(a)に示すようなn型Ge5
t基板1上にn型I nGaP層2を成長させ、さらに
その上にp・型InGaP層3を設けた3層構造あるい
は(b)に示すようなp型GeSi基板り′上にp型I
nGaP層2′を成長させ、さらにその上にn型InG
aP層3′を設けた3層構造からなシ、GeSi基板の
混晶組成f’i Geのモル分率で0.5〜0.7、好
ましくは0.6.InGaP層の混晶組成は0.50〜
0.75、好ましくは0.70〜0.74である。また
明かなように2と3および2′と3′の界面にはPn接
合が形成されている・この材料はGaAs Pなどの傾
斜層を設けることなしにInGaP層を格子整合して成
長することができるので、ミスフィツト転位等の問題が
全くない上に従来の方法よりも手間が省けて非常に安価
であシ、この材料を用いてたとえば緑色発光ダイオード
を製造すれば、すなわちこの材料にp側電極材及びn側
電極材を真空蒸着などの手段によって設けて発光ダイオ
ードとすれば、結果として発光ダイオードの製造コスト
を下げることができる。第1図においてn型InGaP
層のドナー不純物としてはS、Si、Te、Seなど(
好適にはTe)、p型InGaP層のアクセプタ不純物
としてはGe、Be。
The material of the present invention is an n-type Ge5 as shown in FIG. 1(a).
A three-layer structure in which an n-type I nGaP layer 2 is grown on a t-substrate 1 and a p-type InGaP layer 3 is further formed on it, or a p-type I nGaP layer 2 is grown on a p-type GeSi substrate as shown in (b).
An nGaP layer 2' is grown, and an n-type InG layer is further grown on top of the nGaP layer 2'.
If the GeSi substrate has a three-layer structure including the aP layer 3', the mixed crystal composition f'i of the Ge mole fraction is 0.5 to 0.7, preferably 0.6. The mixed crystal composition of the InGaP layer is 0.50~
0.75, preferably 0.70 to 0.74. Also, as is clear, Pn junctions are formed at the interfaces between 2 and 3 and 2' and 3'. This material can be grown by lattice matching the InGaP layer without providing a graded layer such as GaAsP. Because of this, there are no problems such as misfit dislocations, and it is also much less labor-intensive and inexpensive than conventional methods.If a green light-emitting diode is manufactured using this material, If the electrode material and the n-side electrode material are provided by means such as vacuum evaporation to form a light emitting diode, the manufacturing cost of the light emitting diode can be reduced as a result. In Figure 1, n-type InGaP
Donor impurities in the layer include S, Si, Te, Se, etc.
Preferably Te), and Ge and Be as acceptor impurities of the p-type InGaP layer.

Cd 、Mg 、Zn (好適にはZn )を用いれば
よい。また、InGaP混晶の電子および正相の移動度
を考慮するとp側での発光が望ましいが、その場合のn
形InGaP層の不純物濃度は1016〜1o18/c
rn3、p形InGaP層の不純物濃度は1015〜1
o17/crn3が適当である。通常はp形の方が高不
純濃度を達成しやすいのでn形InGaP側での発光が
主となるが、その場合はn形InGaP層の不純物濃度
は1015〜10 ”7cm3、p形InGaP層の不
純物濃度は10〜10/cIn が適当である。2,2
′のInGaP層は液相成長あるいは気相成長などの既
知の方法によって容易に成長でき、またpn接合を形成
するための3,3′のInGaP層は拡散技術、液相成
長、気相成長などによって容易に形成できる。1,1′
のGeSi混晶基板はSt、およびGeにおいて既知の
工業的に完成しているバルク結晶成長法、例えば引上げ
法、フローティング・ゾーン法等によって容易に供給し
得る。又、用いるGeSi混晶の面方位は(100)ま
たは(111)が適当である。
Cd, Mg, and Zn (preferably Zn) may be used. Furthermore, considering the mobility of electrons and the positive phase of the InGaP mixed crystal, it is desirable to emit light on the p side;
The impurity concentration of the InGaP layer is 1016 to 1o18/c
rn3, the impurity concentration of the p-type InGaP layer is 1015-1
o17/crn3 is suitable. Normally, it is easier to achieve a high impurity concentration with p-type, so light emission mainly occurs on the n-type InGaP side. The appropriate impurity concentration is 10 to 10/cIn.2,2
The 3,3' InGaP layer for forming the p-n junction can be grown easily by known methods such as liquid phase growth or vapor phase growth, and the 3,3' InGaP layer for forming the pn junction can be grown using diffusion techniques, liquid phase growth, vapor phase growth, etc. can be easily formed by 1,1'
The GeSi mixed crystal substrate of can be easily provided by industrially known bulk crystal growth methods for St and Ge, such as the pulling method, floating zone method, etc. Further, the plane orientation of the GeSi mixed crystal used is suitably (100) or (111).

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明の発光素子用材料はGeSi
混晶基板とpn接合を有したInGaP混晶層からなり
、GeSi混晶基板の組成がGeのモル分率で0.50
〜0.70の範囲にあり、InGaP混晶の組成がGa
Pのモル分率で0.50〜0.75の範囲でGeSi混
晶基板上にInGaP混晶を格子整合した状態でエピタ
キシャル成長させたものであることにょシ、従来の傾斜
層を設けてなる材料よりも手間が省けて安価であり、こ
の材料を用いて光通信用発光ダイオード、レーザダイオ
ード、アバランシェ光ダイオードなどの発光素子を製造
した場合にその製造コストを下げることができる。
As explained above, the light emitting device material of the present invention is GeSi
It consists of an InGaP mixed crystal layer having a pn junction with a mixed crystal substrate, and the composition of the GeSi mixed crystal substrate is 0.50 in molar fraction of Ge.
~0.70, and the composition of the InGaP mixed crystal is Ga
This material is made by epitaxially growing InGaP mixed crystal in a lattice-matched state on a GeSi mixed crystal substrate with a P mole fraction in the range of 0.50 to 0.75, and a conventional graded layer is provided. It is less labor-intensive and cheaper, and when light-emitting elements such as light-emitting diodes for optical communications, laser diodes, and avalanche photodiodes are manufactured using this material, the manufacturing cost can be lowered.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の発光素子用材料の一実施例の断面図、
第2図はInGaP混晶およびGe5t混晶の混晶組成
と格子定数の関係を示すグラフである。第3図はプラス
チック光ファイバにおける波長と伝送損失との関係を示
すグラフである。 1・・・n形GeSi混晶基板、1′・・・p形GeS
i混晶基板、2 = n形I nGa P混晶層、2 
/ 、、、 p形InGaP混晶層、3−p形InGa
P混晶層、3 / 、、−n形InGaP混晶層。 Pn・・・pn接合。
FIG. 1 is a cross-sectional view of an example of the material for a light emitting device of the present invention,
FIG. 2 is a graph showing the relationship between the mixed crystal composition and lattice constant of InGaP mixed crystal and Ge5t mixed crystal. FIG. 3 is a graph showing the relationship between wavelength and transmission loss in a plastic optical fiber. 1...n-type GeSi mixed crystal substrate, 1'...p-type GeS
i mixed crystal substrate, 2 = n-type InGaP mixed crystal layer, 2
/ ,,, p-type InGaP mixed crystal layer, 3-p-type InGa
P mixed crystal layer, 3/, -n-type InGaP mixed crystal layer. Pn... pn junction.

Claims (1)

【特許請求の範囲】[Claims] ゲルマニウム−シリコン(GeSi)混晶基板と燐化イ
ンジウムガリウム(InGaP)層とからなり、該In
GaP層の混晶組成が燐化ガリウム(GaP)のモル分
率で0.50〜0.75でありGeSi混晶基板と格子
整合し、該InGaP層がpn接合を有することを特徴
とする発光素子用材料。
It consists of a germanium-silicon (GeSi) mixed crystal substrate and an indium gallium phosphide (InGaP) layer, and the In
A light emitting device characterized in that the GaP layer has a mixed crystal composition of 0.50 to 0.75 in mole fraction of gallium phosphide (GaP), is lattice matched to a GeSi mixed crystal substrate, and the InGaP layer has a pn junction. Materials for elements.
JP61226276A 1986-09-26 1986-09-26 Materials for light emitting element Pending JPS6381990A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61226276A JPS6381990A (en) 1986-09-26 1986-09-26 Materials for light emitting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61226276A JPS6381990A (en) 1986-09-26 1986-09-26 Materials for light emitting element

Publications (1)

Publication Number Publication Date
JPS6381990A true JPS6381990A (en) 1988-04-12

Family

ID=16842672

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61226276A Pending JPS6381990A (en) 1986-09-26 1986-09-26 Materials for light emitting element

Country Status (1)

Country Link
JP (1) JPS6381990A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0460939A2 (en) * 1990-06-05 1991-12-11 Matsushita Electric Industrial Co., Ltd. Semiconductor laser device comprising a SiGe single crystal substrate
US5341001A (en) * 1992-02-13 1994-08-23 Matsushita Electric Industrial Co., Ltd. Sulfide-selenide manganese-zinc mixed crystal photo semiconductor and laser diode
KR100771999B1 (en) * 2004-05-20 2007-10-31 김상돈 Grating

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58191421A (en) * 1982-05-04 1983-11-08 Nec Corp Substrate for growing compound semiconductor and manufacture of compound semiconductor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58191421A (en) * 1982-05-04 1983-11-08 Nec Corp Substrate for growing compound semiconductor and manufacture of compound semiconductor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0460939A2 (en) * 1990-06-05 1991-12-11 Matsushita Electric Industrial Co., Ltd. Semiconductor laser device comprising a SiGe single crystal substrate
US5164950A (en) * 1990-06-05 1992-11-17 Matsushita Electric Industrial Co., Ltd. Semiconductor laser device comprising a sige single crystal substrate
US5341001A (en) * 1992-02-13 1994-08-23 Matsushita Electric Industrial Co., Ltd. Sulfide-selenide manganese-zinc mixed crystal photo semiconductor and laser diode
KR100771999B1 (en) * 2004-05-20 2007-10-31 김상돈 Grating

Similar Documents

Publication Publication Date Title
US5075743A (en) Quantum well optical device on silicon
US7596158B2 (en) Method and structure of germanium laser on silicon
CN104769467B (en) Semiconductor device
JP3188522B2 (en) Method of forming light emitting diode
JPS61108187A (en) Semiconductor photoelectronic device
JPS6381990A (en) Materials for light emitting element
KR0151137B1 (en) Double hetero type epitaxial wafer
JP2579326B2 (en) Epitaxial wafer and light emitting diode
JPH0864870A (en) Semiconductor light emitting element
CN206364046U (en) High phosphorus component gallium arsenide-phosphide photocathode
Campbell et al. Buried heterojunction electroabsorption modulator
EP0590649B1 (en) Method of manufacturing a GaP light emitting element
JP2001015798A (en) Semiconductor light emitting device
TWI332272B (en)
US7195991B2 (en) Method for producing an electromagnetic radiation-emitting semiconductor chip and a corresponding electromagnetic radiation-emitting semiconductor chip
JPS63155781A (en) Light-emitting element
JP2618677B2 (en) Semiconductor light emitting device
JP4214714B2 (en) Method for producing group III nitride compound semiconductor
JP2670523B2 (en) Light emitting device manufacturing method
JPH06101585B2 (en) Light emitting device material and manufacturing method thereof
US20230261135A1 (en) Multi-quantum well structure, light emitting diode and light emitting component
JPH08116092A (en) Semiconductor light emitting element and its manufacture
JPH04177881A (en) Manufacture of semiconductor device
JPS5958878A (en) Semiconductor light emitting device
JPS5969977A (en) Semiconductor light emitting device