TW201801332A - Single-sided solar cell, method for manufacturing the same and solar cell module - Google Patents

Single-sided solar cell, method for manufacturing the same and solar cell module Download PDF

Info

Publication number
TW201801332A
TW201801332A TW105119324A TW105119324A TW201801332A TW 201801332 A TW201801332 A TW 201801332A TW 105119324 A TW105119324 A TW 105119324A TW 105119324 A TW105119324 A TW 105119324A TW 201801332 A TW201801332 A TW 201801332A
Authority
TW
Taiwan
Prior art keywords
electrode
back surface
passivation layer
electrodes
solar cell
Prior art date
Application number
TW105119324A
Other languages
Chinese (zh)
Other versions
TWI626755B (en
Inventor
張評款
魏志銘
王建竣
李濟群
Original Assignee
茂迪股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 茂迪股份有限公司 filed Critical 茂迪股份有限公司
Priority to TW105119324A priority Critical patent/TWI626755B/en
Priority to CN201610552875.1A priority patent/CN107527957A/en
Publication of TW201801332A publication Critical patent/TW201801332A/en
Application granted granted Critical
Publication of TWI626755B publication Critical patent/TWI626755B/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/022441Electrode arrangements specially adapted for back-contact solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • H01L31/1868Passivation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)

Abstract

A single-sided solar cell includes a substrate, a first passivation layer, a second passivation layer, a front electrode and a rear electrode. The substrate has a front side and a rear side. The substrate includes an emitter layer disposed on the front side, and a back surface field layer disposed on the rear side. The first passivation layer and the second passivation layer respectively cover the front side and the rear side. The second passivation layer has a plurality of holes exposing a portion of the back surface field layer. The front electrode is disposed on the front side. The rear electrode is disposed on the rear side, and the rear electrode includes a plurality of first electrodes, a second electrode and a plurality of bus electrodes. The first electrodes are respectively disposed in the holes and contact with the rear side, the second electrode covers the second passivation layer and correspondingly covers a scope around the rear side, the second electrode covers the first electrodes, a material of the first electrodes is different from that of the second electrode, and the bus electrodes are arranged on the rear side and contact with the second electrode.

Description

單面受光之太陽能電池及其製造方法與 太陽能電池模組 Single-sided light-receiving solar cell and manufacturing method thereof Solar battery module

本發明是有關於一種光電轉換裝置,且特別是有關於一種單面受光之太陽能電池及其製造方法。 The present invention relates to a photoelectric conversion device, and more particularly to a single-sided light-receiving solar cell and a method of fabricating the same.

目前的太陽能電池有單面入光式結構與雙面入光式結構。請參照圖1,其係繪示一種傳統雙面入光式太陽能電池的剖面示意圖。雙面入光式的太陽能電池100主要包含基板102、射極層104、鈍化層106、背面電場層108、鈍化層110、第一電極112與第二電極114。基板102包含彼此相對之第一面116與第二面118。基板102之第一面116與第二面118均可經粗化處理而分別具有粗糙結構120與122,以增進太陽能電池100的光吸收效率。 The current solar cells have a single-sided light-input structure and a double-sided light-integrated structure. Please refer to FIG. 1 , which is a cross-sectional view showing a conventional double-sided light-emitting solar cell. The double-sided light-emitting solar cell 100 mainly includes a substrate 102, an emitter layer 104, a passivation layer 106, a back surface electric field layer 108, a passivation layer 110, a first electrode 112, and a second electrode 114. The substrate 102 includes a first side 116 and a second side 118 opposite each other. The first surface 116 and the second surface 118 of the substrate 102 can be roughened to have rough structures 120 and 122, respectively, to enhance the light absorption efficiency of the solar cell 100.

射極層104配置在基板102內靠近第一面116的位置。射極層104與基板102具有不同之電性。鈍化層106設於第一面116上並接觸射極層104,以鈍化基板102之第一面116。第一電極112設於基板102之第一面116之上方,且第一電極112可穿過鈍化層106而與第一面116之射極層104接觸,進而可形成電性連接。 The emitter layer 104 is disposed in the substrate 102 at a position close to the first surface 116. The emitter layer 104 has a different electrical property than the substrate 102. A passivation layer 106 is disposed on the first side 116 and contacts the emitter layer 104 to passivate the first side 116 of the substrate 102. The first electrode 112 is disposed above the first surface 116 of the substrate 102, and the first electrode 112 can pass through the passivation layer 106 to contact the emitter layer 104 of the first surface 116, thereby forming an electrical connection.

背面電場層108設於基板102內靠近第二面118的位置。背面電場層108與基板102具有相同之電性。鈍化層110設於第二面118上並接觸背面電場層108,以鈍化基板102之第二面118。第二電極114設於基板102之第二面118之上,且第二電極114可穿過鈍化層110而與第二面118之背面電場層108接觸,進而可形成電性連接。 The back surface electric field layer 108 is disposed in the substrate 102 at a position close to the second surface 118. The back side electric field layer 108 has the same electrical properties as the substrate 102. A passivation layer 110 is disposed on the second side 118 and contacts the back surface field layer 108 to passivate the second side 118 of the substrate 102. The second electrode 114 is disposed on the second surface 118 of the substrate 102, and the second electrode 114 can pass through the passivation layer 110 to contact the back surface electric field layer 108 of the second surface 118, thereby forming an electrical connection.

一般而言,雙面入光式的太陽能電池的效率較單面入光式的太陽能電池高,理應較受重視。然,由於先前模組商的模組架構開發均是針對單面入光式太陽能電池,再加上雙面入光式太陽能電池的需求度較低,因此目前的研發還是以單面入光式太陽能電池為主。 In general, double-sided light-emitting solar cells are more efficient than single-sided solar cells, and should be considered more important. However, since the module architecture development of the previous module vendors is aimed at single-sided solar cells, and the demand for double-sided light-emitting solar cells is low, the current research and development is still single-sided. Solar cells are the mainstay.

請參照圖2,其係繪示一種傳統單面入光式太陽能電池的剖面示意圖。單面入光式的太陽能電池200主要包含基板202、射極層204、鈍化層206、背面電場層208、鈍化層210、第一電極212與第二電極214。基板202包含彼此相對之第一面216與第二面218。基板202之第一面216同樣可經粗化處理而具有粗糙結構220。 Please refer to FIG. 2 , which is a cross-sectional view showing a conventional single-sided light-emitting solar cell. The single-sided light-emitting solar cell 200 mainly includes a substrate 202, an emitter layer 204, a passivation layer 206, a back surface electric field layer 208, a passivation layer 210, a first electrode 212, and a second electrode 214. The substrate 202 includes a first side 216 and a second side 218 opposite each other. The first side 216 of the substrate 202 can likewise be roughened to have a rough structure 220.

射極層204配置在基板202內靠近第一面216的位置。射極層204與基板202具有不同之電性。鈍化層206設於第一面216上並接觸射極層204。第一電極212設於基板202之第一面216之上方,且第一電極212可穿過鈍化層206而與第一面216之射極層204接觸,進而可形成電性連接。 The emitter layer 204 is disposed in the substrate 202 at a position close to the first surface 216. The emitter layer 204 has a different electrical property than the substrate 202. The passivation layer 206 is disposed on the first face 216 and contacts the emitter layer 204. The first electrode 212 is disposed above the first surface 216 of the substrate 202, and the first electrode 212 can pass through the passivation layer 206 to contact the emitter layer 204 of the first surface 216, thereby forming an electrical connection.

背面電場層208設於基板202內靠近第二面218的位置。背面電場層208與基板202具有相同之電性。鈍化層210設於第二面218上並接觸背面電場層208,以鈍化基板202之第二面218。鈍化層210中穿設有多個暴露出背面電場層208的開孔222,其中這些開孔222係利用雷射穿孔製程燒蝕鈍化層210所形成。這些開孔222暴露出部分之背面電場層208。第二電極214設於基板202之第二面218之上,並覆蓋鈍化層210上,且設置在鈍化層210的這些開孔222中而與背面電場層208接觸,進而形成電性連接。 The back surface electric field layer 208 is disposed in the substrate 202 at a position close to the second surface 218. The back side electric field layer 208 has the same electrical properties as the substrate 202. The passivation layer 210 is disposed on the second face 218 and contacts the back surface electric field layer 208 to passivate the second face 218 of the substrate 202. A plurality of openings 222 are formed in the passivation layer 210 exposing the back surface electric field layer 208, wherein the openings 222 are formed by ablation of the passivation layer 210 by a laser perforation process. These openings 222 expose a portion of the back side electric field layer 208. The second electrode 214 is disposed on the second surface 218 of the substrate 202 and covers the passivation layer 210 and is disposed in the openings 222 of the passivation layer 210 to contact the back surface electric field layer 208 to form an electrical connection.

在製作太陽能電池200時,由於係利用雷射穿孔製程燒蝕鈍化層210來形成開孔222,而雷射容易損傷基板202之第二面218,因此導致太陽能電池200的開路電壓(Voc)下降。此外,雷射穿孔製程之設備昂貴,且較為耗時,而導致製程成本增加,產能下降。 When the solar cell 200 is fabricated, the opening 222 is formed by ablation of the passivation layer 210 by a laser perforation process, and the laser easily damages the second side 218 of the substrate 202, thereby causing the open circuit voltage (Voc) of the solar cell 200 to decrease. . In addition, the laser perforation process is expensive and time consuming, resulting in increased process costs and reduced throughput.

因此,本發明之一目的就是在提供一種單面受光之太陽能電池及其製造方法與太陽能電池模組,其背面電極包含穿過鈍化層之第一電極、以及覆蓋在此鈍化層與至少部分之第一電極上的第二電極。第一電極可採用電阻率低於第二電極之材料,因此第一電極的電流傳導可獲得有效提升,而使得太陽能電池具有高效率。此外,第二電極之電流收集與光反射可使太陽能電池具有高填充因子(fill factor,FF)與高短路電流(Jsc)。 Accordingly, it is an object of the present invention to provide a single-sided light-receiving solar cell, a method of fabricating the same, and a solar cell module, the back electrode comprising a first electrode passing through the passivation layer, and covering the passivation layer and at least a portion thereof a second electrode on the first electrode. The first electrode may be made of a material having a lower resistivity than the second electrode, so that the current conduction of the first electrode can be effectively improved, so that the solar cell has high efficiency. In addition, current collection and light reflection of the second electrode can cause the solar cell to have a high fill factor (FF) and a high short circuit current (Jsc).

本發明之另一目的是在提供一種單面受光之太陽能電池及其製造方法與太陽能電池模組,其背面電極之第一電極相對於第二電極具有於燒結時可燒穿鈍化層的成分,因此第一電極可利用燒結方式穿設於鈍化層中。相較於傳統雷射穿孔方式,燒結方式可減少對基板背面的損傷,而可提升太陽能電池之開路電壓。此外,燒結方式的採用更可降低製程成本,提高產能。 Another object of the present invention is to provide a single-sided light-receiving solar cell, a method of manufacturing the same, and a solar cell module, wherein a first electrode of a back electrode has a composition that can burn through the passivation layer during sintering with respect to the second electrode. Therefore, the first electrode can be passed through the passivation layer by means of sintering. Compared with the conventional laser perforation method, the sintering method can reduce the damage to the back surface of the substrate, and can increase the open circuit voltage of the solar cell. In addition, the use of sintering methods can reduce process costs and increase production capacity.

根據本發明之上述目的,提出一種單面受光之太陽能電池。此單面受光之太陽能電池包含基板、第一鈍化層與第二鈍化層、正面電極以及背面電極。基板具有正面與背面,其中基板包含射極層設於正面、以及背面電場層設於背面。第一鈍化層與第二鈍化層分別覆蓋正面與背面,其中第二鈍化層具有複數個開孔暴露出部分之背面電場層。正面電極位於正面上。背面電極位於背面上,背面電極包含複數個第一電極、一第二電極以及複數個匯流電極,其中這些第一電極分別設在開孔中且接觸背面,第二電極覆蓋在第二鈍化層上並對應覆蓋到背面周圍的範圍,第二電極覆蓋第一電極,該複數個第一電極與該第二電極的材質不同,該複數個匯流電極排列配置於該背面處且與該第二電極接觸。 According to the above object of the present invention, a single-sided light-receiving solar cell is proposed. The single-sided light-receiving solar cell includes a substrate, a first passivation layer and a second passivation layer, a front electrode, and a back electrode. The substrate has a front side and a back side, wherein the substrate includes an emitter layer disposed on the front surface and a back surface electric field layer disposed on the back surface. The first passivation layer and the second passivation layer respectively cover the front side and the back side, wherein the second passivation layer has a plurality of open-hole exposed portions of the back surface electric field layer. The front electrode is on the front side. The back electrode is located on the back surface, and the back electrode comprises a plurality of first electrodes, a second electrode and a plurality of bus electrodes, wherein the first electrodes are respectively disposed in the openings and contact the back surface, and the second electrode covers the second passivation layer And correspondingly covering the range around the back surface, the second electrode covers the first electrode, the plurality of first electrodes are different from the material of the second electrode, and the plurality of bus electrodes are arranged at the back surface and are in contact with the second electrode .

依據本發明之一實施例,上述之複數個第一電極相對於該第二電極具有於燒結時可燒穿第二鈍化層之成分。 According to an embodiment of the invention, the plurality of first electrodes have a composition that can burn through the second passivation layer during sintering with respect to the second electrode.

依據本發明之一實施例,上述之第一電極之材料包含由銀與銅組成之群組,第二電極之材料包含由鋁與銅組成之群組。 According to an embodiment of the invention, the material of the first electrode comprises a group consisting of silver and copper, and the material of the second electrode comprises a group consisting of aluminum and copper.

依據本發明之一實施例,上述之開孔為點狀、虛線狀或直線狀。 According to an embodiment of the invention, the opening is a dot shape, a dotted line shape or a linear shape.

依據本發明之一實施例,上述之每一個第一電極被第二電極完全覆蓋或局部覆蓋。 According to an embodiment of the invention, each of the first electrodes is completely covered or partially covered by the second electrode.

根據本發明之上述目的,另提出一種太陽能電池模組。此太陽能電池模組包含上板、下板、如上述之單面受光之太陽能電池以及至少一封裝材料層。單面受光之太陽能電池設於上板與下板之間。封裝材料層位於上板與下板之間,將單面受光之太陽能電池與上板和下板結合。 According to the above object of the present invention, a solar battery module is further proposed. The solar cell module comprises an upper plate, a lower plate, a single-sided light-receiving solar cell as described above, and at least one encapsulating material layer. A single-sided light-receiving solar cell is disposed between the upper plate and the lower plate. The encapsulating material layer is located between the upper plate and the lower plate, and the single-sided light-receiving solar cell is combined with the upper plate and the lower plate.

根據本發明之上述目的,更提出一種單面受光之太陽能電池之製造方法。在此方法中,提供基板,基板具有正面與背面。形成射極層與背面電場層分別位於正面與背面。形成第一鈍化層與第二鈍化層分別覆蓋正面與背面。形成正面電極與背面電極分別位於正面與背面上,背面電極包含複數個第一電極、一第二電極與複數個匯流電極。形成此複數個第一電極、第二電極及複數個匯流電極時包含:提供複數個第一電極漿料與複數個匯流電極漿料於第二鈍化層上,其中各該第一電極漿料與各該匯流電極漿料彼此所覆蓋之面積不同。提供第二電極漿料於第二鈍化層上,此複數個第二電極漿料的材質不同於該第一電極漿料與該複數個匯流電極漿料的材質,且第二電極漿料覆蓋此複數個第一電極 漿料,該第二電極漿料連接於各該匯流電極漿料的周圍處,第二電極漿料對應覆蓋到背面周圍的範圍。利用一燒結製程,使此複數個第一電極漿料、第二電極漿料以及複數個匯流電極漿料分別形成前述複數個第一電極、第二電極以及複數個匯流電極,其中此複數個第一電極漿料與複數個匯流電極漿料燒穿第二鈍化層分別形成前述複數個開孔後而接觸背面,該第二電極漿料與該背面之間被該第二鈍化層分隔而無接觸該背面。 According to the above object of the present invention, a method of manufacturing a single-sided light-receiving solar cell is further proposed. In this method, a substrate is provided having a front side and a back side. The emitter layer and the back surface electric field layer are formed on the front side and the back side, respectively. The first passivation layer and the second passivation layer are formed to cover the front side and the back side, respectively. The front electrode and the back electrode are respectively formed on the front surface and the back surface, and the back electrode includes a plurality of first electrodes, a second electrode and a plurality of bus electrodes. Forming the plurality of first electrodes, the second electrodes, and the plurality of bus electrodes, comprising: providing a plurality of first electrode pastes and a plurality of bus electrode pastes on the second passivation layer, wherein each of the first electrode pastes Each of the bus electrode pastes has a different area covered by each other. Providing a second electrode paste on the second passivation layer, the material of the plurality of second electrode pastes is different from the material of the first electrode paste and the plurality of bus electrode pastes, and the second electrode paste covers the second electrode paste Multiple first electrodes The slurry, the second electrode slurry is connected to the periphery of each of the bus electrode pastes, and the second electrode paste corresponds to a range around the back surface. Forming, by a sintering process, the plurality of first electrode pastes, the second electrode paste, and the plurality of bus electrode pastes to form the plurality of first electrodes, the second electrodes, and the plurality of bus electrodes, wherein the plurality of first electrodes An electrode paste and a plurality of bus electrode pastes are burned through the second passivation layer to form the plurality of openings, respectively, to contact the back surface, and the second electrode paste and the back surface are separated by the second passivation layer without contact The back.

依據本發明之一實施例,上述之開孔為點狀、虛線狀或直線狀。 According to an embodiment of the invention, the opening is a dot shape, a dotted line shape or a linear shape.

依據本發明之一實施例,上述之第一電極之材料包含由銀與銅組成之群組,第二電極之材料包含由鋁與銅組成之群組。 According to an embodiment of the invention, the material of the first electrode comprises a group consisting of silver and copper, and the material of the second electrode comprises a group consisting of aluminum and copper.

依據本發明之一實施例,上述之每一個第一電極被第二電極完全覆蓋或局部覆蓋。 According to an embodiment of the invention, each of the first electrodes is completely covered or partially covered by the second electrode.

依據本發明之一實施例,上述之複數個第一電極漿料具有能燒穿該第二鈍化層之成分,該第二電極漿料不具有或具有較少能燒穿該第二鈍化層之成分。 According to an embodiment of the invention, the plurality of first electrode pastes have a composition capable of burning through the second passivation layer, and the second electrode paste has no or less energy to burn through the second passivation layer. ingredient.

100‧‧‧太陽能電池 100‧‧‧ solar cells

102‧‧‧基板 102‧‧‧Substrate

104‧‧‧射極層 104‧‧ ‧ emitter layer

106‧‧‧鈍化層 106‧‧‧ Passivation layer

108‧‧‧背面電場層 108‧‧‧Back electric field layer

110‧‧‧鈍化層 110‧‧‧ Passivation layer

112‧‧‧第一電極 112‧‧‧First electrode

114‧‧‧第二電極 114‧‧‧second electrode

116‧‧‧第一面 116‧‧‧ first side

118‧‧‧第二面 118‧‧‧ second side

120‧‧‧粗糙結構 120‧‧‧Rough structure

122‧‧‧粗糙結構 122‧‧‧Rough structure

200‧‧‧太陽能電池 200‧‧‧ solar cells

202‧‧‧基板 202‧‧‧Substrate

204‧‧‧射極層 204‧‧ ‧ emitter layer

206‧‧‧鈍化層 206‧‧‧ Passivation layer

208‧‧‧背面電場層 208‧‧‧Back surface layer

210‧‧‧鈍化層 210‧‧‧ Passivation layer

212‧‧‧第一電極 212‧‧‧First electrode

214‧‧‧第二電極 214‧‧‧second electrode

216‧‧‧第一面 216‧‧‧ first side

218‧‧‧第二面 218‧‧‧ second side

220‧‧‧粗糙結構 220‧‧‧Rough structure

222‧‧‧開孔 222‧‧‧ openings

300‧‧‧太陽能電池模組 300‧‧‧Solar battery module

302‧‧‧單面受光之太陽能電池 302‧‧‧Single-sided solar cells

302a‧‧‧單面受光之太陽能電池 302a‧‧‧Single-sided solar cells

304‧‧‧上板 304‧‧‧Upper board

306‧‧‧下板 306‧‧‧ Lower board

308‧‧‧封裝材料層 308‧‧‧Package material layer

310‧‧‧封裝材料層 310‧‧‧Package material layer

312‧‧‧基板 312‧‧‧Substrate

312a‧‧‧基板 312a‧‧‧Substrate

314‧‧‧第一鈍化層 314‧‧‧First passivation layer

316‧‧‧第二鈍化層 316‧‧‧second passivation layer

316a‧‧‧第二鈍化層 316a‧‧‧second passivation layer

316b‧‧‧第二鈍化層 316b‧‧‧second passivation layer

316c‧‧‧第二鈍化層 316c‧‧‧second passivation layer

318‧‧‧正面電極 318‧‧‧Front electrode

320‧‧‧背面電極 320‧‧‧Back electrode

322‧‧‧第一電極 322‧‧‧First electrode

324‧‧‧第二電極 324‧‧‧second electrode

326‧‧‧正面 326‧‧‧ positive

328‧‧‧背面 328‧‧‧Back

330‧‧‧粗糙結構 330‧‧‧Rough structure

332‧‧‧射極層 332‧‧ ‧ emitter layer

334‧‧‧背面電場層 334‧‧‧Back surface layer

336‧‧‧開孔 336‧‧‧ openings

336a‧‧‧開孔 336a‧‧‧Opening

336b‧‧‧開孔 336b‧‧‧Opening

336c‧‧‧開孔 336c‧‧‧Opening

338‧‧‧開孔 338‧‧‧Opening

338a‧‧‧開孔 338a‧‧‧Opening

338b‧‧‧開孔 338b‧‧‧Opening

338c‧‧‧開孔 338c‧‧‧Opening

340‧‧‧匯流電極 340‧‧‧Concurrent electrode

342‧‧‧選擇性背面電場層 342‧‧‧Selective back surface layer

400‧‧‧步驟 400‧‧‧ steps

402‧‧‧步驟 402‧‧‧Steps

404‧‧‧步驟 404‧‧‧Steps

406‧‧‧步驟 406‧‧‧Steps

408‧‧‧步驟 408‧‧‧Steps

410‧‧‧步驟 410‧‧‧Steps

412‧‧‧步驟 412‧‧‧Steps

為讓本發明之上述和其他目的、特徵、優點與實施例能更明顯易懂,所附圖式之說明如下:〔圖1〕係繪示一種傳統雙面入光式太陽能電池的剖面示意圖; 〔圖2〕係繪示一種傳統單面入光式太陽能電池的剖面示意圖;〔圖3〕係繪示依照本發明之一實施方式的一種太陽能電池模組的剖面示意圖;〔圖4〕係繪示依照本發明之一實施方式的一種單面受光之太陽能電池的剖面示意圖;〔圖5A〕係繪示依照本發明之一實施方式的一種單面受光之太陽能電池之第二鈍化層中之開孔的分布式意圖;〔圖5B〕係繪示依照本發明之一實施方式的一種太單面受光之陽能電池之第二鈍化層中之開孔的分布式意圖;〔圖5C〕係繪示依照本發明之一實施方式的一種單面受光之太陽能電池之開孔的分布式意圖;〔圖6〕係繪示依照本發明之一實施方式的一種單面受光之太陽能電池的剖面示意圖;以及〔圖7〕係繪示依照本發明之一實施方式的一種單面受光之太陽能電池的製造流程圖。 The above and other objects, features, advantages and embodiments of the present invention will become more apparent and understood. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic cross-sectional view showing a conventional double-sided light-emitting solar cell; FIG. 2 is a schematic cross-sectional view showing a conventional single-sided light-emitting solar cell; FIG. 3 is a cross-sectional view showing a solar cell module according to an embodiment of the present invention; A schematic cross-sectional view of a single-sided light-receiving solar cell according to an embodiment of the present invention; [FIG. 5A] illustrates a second passivation layer of a single-sided light-receiving solar cell according to an embodiment of the present invention. The distributed intent of the hole; [Fig. 5B] is a schematic view showing the distributed intent of the opening in the second passivation layer of the solar cell with too single-sided light receiving light according to an embodiment of the present invention; [Fig. 5C] A distributed intent of an opening of a single-sided light-receiving solar cell according to an embodiment of the present invention; [FIG. 6] is a cross-sectional view showing a single-sided light-receiving solar cell according to an embodiment of the present invention; And [FIG. 7] is a flow chart showing the manufacture of a single-sided light-receiving solar cell according to an embodiment of the present invention.

請參照圖3,其係繪示依照本發明之一實施方式的一種太陽能電池模組的剖面示意圖。在本實施方式中,太陽能電池模組300主要包含單面受光之太陽能電池302、上板304、下板306、以及一個或多個封裝材料層,例如乙烯-醋酸乙烯酯共聚物(EVA)之封裝材料層308與310。 Please refer to FIG. 3 , which is a cross-sectional view showing a solar cell module according to an embodiment of the present invention. In the present embodiment, the solar cell module 300 mainly comprises a single-sided light-receiving solar cell 302, an upper plate 304, a lower plate 306, and one or more layers of encapsulating material, such as ethylene-vinyl acetate copolymer (EVA). Encapsulation material layers 308 and 310.

如圖3所示,在太陽能電池模組300中,單面受光之太陽能電池302設於下板306上,且設於上板304之 下。因此,上板304設於下板306之上,且單面受光之太陽能電池302設於下板306與上板304之間。另外,二層封裝材料層308與310則分別設置在上板304與單面受光之太陽能電池302、以及下板306與單面受光之太陽能電池302之間。藉由高溫壓合的程序,封裝材料層308和310於熔融態時可供將單面受光之太陽能電池302與下板306和上板304結合。 As shown in FIG. 3, in the solar cell module 300, a single-sided light-receiving solar cell 302 is disposed on the lower plate 306 and disposed on the upper plate 304. under. Therefore, the upper plate 304 is disposed above the lower plate 306, and the single-sided light-receiving solar cell 302 is disposed between the lower plate 306 and the upper plate 304. In addition, the two layers of encapsulation material layers 308 and 310 are respectively disposed between the upper plate 304 and the single-sided light-receiving solar cell 302, and the lower plate 306 and the single-sided light-receiving solar cell 302. The encapsulating material layers 308 and 310 are used to bond the single-sided light-receiving solar cell 302 to the lower plate 306 and the upper plate 304 in a molten state by a high temperature press-fitting procedure.

請參照圖4,其係繪示依照本發明之一實施方式的一種單面受光之太陽能電池的剖面示意圖。在一些實施例中,單面受光之太陽能電池302主要可包含基板312、第一鈍化層314、第二鈍化層316、正面電極318以及背面電極320。 Please refer to FIG. 4 , which is a cross-sectional view of a single-sided light-receiving solar cell according to an embodiment of the present invention. In some embodiments, the single-sided light-receiving solar cell 302 can primarily include a substrate 312, a first passivation layer 314, a second passivation layer 316, a front side electrode 318, and a back side electrode 320.

基板312具有正面326與背面328,正面326與背面328分別位於基板312之相對二側。基板312可為第一導電型。在一些例子中,基板312之材料可為半導體材料,例如矽。在一些示範例子中,可對基板312之正面326進行粗化處理,而使基板312之正面326具有粗糙結構330,例如單晶晶片之金字塔形貌之粗糙結構,藉此增進單面受光之太陽能電池302對於入射光的吸收效率。 The substrate 312 has a front side 326 and a back side 328, and the front side 326 and the back side 328 are respectively located on opposite sides of the substrate 312. The substrate 312 can be of a first conductivity type. In some examples, the material of the substrate 312 can be a semiconductor material such as germanium. In some exemplary embodiments, the front side 326 of the substrate 312 may be roughened such that the front side 326 of the substrate 312 has a rough structure 330, such as a pyramidal structure of a single crystal wafer, thereby enhancing single-sided light-receiving solar energy. The absorption efficiency of the battery 302 for incident light.

基板312包含射極層332與背面電場層334。射極層332可全面性地設於基板312內且靠近正面326的位置。射極層332可為基板312內之一摻雜層,且具有不同於基板312的第二導電型。舉例而言,當基板312之電性為N型時,射極層332可為P型摻雜層,例如硼(B)、鋁(Al)、鎵 (Ga)、銦(In)或鉈(Tl)摻雜層。背面電場層334可配置於基板312內且靠近背面328的位置。背面電場層334具有與基板312相同的第一導電型。例如,當基板312之電性為N型時,背面電場層334可為形成在背面328上之N型摻雜層,例如磷摻雜層。 The substrate 312 includes an emitter layer 332 and a back surface field layer 334. The emitter layer 332 can be disposed entirely within the substrate 312 and near the front side 326. The emitter layer 332 can be a doped layer within the substrate 312 and have a second conductivity type different from the substrate 312. For example, when the electrical property of the substrate 312 is N-type, the emitter layer 332 may be a P-type doped layer, such as boron (B), aluminum (Al), gallium. (Ga), indium (In) or germanium (Tl) doped layers. The back side electric field layer 334 can be disposed within the substrate 312 and near the back surface 328. The back surface electric field layer 334 has the same first conductivity type as the substrate 312. For example, when the electrical properties of the substrate 312 are N-type, the back surface electric field layer 334 can be an N-type doped layer formed on the back surface 328, such as a phosphorus doped layer.

第一鈍化層314可覆蓋在基板312的正面326上並接觸射極層332,以鈍化正面326。在一些例子中,第一鈍化層314之材質可為氧化矽、氮化矽或氧化鋁,且第一鈍化層314可為單層結構或多層堆疊結構。第二鈍化層316則可覆蓋在基板312的背面328上並接觸背面電場層334,以鈍化背面328。第二鈍化層316之材質可例如為氧化矽、氮化矽或氧化鋁,且第二鈍化層316同樣可為單層結構或多層堆疊結構。第二鈍化層316具有數個開孔336,以供背面電極320的一部分設置於其中,這些開孔336貫穿第二鈍化層316而暴露出部分之背面電場層334。此外,單面受光之太陽能電池302可包含數個匯流電極340,而第二鈍化層316更可具有數個開孔338,以供這些匯流電極340排列設置在其中。單面受光之太陽能電池302之背面328上的第二鈍化層316中的開孔336可有多種型式與排列。在一些例子中,開孔336可為點狀、虛線狀或直線狀。 The first passivation layer 314 can overlie the front side 326 of the substrate 312 and contact the emitter layer 332 to passivate the front side 326. In some examples, the material of the first passivation layer 314 may be tantalum oxide, tantalum nitride or aluminum oxide, and the first passivation layer 314 may be a single layer structure or a multilayer stack structure. The second passivation layer 316 can then overlie the back side 328 of the substrate 312 and contact the back surface field layer 334 to passivate the back side 328. The material of the second passivation layer 316 may be, for example, hafnium oxide, tantalum nitride or aluminum oxide, and the second passivation layer 316 may also be a single layer structure or a multilayer stack structure. The second passivation layer 316 has a plurality of openings 336 for a portion of the back electrode 320 to be disposed therein. The openings 336 extend through the second passivation layer 316 to expose a portion of the back surface field layer 334. In addition, the single-sided light-receiving solar cell 302 may include a plurality of bus electrodes 340, and the second passivation layer 316 may further have a plurality of openings 338 for the bus electrodes 340 to be arranged therein. The openings 336 in the second passivation layer 316 on the back side 328 of the single-sided light-receiving solar cell 302 can be of various types and arrangements. In some examples, the apertures 336 can be punctiform, dashed, or linear.

請先參照圖5A、圖5B與圖5C,其係分別繪示依照本發明之一實施方式的三種太陽能電池之第二鈍化層中之開孔的分布式意圖。如圖5A所示,第二鈍化層316a供匯流電極340設置的開孔338a有三個,這三個開孔338a大 致平行的設置在第二鈍化層316a中。此外,開孔336a呈點狀,且以陣列方式排列在第二鈍化層316a中。在一些其它例子中,點狀之開孔336a可以三角晶格或矩形晶格的型式排列。 Referring to FIG. 5A, FIG. 5B and FIG. 5C, respectively, the distributed intentions of the openings in the second passivation layer of three solar cells according to an embodiment of the present invention are respectively illustrated. As shown in FIG. 5A, the second passivation layer 316a has three openings 338a for the bus electrode 340, and the three openings 338a are large. Parallel is disposed in the second passivation layer 316a. Further, the openings 336a are dot-like and are arranged in an array in the second passivation layer 316a. In some other examples, the dot-like openings 336a may be arranged in a triangular lattice or a rectangular lattice.

如圖5B所示,第二鈍化層316b供匯流電極340設置的開孔338b有三個,這三個開孔338b同樣大致平行的設置在第二鈍化層316b中。此外,開孔336b呈虛線狀。在這樣的例子中,這些開孔336b可以上下兩列交錯的方式排列在第二鈍化層316b中,且部分之開孔336b可橫穿過開孔338b。 As shown in FIG. 5B, the second passivation layer 316b has three openings 338b for the bus electrode 340, and the three openings 338b are also disposed substantially in parallel in the second passivation layer 316b. Further, the opening 336b has a dotted line shape. In such an example, the openings 336b may be arranged in a second passivation layer 316b in a staggered manner between the upper and lower columns, and a portion of the opening 336b may traverse the opening 338b.

如圖5C所示,第二鈍化層316c供匯流電極340設置的開孔338c有三個,這三個開孔338c同樣大致平行的設置在第二鈍化層316c中。此外,開孔336c呈直線狀。在這樣的例子中,這些開孔336c可以實質平行的方式排列在第二鈍化層316c中,且開孔336c可橫穿過開孔338c。 As shown in FIG. 5C, the second passivation layer 316c has three openings 338c for the bus electrodes 340, and the three openings 338c are also disposed substantially in parallel in the second passivation layer 316c. Further, the opening 336c is linear. In such an example, the openings 336c may be arranged in a substantially parallel manner in the second passivation layer 316c, and the openings 336c may traverse the openings 338c.

正面電極318設置在基板312之正面326上方,且位於第一鈍化層314上。正面電極318可穿過第一鈍化層314而與正面326之射極層332接觸,進而形成電性連接。正面電極318之材質可包含銀、鋁、或銀鋁合金。 The front electrode 318 is disposed above the front side 326 of the substrate 312 and on the first passivation layer 314. The front electrode 318 can pass through the first passivation layer 314 to contact the emitter layer 332 of the front side 326 to form an electrical connection. The material of the front electrode 318 may include silver, aluminum, or silver aluminum alloy.

背面電極320設置在基板312之背面328上。請再次參照圖4,在一些例子中,背面電極320可包含多個第一電極322與一個第二電極324。這些第一電極322分別設置在第二鈍化層316的開孔336中,且可與開孔336所暴露出之基板312之背面328接觸,即可與背面328的背面電場 層334接觸而電性連接。第二電極324則覆蓋在第二鈍化層316上,並覆蓋到背面328周圍的範圍,且第二電極324覆蓋在第一電極322上,而與第一電極322接觸,以利收集第一電極322傳來之電流。在一些例子中,如圖4所示,每一個第一電極322被第二電極324完全覆蓋。此外,第二電極324並未完全覆蓋匯流電極340,而僅覆蓋接觸到匯流電極340之周緣,以利匯流電極340與導電帶(未繪示)連接。在另一些例子中,每一個第一電極322被第二電極324局部覆蓋。在一些示範例子中,不包含開孔338的情況下,開孔336在第二鈍化層316中的開口率在約3%至約4%時,單面受光之太陽能電池302可獲得較佳的效率。 The back electrode 320 is disposed on the back surface 328 of the substrate 312. Referring again to FIG. 4, in some examples, the back electrode 320 can include a plurality of first electrodes 322 and a second electrode 324. The first electrodes 322 are respectively disposed in the openings 336 of the second passivation layer 316 and are in contact with the back surface 328 of the substrate 312 exposed by the openings 336, that is, the back surface electric field of the back surface 328. Layer 334 is in contact and electrically connected. The second electrode 324 covers the second passivation layer 316 and covers the area around the back surface 328, and the second electrode 324 covers the first electrode 322 and is in contact with the first electrode 322 to collect the first electrode. The current from 322. In some examples, as shown in FIG. 4, each of the first electrodes 322 is completely covered by the second electrode 324. In addition, the second electrode 324 does not completely cover the bus electrode 340, but only covers the periphery of the bus electrode 340, so that the bus electrode 340 is connected to a conductive strip (not shown). In other examples, each of the first electrodes 322 is partially covered by the second electrode 324. In some exemplary examples, without the opening 338, when the aperture ratio of the opening 336 in the second passivation layer 316 is from about 3% to about 4%, the single-sided light-receiving solar cell 302 can be preferably obtained. effectiveness.

在背面電極320中,第一電極322主要係配置以將背面電場層334中的電流傳遞給第二電極324,而第二電極324則用以收集這些電流。在一些例子中,第一電極322相對於第二電極324具有於燒結時可燒穿第二鈍化層316之成分,以利第一電極322在第二鈍化層316中形成開孔336並設置在這些開孔336中。在一些示範例子中,第一電極322與第二電極324的材質不同。例如,第一電極322之材料包含由銀與銅組成之群組,第二電極324之材料包含由鋁與銅組成之群組。在第一電極322之材料包含銀、且第二電極324之材料包含鋁的例子中,由於銀具有較高的導電率,因此可提升電流的傳導效率,而可提升單面受光之太陽能電池302之效率;而鋁可收集電流與反射光、且較銀便宜,因此可在較低成本下使單面受光之太陽能電池302具有高填充因子 與高短路電流。另外,在本發明的各個實施例之中,匯流電極340的材質可與該第一電極322的材質相同,但也可以不同,此可依照不同之需求而選用。 In the back electrode 320, the first electrode 322 is primarily configured to transfer current in the back surface field layer 334 to the second electrode 324, while the second electrode 324 is used to collect these currents. In some examples, the first electrode 322 has a composition that can be burned through the second passivation layer 316 when sintered relative to the second electrode 324, so that the first electrode 322 forms an opening 336 in the second passivation layer 316 and is disposed on the first electrode 322. These openings 336 are in the middle. In some exemplary examples, the materials of the first electrode 322 and the second electrode 324 are different. For example, the material of the first electrode 322 comprises a group consisting of silver and copper, and the material of the second electrode 324 comprises a group consisting of aluminum and copper. In the example where the material of the first electrode 322 contains silver and the material of the second electrode 324 contains aluminum, since the silver has a high conductivity, the conduction efficiency of the current can be improved, and the single-sided light-receiving solar cell 302 can be improved. Efficiency; aluminum can collect current and reflected light, and is cheaper than silver, so that single-sided light-receiving solar cell 302 can have a high fill factor at a lower cost. With high short circuit current. In addition, in various embodiments of the present invention, the material of the bus electrode 340 may be the same as the material of the first electrode 322, but may be different, which may be selected according to different needs.

此外,由於第一電極322相對於第二電極324具有於燒結時可燒穿第二鈍化層316之成分,因此可利用燒結方式使第一電極322穿設於第二鈍化層316中。由於燒結方式遠較傳統雷射穿孔方式對基板312之背面328的損傷小,因此可提升單面受光之太陽能電池302之開路電壓。而且,以燒結方式在第二鈍化層316中開孔可降低製程成本,提高產能。 In addition, since the first electrode 322 has a component that can burn through the second passivation layer 316 at the time of sintering with respect to the second electrode 324, the first electrode 322 can be passed through the second passivation layer 316 by means of sintering. Since the sintering method is much less damage to the back surface 328 of the substrate 312 than the conventional laser perforation method, the open circuit voltage of the single-sided light-receiving solar cell 302 can be improved. Moreover, opening the hole in the second passivation layer 316 in a sintered manner can reduce the process cost and increase the productivity.

請參照圖6,其係繪示依照本發明之一實施方式的一種單面受光之太陽能電池的剖面示意圖。在本實施方式中,單面受光之太陽能電池302a之架構與上述之單面受光之太陽能電池302的架構大致相同,二者之間的差異主要在於單面受光之太陽能電池302a之基板312a更包含多個選擇性背面電場(S-BSF)層342設於背面328。在一些例子中,這些選擇性背面電場層342與第一電極322和匯流電極340分別位於背面電場層334之相對二側,且這些選擇性背面電場層322分別對應於第一電極322和匯流電極340。 Please refer to FIG. 6 , which is a cross-sectional view of a single-sided light-receiving solar cell according to an embodiment of the present invention. In the present embodiment, the structure of the single-sided light-receiving solar cell 302a is substantially the same as that of the single-sided light-receiving solar cell 302. The difference between the two is mainly because the substrate 312a of the single-sided light-receiving solar cell 302a further includes A plurality of selective back surface electric field (S-BSF) layers 342 are provided on the back side 328. In some examples, the selective back surface field layer 342 and the first electrode 322 and the bus electrode 340 are respectively located on opposite sides of the back surface electric field layer 334, and the selective back surface electric field layer 322 corresponds to the first electrode 322 and the bus electrode, respectively. 340.

請一併參照圖7與圖4,其中圖7係繪示依照本發明之一實施方式的一種太陽能電池的製造流程圖。在本實施方式中,製作如圖4所示之單面受光之太陽能電池302時,可先提供基板312,其中基板312具有彼此相對之正面326與背面328。基板312可為第一導電型,且基板312之材 料可為半導體材料,例如矽。在一些例子中,可對基板312之正面326進行粗化處理,而使基板312之正面326具有粗糙結構330,例如金字塔形貌的粗糙結構。 Please refer to FIG. 7 and FIG. 4 together. FIG. 7 is a flow chart showing the manufacture of a solar cell according to an embodiment of the present invention. In the present embodiment, when the single-sided light-receiving solar cell 302 shown in FIG. 4 is fabricated, the substrate 312 may be provided first, wherein the substrate 312 has a front side 326 and a back side 328 opposite to each other. The substrate 312 can be of a first conductivity type, and the substrate 312 The material can be a semiconductor material such as germanium. In some examples, the front side 326 of the substrate 312 may be roughened such that the front side 326 of the substrate 312 has a rough structure 330, such as a pyramidal topography.

接下來,可進行步驟402,以例如對基板312之正面326進行摻雜製程的方式,而在正面326上形成第二導電型之射極層332。此射極層332延伸覆蓋在整個正面326上,實務上,射極層332設於基板312內且靠近正面326的位置。第二導電型不同於基板312的第一導電型,且第一導電型為N型,第二導電型為P型。此時,射極層332可為P型摻雜層,例如硼(B)、鋁(Al)、鎵(Ga)、銦(In)或鉈(Tl)摻雜層。 Next, step 402 can be performed to form a second conductivity type emitter layer 332 on the front side 326, for example, by performing a doping process on the front side 326 of the substrate 312. The emitter layer 332 extends over the entire front side 326. In practice, the emitter layer 332 is disposed within the substrate 312 and adjacent the front side 326. The second conductivity type is different from the first conductivity type of the substrate 312, and the first conductivity type is an N type, and the second conductivity type is a P type. At this time, the emitter layer 332 may be a P-type doped layer such as boron (B), aluminum (Al), gallium (Ga), indium (In) or germanium (Tl) doped layers.

接著,可進行步驟404,以例如對基板312之背面328進行摻雜製程的方式,而在背面328上形成第一導電型的背面電場層334。此背面電場層334延伸覆蓋在整個背面328上,實務上,背面電場層334可配置於基板312內且靠近背面328的位置。在一些示範例子中,第一導電型為N型,且可採用例如三氯氧磷(POCl3)來對背面328進行摻雜,因而背面電場層334可為磷摻雜層。圖7之示範例子係以先形成射極層332、再形成背面電場層334的順序來進行說明,然本發明並不限於此,亦可先形成背面電場層334、再形成射極層332。 Next, step 404 can be performed to form a back surface electric field layer 334 of the first conductivity type on the back surface 328, for example, by performing a doping process on the back surface 328 of the substrate 312. The back surface field layer 334 extends over the entire back surface 328. In practice, the back surface field layer 334 can be disposed within the substrate 312 and adjacent the back surface 328. In some exemplary examples, the first conductivity type is N-type, and the back surface 328 may be doped using, for example, phosphorus oxychloride (POCl 3 ), and thus the back surface electric field layer 334 may be a phosphorus doped layer. The exemplary embodiment of FIG. 7 is described in the order in which the emitter layer 332 is formed first and the back surface field layer 334 is formed. However, the present invention is not limited thereto, and the back surface electric field layer 334 and the emitter layer 332 may be formed first.

請參照圖6,在一些其它例子中,可於進行後續之步驟408前,即形成第二鈍化層316前,本實施方式更可再次利用對背面328進行摻雜製程的方式,而形成多個選擇 性背面電場層342於基板312之背面328。這些選擇性背面電場層342與後續形成之背面電極320的第一電極322和匯流電極340分別位於背面電場層334的相對二側,且這些選擇性背面電場層分別對應於第一電極332和匯流電極340。 Referring to FIG. 6 , in some other examples, before the subsequent step 408 can be performed, that is, before the second passivation layer 316 is formed, the embodiment can further utilize the doping process of the back surface 328 to form multiple select The back surface field layer 342 is on the back side 328 of the substrate 312. The selective back surface electric field layer 342 and the first electrode 322 and the bus electrode 340 of the subsequently formed back surface electrode 320 are respectively located on opposite sides of the back surface electric field layer 334, and the selective back surface electric field layers respectively correspond to the first electrode 332 and the confluence Electrode 340.

完成射極層332與背面電場層334後,可進行步驟406,以利用例如沉積技術形成第一鈍化層314覆蓋在基板312的正面326上並接觸射極層332,藉以鈍化正面326。第一鈍化層314之材質可為氧化矽、氮化矽或氧化鋁,且第一鈍化層314可為單層結構或多層堆疊結構。 After the emitter layer 332 and the back surface field layer 334 are completed, step 406 can be performed to form a first passivation layer 314 over the front side 326 of the substrate 312 and contact the emitter layer 332 using, for example, a deposition technique to passivate the front side 326. The material of the first passivation layer 314 may be tantalum oxide, tantalum nitride or aluminum oxide, and the first passivation layer 314 may be a single layer structure or a multilayer stack structure.

接下來,可進行步驟408,以利用例如沉積技術形成第二鈍化層316覆蓋在基板312的背面328上並接觸背面電場層334,藉以鈍化背面328。第二鈍化層316之材質可為氧化矽、氮化矽或氧化鋁,且第二鈍化層316可為單層結構或多層堆疊結構。圖7之示範例子係以先形成第一鈍化層314、再形成第二鈍化層316的順序進行說明,然本發明並不限於此,亦可先形成第二鈍化層316、再形成第一鈍化層314,或者同時形成第一鈍化層314與第二鈍化層316。 Next, step 408 can be performed to form a second passivation layer 316 overlying the back side 328 of the substrate 312 and contact the back surface field layer 334 using, for example, a deposition technique, thereby passivating the back side 328. The material of the second passivation layer 316 may be tantalum oxide, tantalum nitride or aluminum oxide, and the second passivation layer 316 may be a single layer structure or a multilayer stack structure. The exemplary embodiment of FIG. 7 is described in the order of forming the first passivation layer 314 and then forming the second passivation layer 316. However, the present invention is not limited thereto, and the second passivation layer 316 may be formed first to form the first passivation. Layer 314, or both first passivation layer 314 and second passivation layer 316 are formed.

在一些例子中,於步驟408中,完成第二鈍化層316的沉積後,可對第二鈍化層316進行例如雷射開孔製程,藉以在第二鈍化層316的預設位置中形成多個貫穿第二鈍化層316的開孔336,而暴露出形成於基板312之背面328之部分背面電場層334。第二鈍化層316中的開孔336可有多種型式與排列,開孔336之型式與排列如同上述實施方式的說明,例如如同圖5A至圖5C所示之型態與排列,於此不 再贅述。如同上述實施方式的說明,第二鈍化層316更可具有數個開孔338,其中這些開孔338亦可利用雷射開孔技術,或者可利用微影蝕刻技術來製作。 In some examples, after the deposition of the second passivation layer 316 is completed in step 408, the second passivation layer 316 may be subjected to, for example, a laser opening process, thereby forming a plurality of locations in the preset position of the second passivation layer 316. A portion of the back surface electric field layer 334 formed on the back surface 328 of the substrate 312 is exposed through the opening 336 of the second passivation layer 316. The openings 336 in the second passivation layer 316 can be of various types and arrangements. The patterns and arrangements of the openings 336 are as described in the above embodiments, for example, as shown in FIGS. 5A to 5C. Let me repeat. As described in the above embodiments, the second passivation layer 316 may further have a plurality of openings 338, wherein the openings 338 may also be fabricated using laser aperture techniques or may be fabricated using photolithographic etching techniques.

在這樣的例子中,接著,可進行步驟410,以形成背面電極320位於第二鈍化層316上且填入開孔336中。在一些示範例子中,形成背面電極320時,可先利用例如沉積或印刷方式,例如網版印刷方式,形成背面電極320之多個第一電極322分別填入第二鈍化層316中的開孔336中,再利用例如沉積或印刷方式,例如網版印刷方式,形成背面電極320之第二電極324覆蓋第二鈍化層316並完全覆蓋或局部覆蓋在每一個第一電極322上。因此,第一電極322可與開孔336所暴露出之背面電場層334接觸,第二電極324可與每個第一電極322接觸,以利收集第一電極322傳來之電流。利用網版印刷方式形成第一電極322與第二電極324時,可再對第一電極322與第二電極324進行燒結處理。在一些例子中,如圖4所示,第二電極324完全覆蓋這些第一電極322。此外,第二電極324並未完全覆蓋匯流電極340,而僅覆蓋到匯流電極340之周緣,以利匯流電極340與導電帶(未繪示)連接。 In such an example, step 410 can then be performed to form the back electrode 320 on the second passivation layer 316 and fill the opening 336. In some exemplary examples, when the back surface electrode 320 is formed, the plurality of first electrodes 322 forming the back surface electrode 320 may be filled into the openings in the second passivation layer 316 by, for example, deposition or printing, such as screen printing. In 336, the second electrode 324 forming the back electrode 320 covers the second passivation layer 316 and completely covers or partially covers each of the first electrodes 322 by, for example, deposition or printing, such as screen printing. Therefore, the first electrode 322 can be in contact with the back surface electric field layer 334 exposed by the opening 336, and the second electrode 324 can be in contact with each of the first electrodes 322 to collect the current from the first electrode 322. When the first electrode 322 and the second electrode 324 are formed by screen printing, the first electrode 322 and the second electrode 324 may be further sintered. In some examples, as shown in FIG. 4, the second electrode 324 completely covers the first electrodes 322. In addition, the second electrode 324 does not completely cover the bus electrode 340, but only covers the periphery of the bus electrode 340, so that the bus electrode 340 is connected to a conductive strip (not shown).

在一些示範例子中,第一電極322與第二電極324的材質不同。例如,第一電極322之材料包含由銀與銅組成之群組,第二電極324之材料包含由鋁與銅組成之群組。在第一電極322之材料包含銀、且第二電極324之材料包含鋁的例子中,由於銀具有較高的導電率,因此可提升電 流的傳導效率,而可提升單面受光之太陽能電池302之效率;而鋁可收集電流與反射光、且較銀便宜,因此可在較低成本下使太陽能電池具有高填充因子與高短路電流。 In some exemplary examples, the materials of the first electrode 322 and the second electrode 324 are different. For example, the material of the first electrode 322 comprises a group consisting of silver and copper, and the material of the second electrode 324 comprises a group consisting of aluminum and copper. In the example where the material of the first electrode 322 contains silver and the material of the second electrode 324 contains aluminum, since the silver has a high conductivity, the electricity can be increased. The conduction efficiency of the flow can increase the efficiency of the single-sided light-receiving solar cell 302; while aluminum can collect current and reflected light and is cheaper than silver, so that the solar cell can have a high fill factor and a high short-circuit current at a lower cost. .

接著,可進行步驟412,以利用例如沉積或印刷方式,例如網版印刷方式,形成正面電極318於基板312之正面326上方的第一鈍化層314上,而大致完成單面受光之太陽能電池302的製作。正面電極318可穿過第一鈍化層314而與正面326之射極層332接觸,進而形成電性連接。正面電極318之材質可包含銀、鋁、或銀鋁合金。圖7之示範例子係以先形成背面電極320、再形成正面電極318的順序進行說明,然本發明並不限於此,亦可先形成正面電極318、再形成背面電極320。 Next, step 412 can be performed to form the front surface electrode 318 on the first passivation layer 314 over the front side 326 of the substrate 312 by, for example, deposition or printing, such as screen printing, to substantially complete the single-sided light-receiving solar cell 302. Production. The front electrode 318 can pass through the first passivation layer 314 to contact the emitter layer 332 of the front side 326 to form an electrical connection. The material of the front electrode 318 may include silver, aluminum, or silver aluminum alloy. The exemplary embodiment of FIG. 7 is described in the order in which the back surface electrode 320 is formed first and the front surface electrode 318 is formed. However, the present invention is not limited thereto, and the front surface electrode 318 may be formed first and the back surface electrode 320 may be formed.

然而,本實施方式亦可不採用雷射穿孔技術來形成開孔336,而且可同時形成開孔336與背面電極320之第一電極322,即可於步驟410中同時形成開孔336與第一電極322。在一些例子中,第一電極322之成分不同於第二電極324之成分。此外,第一電極322相對於第二電極324具有於燒結時可燒穿第二鈍化層316之成分。在一些示範例子中,形成第一電極322與第二電極324時,可利用例如網版印刷方式提供複數個第一電極漿料與複數個匯流電極漿料於第二鈍化層316上,其中各該第一電極漿料與各該匯流電極漿料彼此所覆蓋的面積不同,這些第一電極漿料與匯流電極漿料具有能燒穿第二鈍化層316之成分。接下來,可利用例如網版印刷方式提供第二電極漿料於第二鈍化層316 上,第二電極漿料的材質不同於第一電極漿料與匯流電極漿料的材質,而且此第二電極漿料不具有能燒穿第二鈍化層316之成分或相較該第一電極漿料具有較少能燒穿第二鈍化層316之成分,且第二電極漿料覆蓋前述之第一電極漿料,該第二電極漿料連接於各該匯流電極漿料的周圍處,第二電極漿料對應覆蓋到背面328周圍的範圍。然後,利用燒結製程,使第一電極漿料、第二電極漿料與匯流電極漿料分別形成第一電極322、第二電極324與匯流電極340,其中第一電極漿料與匯流電極漿料燒穿第二鈍化層316而分別形成開孔336、338後而接觸背面328,該第二電極漿料與該背面328之間被該第二鈍化層316分隔而無接觸該背面328。 However, in this embodiment, the opening 336 can be formed without using the laser perforation technique, and the first electrode 322 of the opening 336 and the back electrode 320 can be simultaneously formed, and the opening 336 and the first electrode can be simultaneously formed in step 410. 322. In some examples, the composition of the first electrode 322 is different from the composition of the second electrode 324. Further, the first electrode 322 has a composition that can burn through the second passivation layer 316 at the time of sintering with respect to the second electrode 324. In some exemplary examples, when the first electrode 322 and the second electrode 324 are formed, a plurality of first electrode pastes and a plurality of bus electrode pastes may be provided on the second passivation layer 316 by, for example, screen printing. The first electrode paste and the surface of each of the bus electrode pastes are different from each other, and the first electrode paste and the bus electrode paste have a component capable of burning through the second passivation layer 316. Next, the second electrode paste may be provided to the second passivation layer 316 by, for example, screen printing. The material of the second electrode slurry is different from the material of the first electrode slurry and the bus electrode slurry, and the second electrode slurry does not have a component capable of burning through the second passivation layer 316 or is compared with the first electrode. The slurry has a component capable of burning through the second passivation layer 316, and the second electrode paste covers the first electrode slurry, and the second electrode paste is connected to the periphery of each of the bus electrode pastes. The two electrode paste corresponds to a range around the back surface 328. Then, the first electrode slurry, the second electrode slurry and the bus electrode slurry are respectively formed into a first electrode 322, a second electrode 324 and a bus electrode 340 by using a sintering process, wherein the first electrode paste and the bus electrode paste The second passivation layer 316 is burned through to form openings 336 and 338, respectively, and contacts the back surface 328. The second electrode paste and the back surface 328 are separated by the second passivation layer 316 without contacting the back surface 328.

由於形成第一電極322之第一電極漿料具有能燒穿第二鈍化層316的成分,形成第二電極324之第二電極漿料不具有能燒穿第二鈍化層316之成分或相較該第一電極漿料具有較少能燒穿第二鈍化層316之成分,因此在燒結製程期間,第一電極322會穿設於第二鈍化層316中,而第二電極324並不會燒穿第二鈍化層316。由於燒結方式遠較傳統雷射穿孔方式對基板312之背面328的損傷小,因此可提升單面受光之太陽能電池302之開路電壓。而且,以燒結方式在第二鈍化層316中開孔可降低製程成本,提高產能。 Since the first electrode paste forming the first electrode 322 has a composition capable of burning through the second passivation layer 316, the second electrode paste forming the second electrode 324 does not have a component capable of burning through the second passivation layer 316 or The first electrode paste has a component that can burn through the second passivation layer 316 less. Therefore, during the sintering process, the first electrode 322 is disposed in the second passivation layer 316, and the second electrode 324 does not burn. A second passivation layer 316 is worn. Since the sintering method is much less damage to the back surface 328 of the substrate 312 than the conventional laser perforation method, the open circuit voltage of the single-sided light-receiving solar cell 302 can be improved. Moreover, opening the hole in the second passivation layer 316 in a sintered manner can reduce the process cost and increase the productivity.

由上述之實施方式可知,本發明之一優點就是因為本發明單面受光之太陽能電池的背面電極包含穿過鈍化層之第一電極、以及覆蓋在此鈍化層與至少部分之第一電 極上的第二電極。第一電極可採用電阻率低於第二電極之材料,因此第一電極的電流傳導可獲得有效提升,而使得太陽能電池具有高效率。此外,第二電極之電流收集與光反射可使太陽能電池具有高填充因子與高短路電流。 According to the above embodiments, an advantage of the present invention is that the back electrode of the single-sided light-receiving solar cell of the present invention comprises a first electrode passing through the passivation layer, and covering the passivation layer and at least a portion of the first electricity. The second electrode on the pole. The first electrode may be made of a material having a lower resistivity than the second electrode, so that the current conduction of the first electrode can be effectively improved, so that the solar cell has high efficiency. In addition, current collection and light reflection of the second electrode can result in a solar cell having a high fill factor and a high short circuit current.

由上述之實施方式可知,本發明之另一優點就是因為本發明單面受光之太陽能電池之背面電極之第一電極相對於第二電極具有於燒結時可燒穿鈍化層的成分,因此第一電極可利用燒結方式穿設於鈍化層中。相較於傳統雷射穿孔方式,燒結方式可減少對基板背面的損傷,而可提升太陽能電池之開路電壓。此外,燒結方式的採用更可降低製程成本,提高產能。 According to the above embodiments, another advantage of the present invention is that the first electrode of the back electrode of the single-sided light-receiving solar cell of the present invention has a composition that can burn through the passivation layer during sintering with respect to the second electrode, so that The electrode can be passed through the passivation layer by means of sintering. Compared with the conventional laser perforation method, the sintering method can reduce the damage to the back surface of the substrate, and can increase the open circuit voltage of the solar cell. In addition, the use of sintering methods can reduce process costs and increase production capacity.

雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何在此技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可作各種之更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。 While the present invention has been described above by way of example, it is not intended to be construed as a limitation of the scope of the invention. Therefore, the scope of the invention is defined by the scope of the appended claims.

302‧‧‧單面受光之太陽能電池 302‧‧‧Single-sided solar cells

312‧‧‧基板 312‧‧‧Substrate

314‧‧‧第一鈍化層 314‧‧‧First passivation layer

316‧‧‧第二鈍化層 316‧‧‧second passivation layer

318‧‧‧正面電極 318‧‧‧Front electrode

320‧‧‧背面電極 320‧‧‧Back electrode

322‧‧‧第一電極 322‧‧‧First electrode

324‧‧‧第二電極 324‧‧‧second electrode

326‧‧‧正面 326‧‧‧ positive

328‧‧‧背面 328‧‧‧Back

330‧‧‧粗糙結構 330‧‧‧Rough structure

332‧‧‧射極層 332‧‧ ‧ emitter layer

334‧‧‧背面電場層 334‧‧‧Back surface layer

336‧‧‧開孔 336‧‧‧ openings

338‧‧‧開孔 338‧‧‧Opening

340‧‧‧匯流電極 340‧‧‧Concurrent electrode

Claims (11)

一種單面受光之太陽能電池,包含:一基板,具有一正面與一背面,其中該基板包含一射極層設於該正面、以及一背面電場層設於該背面;一第一鈍化層與一第二鈍化層,分別覆蓋該正面與該背面,其中該第二鈍化層具有複數個開孔暴露出部分之該背面電場層;一正面電極,位於該正面上;以及一背面電極,位於該背面上,該背面電極包含複數個第一電極、一第二電極以及複數個匯流電極,其中該複數個第一電極分別設在該複數個開孔中且接觸該背面,該第二電極覆蓋在該第二鈍化層上並對應覆蓋到該背面周圍的範圍,該第二電極覆蓋該複數個第一電極,該複數個第一電極與該第二電極的材質不同,該複數個匯流電極排列配置於該背面處且與該第二電極接觸。 A single-sided light-receiving solar cell comprising: a substrate having a front surface and a back surface, wherein the substrate comprises an emitter layer disposed on the front surface, and a back surface electric field layer disposed on the back surface; a first passivation layer and a a second passivation layer covering the front surface and the back surface, wherein the second passivation layer has a plurality of openings exposing portions of the back surface electric field layer; a front electrode on the front surface; and a back surface electrode on the back surface The back electrode includes a plurality of first electrodes, a second electrode, and a plurality of bus electrodes, wherein the plurality of first electrodes are respectively disposed in the plurality of openings and contact the back surface, and the second electrode is covered by the second electrode The second passivation layer covers the range around the back surface, and the second electrode covers the plurality of first electrodes. The plurality of first electrodes are different from the material of the second electrode, and the plurality of bus electrodes are arranged in the same manner. The back surface is in contact with the second electrode. 如申請專利範圍第1項之單面受光之太陽能電池,其中該複數個第一電極相對於該第二電極具有於燒結時可燒穿該第二鈍化層之成分。 The single-sided light-receiving solar cell of claim 1, wherein the plurality of first electrodes have a component that can burn through the second passivation layer during sintering with respect to the second electrode. 如申請專利範圍第1項之單面受光之太陽能電池,其中該複數個第一電極之材料包含由銀與銅組成之群組,該第二電極之材料包含由鋁與銅組成之群組。 The single-sided light-receiving solar cell of claim 1, wherein the material of the plurality of first electrodes comprises a group consisting of silver and copper, and the material of the second electrode comprises a group consisting of aluminum and copper. 如申請專利範圍第1項之單面受光之太陽能電池,其中該複數個開孔為點狀、虛線狀或直線狀。 The single-sided light-receiving solar cell of claim 1, wherein the plurality of openings are in a dot shape, a dotted line shape or a linear shape. 如申請專利範圍第1項之單面受光之太陽能電池,其中每一個第一電極被該第二電極完全覆蓋或局部覆蓋。 The single-sided light-receiving solar cell of claim 1, wherein each of the first electrodes is completely covered or partially covered by the second electrode. 一種太陽能電池模組,包含:一上板;一下板;一如請求項1~5中之任一項之單面受光之太陽能電池,設於該上板與該下板之間;以及至少一封裝材料層,位於該上板與該下板之間,將該單面受光之太陽能電池與該上板和該下板結合。 A solar cell module comprising: an upper plate; a lower plate; a single-sided light-receiving solar cell according to any one of claims 1 to 5, disposed between the upper plate and the lower plate; and at least one A layer of encapsulating material is disposed between the upper plate and the lower plate, and the single-sided light-receiving solar cell is combined with the upper plate and the lower plate. 一種單面受光之太陽能電池之製造方法,包含:提供一基板,該基板具有一正面與一背面;形成一射極層與一背面電場層分別位於該正面與該背面;形成一第一鈍化層與一第二鈍化層分別覆蓋該正面與該背面;以及形成一正面電極與一背面電極分別位於該正面與該背面上,該背面電極包含複數個第一電極、一第二電極以及複數個匯流電極,其中形成該複數個第一電極、該第二電極及該複數個匯流電極時包含:提供複數個第一電極漿料與複數個匯流電極漿料於該第二鈍化層上,其中各該第一電極漿料與各該匯流電極漿料彼此所覆蓋的面積不同; 提供一第二電極漿料於該第二鈍化層上,該複數個第一電極漿料的材質不同於該第二電極漿料與該複數個匯流電極漿料的材質,且該第二電極漿料覆蓋該複數個第一電極漿料,該第二電極漿料連接於各該匯流電極漿料的周圍處,該第二電極漿料對應覆蓋到該背面周圍的範圍;以及利用一燒結製程,使該複數個第一電極漿料、該第二電極漿料以及該複數個匯流電極漿料分別形成該複數個第一電極、該第二電極以及該複數個匯流電極,其中該複數個第一電極漿料與該複數個匯流電極漿料燒穿該第二鈍化層分別形成該複數個開孔後而接觸該背面,該第二電極漿料與該背面之間被該第二鈍化層分隔而無接觸該背面。 A method for manufacturing a single-sided light-receiving solar cell, comprising: providing a substrate having a front surface and a back surface; forming an emitter layer and a back surface electric field layer respectively on the front surface and the back surface; forming a first passivation layer And a second passivation layer respectively covering the front surface and the back surface; and forming a front surface electrode and a back surface electrode respectively on the front surface and the back surface, the back surface electrode comprising a plurality of first electrodes, a second electrode, and a plurality of confluences The electrode, wherein the plurality of first electrodes, the second electrode, and the plurality of bus electrodes are disposed to: provide a plurality of first electrode pastes and a plurality of bus electrode pastes on the second passivation layer, wherein each of the electrodes The area of the first electrode paste and each of the bus electrode pastes are different from each other; Providing a second electrode paste on the second passivation layer, the material of the plurality of first electrode pastes is different from the material of the second electrode paste and the plurality of bus electrode pastes, and the second electrode paste Covering the plurality of first electrode pastes, the second electrode paste is connected around each of the bus electrode pastes, the second electrode paste correspondingly covers a range around the back surface; and utilizing a sintering process, Forming the plurality of first electrode pastes, the second electrode paste, and the plurality of bus electrode pastes to form the plurality of first electrodes, the second electrodes, and the plurality of bus electrodes, wherein the plurality of first electrodes The electrode paste and the plurality of bus electrode pastes are burned through the second passivation layer to form the plurality of openings to contact the back surface, and the second electrode paste and the back surface are separated by the second passivation layer. No contact with the back. 如申請專利範圍第7項之單面受光之太陽能電池之製造方法,其中該複數個第一電極漿料具有能燒穿該第二鈍化層之成分,該第二電極漿料不具有或具有較少能燒穿該第二鈍化層之成分。 The method for manufacturing a single-sided light-receiving solar cell according to claim 7, wherein the plurality of first electrode pastes have a component capable of burning through the second passivation layer, and the second electrode paste has no or Less able to burn through the components of the second passivation layer. 如申請專利範圍第7項之單面受光之太陽能電池之製造方法,其中該複數個第一電極之材料包含由銀與銅組成之群組,該第二電極之材料包含由鋁與銅組成之群組。 The method for manufacturing a single-sided light-receiving solar cell according to claim 7, wherein the material of the plurality of first electrodes comprises a group consisting of silver and copper, and the material of the second electrode comprises aluminum and copper. Group. 如申請專利範圍第7項之單面受光之太陽能電池之製造方法,其中每一個第一電極被該第二電極完全覆蓋或局部覆蓋。 The method of manufacturing a single-sided light-receiving solar cell according to claim 7, wherein each of the first electrodes is completely covered or partially covered by the second electrode. 如申請專利範圍第7項之單面受光之太陽能電池之製造方法,其中該複數個開孔為點狀、虛線狀或直線狀。 The method for manufacturing a single-sided light-receiving solar cell according to claim 7, wherein the plurality of openings are in a dot shape, a dotted line shape or a linear shape.
TW105119324A 2016-06-20 2016-06-20 Single-sided solar cell, method for manufacturing the same and solar cell module TWI626755B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW105119324A TWI626755B (en) 2016-06-20 2016-06-20 Single-sided solar cell, method for manufacturing the same and solar cell module
CN201610552875.1A CN107527957A (en) 2016-06-20 2016-07-14 Solar cell receiving light on one side, manufacturing method thereof and solar cell module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW105119324A TWI626755B (en) 2016-06-20 2016-06-20 Single-sided solar cell, method for manufacturing the same and solar cell module

Publications (2)

Publication Number Publication Date
TW201801332A true TW201801332A (en) 2018-01-01
TWI626755B TWI626755B (en) 2018-06-11

Family

ID=60748458

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105119324A TWI626755B (en) 2016-06-20 2016-06-20 Single-sided solar cell, method for manufacturing the same and solar cell module

Country Status (2)

Country Link
CN (1) CN107527957A (en)
TW (1) TWI626755B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112542530B (en) * 2020-12-01 2024-03-08 浙江晶科能源有限公司 Photovoltaic cell and preparation method thereof

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5655206B2 (en) * 2010-09-21 2015-01-21 株式会社ピーアイ技術研究所 Polyimide resin composition for forming back surface reflective layer of solar cell and method for forming back surface reflective layer of solar cell using the same
CN102842638B (en) * 2011-06-21 2015-04-15 新日光能源科技股份有限公司 Solar cell and manufacturing method thereof
US20130192670A1 (en) * 2011-08-11 2013-08-01 E I Du Pont De Nemours And Company Aluminum paste and use thereof in the production of passivated emitter and rear contact silicon solar cells
US20130183795A1 (en) * 2012-01-16 2013-07-18 E I Du Pont De Nemours And Company Solar cell back side electrode
JP5883116B2 (en) * 2012-02-28 2016-03-09 京セラ株式会社 Conductive paste for solar cell electrode, solar cell, and method for manufacturing solar cell
TWI500174B (en) * 2013-01-08 2015-09-11 Motech Ind Inc Solar cell and module comprising the same
TWI529954B (en) * 2013-01-16 2016-04-11 茂迪股份有限公司 Solar cell, module comprising the same and method of manufacturing the same
TWI492402B (en) * 2013-06-05 2015-07-11 Motech Ind Inc Solar cell and module comprising the same
TWI496303B (en) * 2013-06-11 2015-08-11 Motech Ind Inc Solar cell, method for manufacturing the same and solar cell module
CN104201150A (en) * 2014-09-05 2014-12-10 浙江晶科能源有限公司 Method for improving PERC (passivated emitter rear contact) battery back slotting contact
CN105118874A (en) * 2015-09-23 2015-12-02 中利腾晖光伏科技有限公司 Crystalline silicon solar cell and manufacture method thereof
CN105470316A (en) * 2015-12-09 2016-04-06 合肥海润光伏科技有限公司 Back point contact crystalline silicon solar cell and manufacturing method therefor

Also Published As

Publication number Publication date
TWI626755B (en) 2018-06-11
CN107527957A (en) 2017-12-29

Similar Documents

Publication Publication Date Title
USRE46515E1 (en) Solar cell
TWI604621B (en) Solar cell, solar cell module, and manufacturing method of solar cell
WO2006129444A1 (en) Solar cell element and method for fabricating same
KR20120140049A (en) Solar cell and method for manufacturing the same
WO2011074280A1 (en) Photovoltaic device and method for preparation thereof
JP2016122749A (en) Solar battery element and solar battery module
NL2034302B1 (en) Solar cell and photovoltaic module
TWI492392B (en) Semiconductor device module package structure and series connection method thereof
TWI506801B (en) Solar battery
TWI626755B (en) Single-sided solar cell, method for manufacturing the same and solar cell module
KR101920639B1 (en) Back contact solar cell and manufacturing methode thereof
KR101045859B1 (en) Solar cell and manufacturing method thereof
JP2003224289A (en) Solar cell, method for connecting solar cell, and solar cell module
KR100366348B1 (en) manufacturing method of silicon solar cell
KR101637825B1 (en) Back electrode of solar cell and method for the same
TW201431108A (en) A process of manufacturing an interdigitated back-contact solar cell
TWI484647B (en) Solar cell and module comprising the same
JP2014523129A (en) Photocell using wrap-through connection
TWI492400B (en) Solar cell, method for manufacturing the same and solar cell module
TWI573284B (en) Solar cell, module comprising the same, and method of manufacturing the same
TWI496303B (en) Solar cell, method for manufacturing the same and solar cell module
TWI302752B (en) Photovoltaic device and photovoltaic element thereof
KR101890282B1 (en) Solar cell having a selective emitter and fabricting method thereof
TWI492403B (en) Solar cell, method for manufacturing the same and solar cell module
TWI552360B (en) Solar cell