JPS638149Y2 - - Google Patents

Info

Publication number
JPS638149Y2
JPS638149Y2 JP3801279U JP3801279U JPS638149Y2 JP S638149 Y2 JPS638149 Y2 JP S638149Y2 JP 3801279 U JP3801279 U JP 3801279U JP 3801279 U JP3801279 U JP 3801279U JP S638149 Y2 JPS638149 Y2 JP S638149Y2
Authority
JP
Japan
Prior art keywords
electrode
light
receiving surface
electromotive force
solar cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP3801279U
Other languages
Japanese (ja)
Other versions
JPS55139560U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP3801279U priority Critical patent/JPS638149Y2/ja
Publication of JPS55139560U publication Critical patent/JPS55139560U/ja
Application granted granted Critical
Publication of JPS638149Y2 publication Critical patent/JPS638149Y2/ja
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Description

【考案の詳細な説明】[Detailed explanation of the idea]

本考案は太陽電池装置の電極構造に関し、特に
受光面側の電極構造によつてその太陽電池装置の
出力特性が大きく左右されることに着目し、より
高出力の特性が得られ、かつ高い信頼性を有する
太陽電池装置を提供するものである。 従来採用されている電極構造の例を第1図に示
す。半導体基板1の円形受光面の直径方向にコレ
クター電極3が一本設置され、それと直角に互い
に平行なグリツド電極2が配列されている。この
電極構造をたとえば現在最も一般的な電極形成方
法である蒸着マスクを用いる方法により形成する
とすると、グリツド電極2はたかだか幅が100μm
程度であり、それ以下にすることは不可能に近
い。またコレクター電極部分による直列抵抗が出
力特性の低下を引き起こさない範囲内で有効受光
面をできるだけ広くするにはコレクター電極3の
幅は最大部分で数mm程度必要である。したがつて
このような電極構造を採用する限り電極占有率は
10%を下回ることはできない。受光面電極による
直列抵抗を低くしたままで電極占有率を下げるた
めにたとえばコレクター電極部分にハンダ付けを
行ない幅を細くする方法がある。またたとえば第
2図に示すようにコレクター電極31,32を2本
とし、実質的なグリツド電極2の長さを半分にし
てかつ、実質的なコレクター電極も短かくして直
列抵抗を低くする方法がある。しかしながらハン
ダ付けを行なう前者の方法は素子に対して熱ひず
みを加えかつ工程数が増加するなどの欠点を有し
ている。またコレクター電極を2本とする後者の
方法は前述したようにグリツド電極の幅を100μm
以下とするのが不可能に近いのでグリツド電極に
よる直列抵抗成分は、第1図の場合でも充分に小
さく、画期的な効果は期待できない。 特に太陽電池を大面積化した場合、発生する電
流は受光面積に比例するので直列抵抗による電圧
降下は大きくなり、受光面電極の構造によりその
出力特性が大きく左右される。良好な光電変換効
率を得るには有効受光面積が大きくかつ直列抵抗
が小さな受光面電極構造が望ましい。 本考案は以上の点に鑑み、大面積化した太陽電
池素子においても良好な光電変換効率が得られる
受光面電極構造を有する太陽電池装置を提供する
ものである。 本考案の他の目的は、長期間使用に対して高い
信頼性が得られるすなわち長期間使用した場合に
出力の低下が極めて少なくなるべく、導電性ペー
ストにより上記電極構造を形成した太陽電池装置
を提供するものである。 まず第1図に示した電極構造を例にとつて太陽
電池素子の受光面側での直列抵抗を便宜上以下の
各要素に分けて考えてみる。 (1) 表面拡散層抵抗要素 (2) グリツド電極抵抗要素 (3) コレクター電極抵抗要素 上述した如く蒸着マスクを用いる方法により電
極を形成するとグリツド電極幅は100μm以下とす
るのが困難である。その場合上述各直列抵抗要素
の中で、グリツド電極抵抗要素は他の二要素と比
較して無視されるほど小さい。逆に言えばグリツ
ド電極抵抗要素がかなり大きくなつてもコレクタ
ー電極抵抗要素を何らかの方法によつて小さくで
きれば、受光面側での直列抵抗を小さくすること
ができる。これらのことは導電性印刷焼成ペース
トにより受光面電極を形成した場合にも同様に言
及される。 また第1図に示した電極構造を有する太陽電池
素子を多数個直列配線した場合、一ケ所の起電力
取り出し用電極が何らかの原因で開放状態となれ
ば、多数個直列のアレイ全体が開放状態となり光
起電力を外部に取り出すことはできない。 第2図に示した電極構造を採用した場合にも同
一素子内で二ケ所の起電力取り出し用電極が開放
状態となれば、多数個直列のアレイ全体が開放状
態となる。一ケ所の起電力取り出し用電極が開放
状態になつたときにもアレイ中の一素子の直列抵
抗が大きくなり充分な光起電力を外部に取り出す
ことはできない。 以下実施例に従つて本考案の太陽電池装置を詳
細に説明する。 第3図は本考案の一実施例を示す太陽電池の受
光面電極構造を示す図である。円形半導体基板1
1の受光面領域が仮想的に等分割、本実施例では
六等分され、各ブロツク内に同一パターンの導体
が電極として導電性印刷焼成ペーストにより形成
されている。即ち、受光面を六等分する半径のグ
リツド電極120に対して各ブロツク内にグリツ
ド電極120と平行に且つ等間隔で中心から周辺
に向うグリツド電極121,122……が設けられ
ている。また受光面の外周部には同一ブロツク内
及び他ブロツクの上記グリツド電極120,121
……を互いに接続するコレクタ電極13及び起電
力取り出し電極141,142……が設けられてい
る。尚自明な如く蒸着マスクを用いる方法によつ
ては上記電極パターンのような閉ループ電極構造
にすることも不可能である。 ここで上記起電力取り出し電極141,142
…の位置はリング状コレクタ電極13上のいずれ
の位置でも選び得るが、複数個の太陽電池素子を
配列して用いられることを考慮して設けられてい
る。即ち、円形の太陽電池素子を最密に充填する
と、素子間の間隙は素子に対して対称位置に6ケ
所生じる。この6ケ所の間隙を素子間の配線スペ
ースとして利用するのが太陽電池パネルとしての
パツキングフアクター上から有効である。従つて
円周を六等分する位置、上記半径状グリツド電極
120の各先端位置に起電力取り出し用電極を配
置することにより、直列抵抗による電圧降下を小
さくするだけではなく、パネルのパツキングフア
クターを向上させるということからも太陽電池装
置の光電変換効率上有効となる。 また同一素子内で6ケ所の起電力取り出し用電
極がすべて開放状態とならなければ、多数個直列
のアレイが開放状態とはならず、同一素子内で1
ケ所あるいは2ケ所の起電力取り出し用電極がた
とえ開放状態になつたとしても、他の起電力取り
出し用電極がバイパスの役割を演じアレイ全体の
光出力はほとんど低下しない点からも有効であ
る。換言すれば、このように6ケ所の起電力取り
出し用電極を設置することにより太陽電池装置の
信頼性も飛躍的に向上する。 第3図においてグリツド電極を互いに平行に配
列し、円周上にコレクター電極を配置することに
よつて、起電力取り出し用電極14からコレクタ
ー電極を中継しての各グリツド電極の中心方向先
端までの長さを短かくすることが可能となる。 またコレクター電極13について言えば、起電
力取り出し用電極14から遠くに位置するグリツ
ド電極12iの長さが短かくなつており、起電力
取り出し用電極14から遠い位置のコレクター電
極先端付近では電流が少なく、根元へ向かうにつ
れ増加するので、コレクター電極での電圧降下は
非常に小さいものとなる。また直径方向に設置さ
れたグリツド電極120の長さは半径長と長いも
のであるが、グリツド電極が導電性印刷焼成ペー
ストで形成されるため幅としては細くないことか
らこの部分での電圧降下はそれほど大きくない。 以上のように受光面電極による直列抵抗が非常
に小さく各抵抗要素のバランスがとれた電極構造
が可能である。もし第1図あるいは第2図と同量
の直列抵抗となるように第3図の電極構造を設計
すると、有効受光面が大巾に増大し、良好な光電
出力が得られる。 第4図、第5図および第6図は本考案の他の実
施例を示す太陽電池の受光面電極構造である。第
4図は、パネルのパツキングフアクターとの関係
から、太陽電池素子を正方形分割位置に充填した
場合に有効となる構造である。第5図は正方形太
陽電池素子を用いた場合に適した構造である。ま
た第6図は長方形太陽電池素子を用いた場合に適
した構造である。この他半円形素子など非点対称
型素子の場合にも同様に本考案が有効であること
はいうまでもない。 次に従来の第1図及び第2図に示した電極構造
と第3図に示した本考案による電極構造の素子特
性を比較する。 直径76mmのP型シリコンウエハー上にほぼシー
ト抵抗50Ω/〓のN型拡散層を設け、第1図、第
2図、第3図に示す受光面電極構造をそれぞれ形
成する。グリツド電極幅は200μm、コレクター電
極幅は先端部分で200μm、根元部分は第1図構造
で5mm、第2図構造で2.5mm、第3図構造で
300μmとした。隣接するグリツド電極間隔は3.8
mmとした。また受光面電極のシート抵抗は3m
Ω/〓であり、受光面に反射防止膜を形成した。
入射エネルギー74.7mw/cm2の自然光下、28℃に
おいて各太陽電池の出力特性を測定した。その結
果を示す。
This invention focuses on the electrode structure of solar cell devices, and focuses on the fact that the output characteristics of the solar cell device is greatly influenced by the electrode structure on the light-receiving surface side. The present invention provides a solar cell device having the following characteristics. An example of a conventionally employed electrode structure is shown in FIG. A collector electrode 3 is installed in the diametrical direction of the circular light-receiving surface of the semiconductor substrate 1, and grid electrodes 2 are arranged parallel to each other at right angles to the collector electrode 3. For example, if this electrode structure is formed by a method using a vapor deposition mask, which is currently the most common electrode formation method, the grid electrode 2 will have a width of at most 100 μm.
It is almost impossible to reduce it below that level. In addition, in order to make the effective light-receiving surface as wide as possible within the range where the series resistance caused by the collector electrode portion does not cause deterioration of the output characteristics, the width of the collector electrode 3 needs to be approximately several mm at its maximum portion. Therefore, as long as such an electrode structure is adopted, the electrode occupation rate will be
It cannot go below 10%. In order to lower the electrode occupation rate while keeping the series resistance of the light-receiving surface electrode low, there is a method of, for example, soldering the collector electrode portion to make the width thinner. For example, as shown in Fig. 2, there is a method of using two collector electrodes 3 1 and 3 2 to reduce the actual length of the grid electrode 2 by half, and also shortening the actual collector electrode to lower the series resistance. There is. However, the former method of soldering has drawbacks such as applying thermal strain to the element and increasing the number of steps. In addition, in the latter method where two collector electrodes are used, the width of the grid electrode is 100 μm as described above.
Since it is almost impossible to achieve the following, the series resistance component due to the grid electrode is sufficiently small even in the case of FIG. 1, and no revolutionary effect can be expected. In particular, when a solar cell has a large area, the generated current is proportional to the light-receiving area, so the voltage drop due to series resistance becomes large, and the output characteristics are greatly influenced by the structure of the light-receiving surface electrode. In order to obtain good photoelectric conversion efficiency, it is desirable to have a light-receiving surface electrode structure with a large effective light-receiving area and low series resistance. In view of the above points, the present invention provides a solar cell device having a light-receiving surface electrode structure that allows good photoelectric conversion efficiency to be obtained even in a large-area solar cell element. Another object of the present invention is to provide a solar cell device in which the above-mentioned electrode structure is formed with a conductive paste, so that high reliability can be obtained for long-term use, that is, the decrease in output can be minimized when used for a long time. It is something to do. First, taking the electrode structure shown in FIG. 1 as an example, the series resistance on the light-receiving surface side of the solar cell element will be considered by dividing it into the following elements for convenience. (1) Surface diffusion layer resistance element (2) Grid electrode resistance element (3) Collector electrode resistance element When electrodes are formed by the method using a vapor deposition mask as described above, it is difficult to make the grid electrode width 100 μm or less. In that case, among the above-mentioned series resistance elements, the grid electrode resistance element is negligibly small compared to the other two elements. Conversely, even if the grid electrode resistance element becomes quite large, if the collector electrode resistance element can be reduced by some method, the series resistance on the light receiving surface side can be reduced. These matters are also mentioned in the case where the light-receiving surface electrode is formed using a conductive printing and baking paste. Furthermore, when a large number of solar cell elements having the electrode structure shown in Fig. 1 are wired in series, if one electrode for taking out electromotive force becomes open for some reason, the entire array of many solar cells connected in series becomes open. Photovoltaic power cannot be taken out. Even when the electrode structure shown in FIG. 2 is employed, if two electromotive force extraction electrodes in the same element are open, the entire array of multiple electrodes connected in series becomes open. Even when one electrode for taking out electromotive force is in an open state, the series resistance of one element in the array increases, making it impossible to take out sufficient photovoltaic force to the outside. The solar cell device of the present invention will be described in detail below with reference to Examples. FIG. 3 is a diagram showing a light-receiving surface electrode structure of a solar cell showing an embodiment of the present invention. Circular semiconductor substrate 1
One light-receiving surface area is virtually divided equally into six equal parts in this embodiment, and conductors of the same pattern are formed as electrodes in each block using conductive printing and baking paste. That is, with respect to a grid electrode 12 0 with a radius dividing the light receiving surface into six equal parts, grid electrodes 12 1 , 12 2 . ing. In addition, on the outer periphery of the light receiving surface, there are the grid electrodes 12 0 , 12 1 in the same block and in other blocks.
A collector electrode 13 and electromotive force extraction electrodes 14 1 , 14 2 , . . . are provided to connect each other. As is obvious, depending on the method using a vapor deposition mask, it is impossible to form a closed loop electrode structure like the above electrode pattern. Here, the electromotive force extraction electrodes 14 1 , 14 2 . . .
Although the positions of . That is, when circular solar cell elements are packed most densely, six gaps between the elements are created at symmetrical positions with respect to the elements. Utilizing these six gaps as wiring spaces between elements is effective from the standpoint of packing factor as a solar cell panel. Therefore, by arranging electromotive force extraction electrodes at positions that divide the circumference into six equal parts and at each tip of the radial grid electrode 120 , it is possible to not only reduce the voltage drop caused by the series resistance, but also reduce the packing friction of the panel. It is also effective in improving the photoelectric conversion efficiency of the solar cell device because it improves the actor. In addition, unless all six electromotive force extraction electrodes in the same element are in an open state, a large number of series arrays will not be in an open state.
This is also effective because even if one or two electrodes for taking out electromotive force become open, the other electrodes for taking out electromotive force act as a bypass and the light output of the entire array hardly decreases. In other words, by installing the electromotive force extraction electrodes at six locations in this way, the reliability of the solar cell device is also dramatically improved. In Fig. 3, by arranging grid electrodes parallel to each other and arranging collector electrodes on the circumference, it is possible to connect the electromotive force extraction electrode 14 to the tip of each grid electrode in the central direction via the collector electrode. It becomes possible to shorten the length. Regarding the collector electrode 13, the length of the grid electrode 12i located far from the electromotive force extraction electrode 14 is shortened, and the current is small near the tip of the collector electrode located far from the electromotive force extraction electrode 14. , increases toward the root, so the voltage drop at the collector electrode becomes very small. Furthermore, the length of the grid electrode 120 installed in the diametrical direction is as long as the radial length, but since the grid electrode is formed of conductive printing and firing paste, the width is not narrow, so the voltage drop in this part is small. It's not that big. As described above, an electrode structure in which the series resistance due to the light-receiving surface electrode is extremely small and each resistance element is well-balanced is possible. If the electrode structure of FIG. 3 is designed to have the same amount of series resistance as that of FIG. 1 or 2, the effective light-receiving area will be greatly increased and a good photoelectric output will be obtained. 4, 5, and 6 show the structure of the light-receiving surface electrode of a solar cell showing other embodiments of the present invention. FIG. 4 shows a structure that is effective when solar cell elements are packed in square divided positions in relation to the packing factor of the panel. FIG. 5 shows a structure suitable for using square solar cell elements. Moreover, FIG. 6 shows a structure suitable for using a rectangular solar cell element. It goes without saying that the present invention is similarly effective for other point-asymmetric elements such as semicircular elements. Next, the device characteristics of the conventional electrode structure shown in FIGS. 1 and 2 and the electrode structure according to the present invention shown in FIG. 3 will be compared. An N-type diffusion layer with a sheet resistance of approximately 50 Ω/〓 is provided on a P-type silicon wafer with a diameter of 76 mm, and the light-receiving surface electrode structures shown in FIGS. 1, 2, and 3 are formed, respectively. The grid electrode width is 200 μm, the collector electrode width is 200 μm at the tip, and the root portion is 5 mm in the structure shown in Figure 1, 2.5 mm in the structure shown in Figure 2, and 2.5 mm in the structure shown in Figure 3.
It was set to 300 μm. Adjacent grid electrode spacing is 3.8
mm. Also, the sheet resistance of the light-receiving surface electrode is 3m
Ω/〓, and an antireflection film was formed on the light receiving surface.
The output characteristics of each solar cell were measured at 28° C. under natural light with an incident energy of 74.7 mw/cm 2 . The results are shown below.

【表】 本考案による受光面電極構造を採用することに
よつて約7%の変換効率の向上が得られた。 更にグリツド電極幅を実施例以下好ましくは
200μm以下にして、コレクタ電極に接近するにつ
れて幅が太くなる形状、またコレクタ電極は起電
力取出し用電極に接近するほど太くなる形状に設
けることがより望ましい。 以上説明した様に本考案は、グリツド電極が一
端からコレクタ電極と連結される他端へ移行する
につれて漸次径大となつて電気抵抗が減少し、ま
たコレクタ電極は起電力取出部へ移行するに従つ
て漸次径大となるように成型されているため受光
面の実質受光効率が高くかつ電気抵抗値が低い電
極構造が構成されることとなる。従つて本考案に
よれば高出力の特性が得られ、かつ長時間の使用
に際して高い信頼性が得られる受光面電極構造を
有する太陽電池装置を提供するものであり、非常
に産業的意義の高いものである。
[Table] By adopting the light-receiving surface electrode structure according to the present invention, an improvement in conversion efficiency of about 7% was obtained. Furthermore, it is preferable to set the grid electrode width to less than the example.
It is more desirable that the thickness be 200 μm or less, and that the width becomes thicker as it approaches the collector electrode, and that the collector electrode is provided in a shape that becomes thicker as it approaches the electromotive force extraction electrode. As explained above, in the present invention, as the grid electrode moves from one end to the other end connected to the collector electrode, the diameter gradually increases and the electrical resistance decreases, and as the collector electrode moves to the electromotive force extraction part, Therefore, since the electrode structure is formed so as to gradually increase in diameter, an electrode structure is constructed in which the light-receiving surface has a high substantial light-receiving efficiency and a low electric resistance value. Therefore, the present invention provides a solar cell device having a light-receiving surface electrode structure that provides high output characteristics and high reliability during long-term use, and is of great industrial significance. It is something.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は従来における太陽電池の
受光面電極構造を示す構成図、第3図は本発明に
よる太陽電池の受光面電極構造を示す構成図、第
4図、第5図および第6図は本発明による他の受
光面電極構造を示す構成図である。 11:半導体基板受光面、120,121,12
…:グリツド電極、13:コレクター電極、1
1,142,143…:起電力取り出し用電極。
1 and 2 are block diagrams showing the light-receiving surface electrode structure of a conventional solar cell, FIG. 3 is a block diagram showing the light-receiving surface electrode structure of a solar cell according to the present invention, and FIGS. FIG. 6 is a configuration diagram showing another light-receiving surface electrode structure according to the present invention. 11: Semiconductor substrate light-receiving surface, 12 0 , 12 1 , 12
2 ...: Grid electrode, 13: Collector electrode, 1
4 1 , 14 2 , 14 3 ...: Electrode for taking out electromotive force.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 受光面を略々等分割し、各分割された領域内に
略々等ピツチで平行配列される複数の線状グリツ
ド電極と各分割された領域に対応して起電力を取
り出すための1個の点状起電力取出電極とを設
け、前記受光面周縁に沿つて前記グリツド電極相
互間及び前記起電力取出電極相互間を共通に連結
する環状コレクタ電極を配設して成る太陽電池装
置の電極構造において、前記グリツド電極は前記
起電力取出電極から離れるに従つて漸次全長が短
くなつて両端で前記コレクタ電極と連結されてい
ることを特徴とする太陽電池装置の電極構造。
The light-receiving surface is divided into approximately equal parts, and within each divided area, a plurality of linear grid electrodes are arranged in parallel at approximately equal pitches, and one electrode corresponding to each divided area is used to extract an electromotive force. an electrode structure for a solar cell device comprising: a point-shaped electromotive force extraction electrode; and an annular collector electrode that commonly connects the grid electrodes and the electromotive force extraction electrodes along the periphery of the light receiving surface. An electrode structure for a solar cell device, wherein the grid electrode has a total length that gradually becomes shorter as it moves away from the electromotive force extraction electrode, and is connected to the collector electrode at both ends.
JP3801279U 1979-03-24 1979-03-24 Expired JPS638149Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3801279U JPS638149Y2 (en) 1979-03-24 1979-03-24

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3801279U JPS638149Y2 (en) 1979-03-24 1979-03-24

Publications (2)

Publication Number Publication Date
JPS55139560U JPS55139560U (en) 1980-10-04
JPS638149Y2 true JPS638149Y2 (en) 1988-03-10

Family

ID=28902160

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3801279U Expired JPS638149Y2 (en) 1979-03-24 1979-03-24

Country Status (1)

Country Link
JP (1) JPS638149Y2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104952946A (en) * 2014-03-24 2015-09-30 住友电气工业株式会社 Solar cell, concentrator photovoltaic unit, concentrator photovoltaic module, and method for producing concentrator photovoltaic module

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS629750Y2 (en) * 1981-01-12 1987-03-06
JPS6190477A (en) * 1984-10-09 1986-05-08 Mitsubishi Electric Corp Thin plate body
EP2472593A1 (en) 2009-08-26 2012-07-04 Mitsubishi Electric Corporation Solar battery cell and method for manufacturing the solar battery cell
WO2014069118A1 (en) * 2012-11-01 2014-05-08 信越化学工業株式会社 Solar cell and solar cell module
JP6273583B2 (en) * 2012-11-30 2018-02-07 パナソニックIpマネジメント株式会社 Solar cell

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104952946A (en) * 2014-03-24 2015-09-30 住友电气工业株式会社 Solar cell, concentrator photovoltaic unit, concentrator photovoltaic module, and method for producing concentrator photovoltaic module

Also Published As

Publication number Publication date
JPS55139560U (en) 1980-10-04

Similar Documents

Publication Publication Date Title
KR101365852B1 (en) Solar cell with reduced base diffusion area
US3984256A (en) Photovoltaic cell array
US4315097A (en) Back contacted MIS photovoltaic cell
KR101613843B1 (en) Solar cell and method for manufacturing the same
US4330680A (en) Integrated series-connected solar cell
US3433677A (en) Flexible sheet thin-film photovoltaic generator
US4283589A (en) High-intensity, solid-state solar cell
JPS60121779A (en) Solar battery and method of producing same
JP2012513685A (en) Solar cell and manufacturing method thereof
KR100953618B1 (en) Solar cell
JPS638149Y2 (en)
JPH0652795B2 (en) Flexible amorphous semiconductor solar cell
US4575576A (en) Three-junction solar cell
JPH0446468B2 (en)
JP2019519939A (en) Photovoltaic cell, photovoltaic cell array, photovoltaic cell, and photovoltaic cell manufacturing method
US20090308429A1 (en) Thin-film solar module
JP3203076B2 (en) Silicon solar cells for space
WO2023143144A1 (en) Photovoltaic assembly and preparation method therefor
KR101637825B1 (en) Back electrode of solar cell and method for the same
EP3573113B1 (en) Photovoltaic module
CN207938618U (en) A kind of laser slotting structure of passivating back solar cell
JPS62172765A (en) Light/voltage converter
TW201801332A (en) Single-sided solar cell, method for manufacturing the same and solar cell module
CN117650188B (en) Solar cell, preparation method thereof, photovoltaic module and photovoltaic system
JPS6318349B2 (en)