JPS6381434A - Production of electrophotographic sensitive body - Google Patents
Production of electrophotographic sensitive bodyInfo
- Publication number
- JPS6381434A JPS6381434A JP22893486A JP22893486A JPS6381434A JP S6381434 A JPS6381434 A JP S6381434A JP 22893486 A JP22893486 A JP 22893486A JP 22893486 A JP22893486 A JP 22893486A JP S6381434 A JPS6381434 A JP S6381434A
- Authority
- JP
- Japan
- Prior art keywords
- gas
- periodic table
- carrier
- transport layer
- layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 13
- 230000000737 periodic effect Effects 0.000 claims abstract description 38
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 claims abstract description 23
- 229910021417 amorphous silicon Inorganic materials 0.000 claims abstract description 22
- 239000000758 substrate Substances 0.000 claims abstract description 19
- 239000007789 gas Substances 0.000 claims description 80
- 108091008695 photoreceptors Proteins 0.000 claims description 50
- 238000000354 decomposition reaction Methods 0.000 claims description 13
- 239000000463 material Substances 0.000 claims description 10
- 238000000034 method Methods 0.000 claims description 10
- 230000015572 biosynthetic process Effects 0.000 claims description 8
- 239000012495 reaction gas Substances 0.000 claims description 6
- 239000000969 carrier Substances 0.000 claims description 2
- 238000000151 deposition Methods 0.000 claims 3
- 239000010410 layer Substances 0.000 description 87
- 239000007924 injection Substances 0.000 description 19
- 238000002347 injection Methods 0.000 description 19
- 229910010271 silicon carbide Inorganic materials 0.000 description 17
- 230000000903 blocking effect Effects 0.000 description 15
- 239000010408 film Substances 0.000 description 12
- 239000000203 mixture Substances 0.000 description 8
- 238000006243 chemical reaction Methods 0.000 description 6
- 230000035945 sensitivity Effects 0.000 description 6
- 125000004429 atom Chemical group 0.000 description 4
- 239000004065 semiconductor Substances 0.000 description 4
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 3
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 229910052796 boron Inorganic materials 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 229910052736 halogen Inorganic materials 0.000 description 3
- 150000002367 halogens Chemical class 0.000 description 3
- 239000011368 organic material Substances 0.000 description 3
- 239000011241 protective layer Substances 0.000 description 3
- 230000003595 spectral effect Effects 0.000 description 3
- AZQWKYJCGOJGHM-UHFFFAOYSA-N 1,4-benzoquinone Chemical compound O=C1C=CC(=O)C=C1 AZQWKYJCGOJGHM-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 206010034972 Photosensitivity reaction Diseases 0.000 description 2
- 229910003481 amorphous carbon Inorganic materials 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 239000012159 carrier gas Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 229910010272 inorganic material Inorganic materials 0.000 description 2
- 239000011147 inorganic material Substances 0.000 description 2
- 229910003465 moissanite Inorganic materials 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 230000036211 photosensitivity Effects 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 1
- 206010028813 Nausea Diseases 0.000 description 1
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 1
- 229910000577 Silicon-germanium Inorganic materials 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 125000000751 azo group Chemical group [*]N=N[*] 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 238000007606 doctor blade method Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 230000003446 memory effect Effects 0.000 description 1
- 230000008693 nausea Effects 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000012860 organic pigment Substances 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 125000002080 perylenyl group Chemical group C1(=CC=C2C=CC=C3C4=CC=CC5=CC=CC(C1=C23)=C45)* 0.000 description 1
- CSHWQDPOILHKBI-UHFFFAOYSA-N peryrene Natural products C1=CC(C2=CC=CC=3C2=C2C=CC=3)=C3C2=CC=CC3=C1 CSHWQDPOILHKBI-UHFFFAOYSA-N 0.000 description 1
- IEQIEDJGQAUEQZ-UHFFFAOYSA-N phthalocyanine Chemical compound N1C(N=C2C3=CC=CC=C3C(N=C3C4=CC=CC=C4C(=N4)N3)=N2)=C(C=CC=C2)C2=C1N=C1C2=CC=CC=C2C4=N1 IEQIEDJGQAUEQZ-UHFFFAOYSA-N 0.000 description 1
- 229920003227 poly(N-vinyl carbazole) Polymers 0.000 description 1
- 125000003367 polycyclic group Chemical group 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 239000009719 polyimide resin Substances 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000005546 reactive sputtering Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 238000013020 steam cleaning Methods 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 238000004506 ultrasonic cleaning Methods 0.000 description 1
- 238000007738 vacuum evaporation Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03G—ELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
- G03G5/00—Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
- G03G5/02—Charge-receiving layers
- G03G5/04—Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
- G03G5/08—Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic
- G03G5/082—Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic and not being incorporated in a bonding material, e.g. vacuum deposited
- G03G5/08214—Silicon-based
- G03G5/08278—Depositing methods
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03G—ELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
- G03G5/00—Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
- G03G5/02—Charge-receiving layers
- G03G5/04—Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
- G03G5/08—Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic
- G03G5/082—Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic and not being incorporated in a bonding material, e.g. vacuum deposited
- G03G5/08214—Silicon-based
- G03G5/08221—Silicon-based comprising one or two silicon based layers
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03G—ELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
- G03G5/00—Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
- G03G5/02—Charge-receiving layers
- G03G5/04—Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
- G03G5/08—Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic
- G03G5/082—Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic and not being incorporated in a bonding material, e.g. vacuum deposited
- G03G5/08214—Silicon-based
- G03G5/08235—Silicon-based comprising three or four silicon-based layers
Landscapes
- Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Photoreceptors In Electrophotography (AREA)
- Chemical Vapour Deposition (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は正帯電能を有し、長期間に亘って安定した電子
写真特性を維持すると共に耐久性に優れた電子写真感光
体の製造方法に関するものである。[Detailed Description of the Invention] [Industrial Application Field] The present invention provides a method for producing an electrophotographic photoreceptor that has positive charging ability, maintains stable electrophotographic characteristics over a long period of time, and has excellent durability. It is related to.
近年、超高速複写機やレーザービームプリンタなどの開
発が活発に進められており、これに伴ってこの機器に搭
載される電子写真感光体ドラムに安定した動作特性及び
耐久性が要求されている。2. Description of the Related Art In recent years, the development of ultra-high speed copying machines, laser beam printers, etc. has been actively progressing, and as a result, electrophotographic photosensitive drums installed in these devices are required to have stable operating characteristics and durability.
この要求に対して水素化アモルファスシリコンが耐摩耗
性、耐熱性、無公害性並びに光感度特性等に優れている
という理由から注目されている。In response to this demand, hydrogenated amorphous silicon is attracting attention because of its excellent wear resistance, heat resistance, pollution-free property, and photosensitivity characteristics.
かかるアモルファスシリコン(以下、a41と略す)か
ら成る電子写真感光体には第3図に示す通りの積層型感
光体が提案されている。As an electrophotographic photoreceptor made of such amorphous silicon (hereinafter abbreviated as a41), a laminated type photoreceptor as shown in FIG. 3 has been proposed.
即ち、第3図によれば、アルミニウムなどの導電性基板
(1)上にa−5tキャリア注入阻止層(2)、a−5
i光導電N(3)及び表面保護層(4)を順次積層して
おり、このキャリア注入阻止層(2)は基板(1)から
のキャリアの注入を層すると共に残留電位を低下させる
ために形成されており、そして、表面保護層(4)には
高硬度な材料を用いて感光体の耐久性を高めている。That is, according to FIG. 3, an a-5t carrier injection blocking layer (2) and an a-5t carrier injection blocking layer (2) are formed on a conductive substrate (1) made of aluminum or the like.
A photoconductive layer (3) and a surface protection layer (4) are sequentially laminated, and this carrier injection blocking layer (2) is used to prevent carrier injection from the substrate (1) and to reduce residual potential. A highly hard material is used for the surface protective layer (4) to increase the durability of the photoreceptor.
ところが、このa−5i悪感光によれば、a−Siyt
、i電層(3)自体が有する暗抵抗率が1011Ω・c
n+以下であり、これにより、この感光体の暗減衰率が
大きくなると共にその自体の帯電能を高めることが難し
くなり、その結果、この感光体を高速複写用に用いた場
合には光メモリ効果により先の画像が完全に除去されず
に残留し、次の画像形成に伴って先の画像が現れる(ゴ
ースト現象)という問題がある。However, according to this a-5i nausea photo, a-Siyt
, the dark resistivity of the i-electric layer (3) itself is 1011Ω・c
n+ or less, which increases the dark decay rate of this photoreceptor and makes it difficult to increase its own charging ability.As a result, when this photoreceptor is used for high-speed copying, it suffers from the optical memory effect. There is a problem in that the previous image is not completely removed and remains, and the previous image appears when the next image is formed (ghost phenomenon).
この問題を解決するために第1図に示すような機能分離
型感光体が提案されている。In order to solve this problem, a functionally separated photoreceptor as shown in FIG. 1 has been proposed.
即ち、第1図および第2図によれば、基本的構成として
は導電性基板(1)上にキャリア輸送層(5)およびキ
ャリア発生Ji(3a)を順次積層したもので、所望に
より導電性基板(1)とキャリア輸送層(5)との間に
キャリア注入阻止層(2a)を、あるいはキャリア発生
1(3a)上に表面保護層(4)を設けたものである。That is, according to FIGS. 1 and 2, the basic structure is that a carrier transport layer (5) and a carrier generation Ji (3a) are sequentially laminated on a conductive substrate (1), and if desired, a conductive substrate (1) is laminated in sequence. A carrier injection blocking layer (2a) is provided between the substrate (1) and the carrier transport layer (5), or a surface protection layer (4) is provided on the carrier generation 1 (3a).
キャリア輸送層(5)は暗抵抗及びキャリア移動度のそ
れぞれが大きい材料で形成し、これによって表面電位及
び光感度に優れ且つ残留電位が小さい高性能な感光体が
得られる。The carrier transport layer (5) is formed of a material having high dark resistance and carrier mobility, thereby providing a high-performance photoreceptor with excellent surface potential and photosensitivity and low residual potential.
このキャリア輸送層(5)については高抵抗且つ広いバ
ンドギャップ並びに半導体特性を具備した水素化アモル
ファスシリコンカーバイドを用いることが特開昭5s−
x9zo46号公報などに提案されている。For this carrier transport layer (5), it is recommended to use hydrogenated amorphous silicon carbide, which has high resistance, a wide band gap, and semiconductor properties.
This method has been proposed in, for example, the x9zo46 publication.
一方、電子写真法において感光体を負極性に帯電して使
用する場合、コロナ放電により発生するオゾンによって
感光体表面が劣化し、電子写真特性が低下し、長期間に
亘り、安定した画像を供給することができない等の不都
合が生じることから感光体の帯電極性として、正極性に
帯電可能なものが望まれている。On the other hand, when using electrophotography with a photoreceptor charged to a negative polarity, the surface of the photoreceptor deteriorates due to ozone generated by corona discharge, reducing the electrophotographic characteristics and providing stable images over a long period of time. Therefore, it is desired that the photoreceptor be charged to a positive polarity.
そこで、前述した先行技術では正極性あるいは負極性の
帯電能については十分に研究されておらず、正帯電能で
の電子写真特性上はとんど実用化することはできないも
のであり、しかも成膜速度が遅く実用的でない。Therefore, in the prior art mentioned above, the charging ability of positive polarity or negative polarity has not been sufficiently researched, and it is almost impossible to put it into practical use due to the electrophotographic characteristics with positive charging ability. The membrane speed is slow and impractical.
従って、本発明の目的は優れた正帯電能と電子写真特性
、即ち、優れた暗減衰、光減衰特性を有し耐久性のある
電子写真感光体の製造方法を提供するにある。Therefore, an object of the present invention is to provide a method for producing a durable electrophotographic photoreceptor having excellent positive chargeability and electrophotographic properties, that is, excellent dark decay and light decay properties.
本発明の他の目的は成膜速度を向上させることにより、
量産性に優れた安価な電子写真感光体の製造方法を提供
することにある。Another object of the present invention is to improve the film formation rate.
An object of the present invention is to provide an inexpensive method for manufacturing an electrophotographic photoreceptor that is excellent in mass productivity.
本発明のさらに他の目的は近赤外領域の波長に対する分
光感度のあるレーザープリンタ用として適した電子写真
感光体の製造方法を提供するにある。Still another object of the present invention is to provide a method for manufacturing an electrophotographic photoreceptor suitable for use in a laser printer that has spectral sensitivity to wavelengths in the near-infrared region.
即ち、本発明によれば、少なくともC,H2ガス、Si
含有ガス及び10−6乃至1モルχの周期律表第■a族
元素含有ガスを含む反応ガスをグロー放電分解して導電
性基板上に周期律表p m a族元素を含有するアモル
ファスシリコンカーバイドから成るキャリア輸送層を形
成した後、キャリア発生層を順次設けたことを特徴とす
る正極性に帯電可能な電子写真感光体の製造方法が提供
される。That is, according to the present invention, at least C, H2 gas, Si
Amorphous silicon carbide containing elements of group PmA of the periodic table is produced on a conductive substrate by glow discharge decomposition of a reaction gas containing gas containing gas and a gas containing elements of group A of the periodic table in an amount of 10-6 to 1 mole χ. Provided is a method for manufacturing an electrophotographic photoreceptor capable of being positively charged, characterized in that a carrier-generating layer is sequentially provided after forming a carrier-transporting layer consisting of the following.
さらに、本発明によれば、少なくともC,II2ガス、
Si含有ガス及び10−b乃至1モルχの周期律表第■
a族元素含有ガスを含む反応ガスをグロー放電分解して
導電性基板上に周期律表第1[Ia族元素を含有するア
モルファスシリコンカーバイドから成るキャリ、7輸送
層を形成した後、さらに少なくともC! +1 、ガス
、Si含有ガスから成る反応ガスをグロー放電分解して
、前記キャリア輸送層上にアモルファスシリコンカーバ
イドから成るキャリア発生層を順次設けたことを特徴と
する正極性に帯電可能な電子写真感光体の製造方法が提
供される。Furthermore, according to the present invention, at least C, II2 gas,
Periodic table of Si-containing gas and 10-b to 1 mole χ
After a reactive gas containing a group A element is decomposed by glow discharge to form a transport layer of amorphous silicon carbide containing a group Ia element in the periodic table on a conductive substrate, at least a carbon ! +1. A positively chargeable electrophotographic photosensitive material, characterized in that a reactive gas consisting of a gas and a Si-containing gas is decomposed by glow discharge to sequentially provide a carrier generation layer made of amorphous silicon carbide on the carrier transport layer. A method of manufacturing a body is provided.
さらに本発明によれば、少なくともC2H2ガス、Si
含有ガス及び10−’乃至1モルχの周期律表第■a族
元素含有ガスを含む反応ガスをグロー放電分解して導電
性基板上に周期律表第IIIa族元素を含有するアモル
ファスシリコンカーバイドから成るキャリア輸送層を形
成した後、さらに少なくともC2H2ガス、Si含有ガ
ス及び1モル%以下の周期律表第IIIa族元素含をガ
スを含む反応ガスをグロー放電分解して前記キャリア輸
送層上に周期律表第■a族元素を含有するアモルファス
シリコンカーバイドから成るキャリア発生層を設けてな
り、前記キャリア発生層形成時のアモルファスシリコン
カーバイド生成用ガスにおける周期律表第■族元素含有
ガスの占める割合が前記キャリア輸送層形成時に比べて
少ないことを特徴とする正極性に帯電可能な電子写真感
光体の製造方法が提供される。Furthermore, according to the present invention, at least C2H2 gas, Si
From amorphous silicon carbide containing a group IIIa element of the periodic table on a conductive substrate by glow discharge decomposition of a reaction gas containing a containing gas and a gas containing an element of group IIIa of the periodic table of 10-' to 1 mol χ After forming the carrier transport layer, a reactive gas containing at least C2H2 gas, a Si-containing gas, and a gas containing 1 mol% or less of Group IIIa elements of the periodic table is further decomposed by glow discharge to form a periodic layer on the carrier transport layer. A carrier generation layer made of amorphous silicon carbide containing an element of Group Ⅰ of the Periodic Table of the Periodic Table is provided, and the proportion of the gas containing the Group Ⅰ element of the Periodic Table of the amorphous silicon carbide generating gas at the time of forming the carrier generation layer is There is provided a method for producing an electrophotographic photoreceptor that can be positively charged, characterized in that the amount of charge is smaller than that when the carrier transport layer is formed.
以下、本発明を詳述する。The present invention will be explained in detail below.
本発明によって製造される電子写真感光体は第1図及び
第2図に示す構造を基本とする機能分離型積層感光体で
ある。The electrophotographic photoreceptor manufactured according to the present invention is a functionally separated laminated photoreceptor having the structure shown in FIGS. 1 and 2 as a basic structure.
本発明によれば、上記構造のうち、キャリア輸送層をア
モルファスシリコンカーバイド(以下、a−SiCと略
す)を主要構成元素とし、SiとCのダングリングボン
ドを終端させるために、例えばt(やF、CI+Br、
I等のハロゲン元素をドーピングし、更に周期律表第■
a族元素を所定の範囲内で含有させることによって感光
体としての優れた正帯電能を付与することができる。即
ち、周期律表第■a族元素の添加によって、キャリア輸
送層はp型半導体となる。According to the present invention, in the above structure, the carrier transport layer has amorphous silicon carbide (hereinafter abbreviated as a-SiC) as a main constituent element, and in order to terminate the dangling bond between Si and C, for example, t (or F, CI+Br,
Doping with halogen elements such as I, furthermore,
By containing the group a element within a predetermined range, it is possible to impart excellent positive charging ability as a photoreceptor. That is, by adding the Group IVa element of the periodic table, the carrier transport layer becomes a p-type semiconductor.
これを第1図の構成の感光体を例にとってその電子写真
特性を第4図(a)および(b)をもとに説明すると、
コロナ放電等の帯電手段により正帯電を施す(第4図(
a)参照)。次に露光を行うと、キャリア発生層(5)
に電子と正孔が発生し、電子は感光体表面の正電荷と中
和し、正孔は輸送層を移行して基板側に注入接地され、
露光部の全体としての電荷は零となる。(第4図(b)
参照)。Taking the photoreceptor with the configuration shown in FIG. 1 as an example, its electrophotographic characteristics will be explained based on FIGS. 4(a) and (b).
Apply positive charging using charging means such as corona discharge (Figure 4 (
a)). Next, when exposure is performed, a carrier generation layer (5) is formed.
Electrons and holes are generated at
The total charge of the exposed area becomes zero. (Figure 4(b)
reference).
本発明における電子写真感光体のキャリア輸送層は前述
した通り、基本的にa−5iCから成るものであるが、
具体的には下記式(1)
%式%(1)
で表わされ、式中0.01≦X≦0.9特に0.05≦
X≦0.5に設定することによって暗抵抗1011CI
I+以上とすることができる。As mentioned above, the carrier transport layer of the electrophotographic photoreceptor in the present invention basically consists of a-5iC, but
Specifically, it is expressed by the following formula (1) % formula % (1) where 0.01≦X≦0.9, especially 0.05≦
By setting X≦0.5, the dark resistance is 1011CI
It can be greater than or equal to I+.
また、添加する周期律表第■a族元素としてはB、^l
、Ga、Imが挙げられ特にホウ素が望ましい。これら
はキャリア輸送層中にo、i乃至10.000ppm、
特に0.5乃至11000ppの量で含有させ、含有量
が0、lppm未満では、周期律表第1111a族元素
添加効果がなく、感光体は負帯電型となる。In addition, the elements of group ■a of the periodic table to be added are B, ^l
, Ga, and Im, with boron being particularly desirable. These are o, i to 10.000 ppm in the carrier transport layer,
Particularly, when the element is contained in an amount of 0.5 to 11,000 ppm, and the content is less than 0.1 ppm, there is no effect of adding an element of group 1111a of the periodic table, and the photoreceptor becomes negatively charged.
なお、キャリア輸送層のa−5iCのダングリングボン
ドを終端させるためのIIやハロゲン元素の含有量は全
組成中5乃至40原子χ、好適にはlO乃至30原子χ
の範囲内が好ましい。The content of II and halogen elements for terminating the a-5iC dangling bonds in the carrier transport layer is 5 to 40 atoms χ in the total composition, preferably 1O to 30 atoms χ
It is preferably within the range of .
更にこのキャリア輸送層の厚みは1乃至100 μm、
好適には5乃至50μmの範囲内に設定するのがよく、
1μ−未満であれば電荷保持能力に劣ってゴースト現象
が顕著になり、100μ丘を越えると画像の分解能が劣
化すると共に残留電位が大きくなる傾向にある。Furthermore, the thickness of this carrier transport layer is 1 to 100 μm,
It is preferably set within the range of 5 to 50 μm,
If it is less than 1 .mu.-, the charge retention ability will be poor and the ghost phenomenon will become noticeable, and if it exceeds 100 .mu., the image resolution will deteriorate and the residual potential will tend to increase.
本発明における感光体のキャリア輸送層以外の層はそれ
自体周知の光導電性材料を用いることができ、キャリア
発生層としては、ポリビニルカルバソール系、フタロシ
アニン系、ペリレン系、アゾ系、多環キノン系等の有機
半導体やSe+ 5e−Te+ 5e−As、CdS、
ZnS、a−Si:H,a−SiGe:H,a−5iC
等の無機半導体を用いることができる。In the present invention, layers other than the carrier transport layer of the photoreceptor can be made of photoconductive materials that are well known per se, and the carrier generation layer can be made of polyvinyl carbazole, phthalocyanine, perylene, azo, or polycyclic quinone. organic semiconductors such as Se+ 5e-Te+ 5e-As, CdS,
ZnS, a-Si:H, a-SiGe:H, a-5iC
Inorganic semiconductors such as the following can be used.
また、キャリア注入阻止Jiff(2a)はキャリア輸
送N(5)へのキャリア注入を阻止するために設けられ
ており、例えばポリイミド樹脂などの有機材料、5iO
1+SiO+A1□0++SiC+SiJ<+非晶質カ
ーボンの他、a−5tまたはa−5iCに水素、フッ素
、酸素あるいは窒素等をドープして抵抗値を制御した無
機材を用いて形成される。St系又はSiC系を用いた
場合にはホウ素等の周期律表第■a族元素やP等の第■
′a族元素を50乃至5000ppmの範囲内で添加し
てキャリアの注入阻止を一段と高めることができる。Further, a carrier injection blocking Jiff (2a) is provided to prevent carrier injection into the carrier transport N (5), and is made of, for example, an organic material such as polyimide resin, 5iO
In addition to 1+SiO+A1□0++SiC+SiJ<+amorphous carbon, it is formed using an inorganic material in which the resistance value is controlled by doping a-5t or a-5iC with hydrogen, fluorine, oxygen, nitrogen, or the like. When using St-based or SiC-based elements, elements of group ■a of the periodic table such as boron and group
By adding a group 'a element in a range of 50 to 5000 ppm, carrier injection prevention can be further enhanced.
なお、本発明の電子写真感光体については前述した組成
のキャリア輸送層が十分に大きな暗抵抗を得ることがで
きるので、このキャリア注入阻止層を必ず形成しなくて
はならぬというものではなく、本発明者等が繰り返し行
った実験によれば、キャリア輸送層の暗抵抗率が10′
3Ω・Cl11以上であればキャリア注入阻止層を形成
しなくても電子写真感光体とじて−9分実用に供するこ
とができることを確認した。In addition, in the electrophotographic photoreceptor of the present invention, since the carrier transport layer having the composition described above can obtain a sufficiently large dark resistance, it is not necessary to form this carrier injection blocking layer. According to experiments repeatedly conducted by the present inventors, the dark resistivity of the carrier transport layer is 10'
It was confirmed that if the resistance was 3Ω·Cl11 or more, the electrophotographic photoreceptor could be put into practical use for -9 minutes without forming a carrier injection blocking layer.
また、表面保護層にはそれ自体高絶縁性、高耐食性及び
高硬度特性を有するものであれば種々の材料を用いるこ
とができ、例えば前記のキャリア注入阻止層に用いたの
と同様な無機材料や有機材料を用いることができ、これ
により、感光体の耐久性及び耐環境性を高めることがで
きる。In addition, various materials can be used for the surface protective layer as long as they themselves have high insulating properties, high corrosion resistance, and high hardness characteristics, such as inorganic materials similar to those used for the carrier injection blocking layer described above. or organic materials can be used, thereby increasing the durability and environmental resistance of the photoreceptor.
なお、キャリア輸送層以外の各層の層厚はキャリア注入
阻止層が0.1乃至10μm、キャリア発生層を0.1
乃至10μm1表面絶縁層を0.1乃至10μ鋼に設定
するのが望ましい。The thickness of each layer other than the carrier transport layer is 0.1 to 10 μm for the carrier injection blocking layer and 0.1 μm for the carrier generation layer.
It is desirable to set the surface insulating layer of 0.1 to 10 μm to 0.1 to 10 μm steel.
上述した構成により本発明における機能分離型電子写真
感光体はその表面をコロナ放電によって有利に正極化す
ることができ、本発明者等の実験によれば、+600V
以上の帯電能が得られており、これによって実用上支障
のない感光体が提供できる。With the above-described configuration, the functionally separated electrophotographic photoreceptor of the present invention can advantageously make its surface positive polarized by corona discharge, and according to experiments conducted by the inventors, +600V
The above charging ability has been obtained, and as a result, a photoreceptor with no practical problems can be provided.
次に、本発明者等は前述した組成のキャリア輸送層に対
して適合し得るキャリア発生層としてアモルファスシリ
コンカーバイドを選択することによって正帯電能をさら
に向上し得ることを知見した。Next, the present inventors found that the positive charging ability could be further improved by selecting amorphous silicon carbide as a carrier generation layer compatible with the carrier transport layer having the composition described above.
用いられるa−StCは下記式(2)
%式%(2)
で表わされ、式中0.01≦Y≦0.9、特に0.05
≦Y≦0.5であることが望ましい。The a-StC used is represented by the following formula (2) % formula % (2) where 0.01≦Y≦0.9, especially 0.05
It is desirable that ≦Y≦0.5.
このキャリア発生層を生成するに当たってもa−SiC
のダングリングボンドを終端させるのに前述したように
11やハロゲン元素を用いる必要があり、これらの元素
の含有量は全組成中5乃至40原子χ、好適には10乃
至30原子χの範囲内になるようにすればよい。In producing this carrier generation layer, a-SiC is also used.
As mentioned above, it is necessary to use 11 or a halogen element to terminate the dangling bonds in the material, and the content of these elements is within the range of 5 to 40 atoms χ, preferably 10 to 30 atoms χ in the total composition. All you have to do is make it look like this.
°以上、前述した本発明における感光体は光波長300
乃至900nmの範囲に対して光感度を有するが、本発
明によれば、前述したa−SiCから成るキャリア発生
層中に周期律表第IIIa族元素を添加することによっ
て特に近赤外領域における光感度を高めることができ、
それによりレーザープリンタ用感光体としての応用が可
能となる。キャリア発生層中の周期律表第11ra族元
素の量は10. OOOppm以下、特に11000p
p以下の範囲で配合し得るが、キャリア輸送層中の周期
律表第n[a族元素添加量と比較して少ないことが重要
である。キャリア発生層中への添加量がキャリア輸送層
への添加量を上回ると、励起キャリアのキャリア発生層
からキャリア輸送層への注入が阻害され感度低下し、残
存電位が増大する。これはキャリア発生層とキャリア輸
送層のエネルギーバンドにおいて、キャリア発生層のエ
ネルギーレベルがキャリア輸送層よりも高エネルギー側
に移行するため、正孔のキャリア輸送層への注入に際し
、界面にエネルギー的障壁が形成されるためである。° Above, the photoreceptor in the present invention described above has a light wavelength of 300
However, according to the present invention, by adding Group IIIa elements of the periodic table to the carrier generation layer made of a-SiC, it is particularly sensitive to light in the near-infrared region. Sensitivity can be increased,
This allows application as a photoreceptor for laser printers. The amount of group 11ra elements of the periodic table in the carrier generation layer is 10. OOOppm or less, especially 11000p
Although it can be blended within a range of p or less, it is important that the amount is small compared to the addition amount of the element of group n[a of the periodic table] in the carrier transport layer. When the amount added to the carrier generation layer exceeds the amount added to the carrier transport layer, injection of excited carriers from the carrier generation layer to the carrier transport layer is inhibited, sensitivity decreases, and residual potential increases. This is because in the energy band between the carrier generation layer and carrier transport layer, the energy level of the carrier generation layer shifts to a higher energy side than that of the carrier transport layer, so when holes are injected into the carrier transport layer, there is an energy barrier at the interface. This is because it is formed.
用いられる周期律表第1I[a族元素としてはキャリア
輸送層の場合と同等、B、AI、Ga、 In等が挙げ
られ、特にBが好ましい。The periodic table II [a group elements used include B, AI, Ga, In, etc. as in the case of the carrier transport layer, with B being particularly preferred.
本発明の感光体の製造方法によれば、無機質の感光体の
主成にはグロー放電分解法、イオンブレーティング法、
反応性スパッタリング法、真空蒸着法、CVO法等の薄
膜形成技術を用いることができる。According to the photoreceptor manufacturing method of the present invention, the main components of the inorganic photoreceptor include glow discharge decomposition method, ion blating method,
Thin film forming techniques such as reactive sputtering, vacuum evaporation, and CVO can be used.
例えば本発明における感光体のうち前述したようなキャ
リア輸送層を形成する際は、グロー放電分解法が望まし
く、用いられる気体原料として5tH4+5tzHth
+Stz■口などのSt系ガス、C114,CzIII
a、Czlb。For example, when forming the carrier transport layer as described above in the photoreceptor of the present invention, the glow discharge decomposition method is preferable, and the gaseous raw material used is 5tH4+5tzHth.
St-based gas such as +Stz ■ mouth, C114, CzIII
a, Czlb.
CJb、C+IIaなどのC系ガスを用いればよく、更
にHz+He+Ne+Arなどをキャリアーガスとして
用いてもよい。周期律表第IIIa族元素含存ガスとし
てはBJa、 BFs+Al(CH3):+、Ga(C
H3)1.In(CH3)5.Ga(C1ls):+等
が挙げられる0本発明者等の実験によれば、前述したガ
スのうちC含有ガスとしてC2)1□を用いると極めて
大きな成膜速度(約5乃至20μvs /h)が得られ
ることを知見した。よってキャリア輸送層形成時の好ま
しい反応ガスとしては少なくともC2H2ガス、Si含
有ガス及び10〜6乃至1モルχの周期律表第rIIa
族元素含有ガスを選択する。反応ガスの具体的組成は(
C,Hlガス:Si含有ガス)組成比が0.05:1乃
至3:1であることが望ましい。A C-based gas such as CJb or C+IIa may be used, and furthermore, Hz+He+Ne+Ar or the like may be used as a carrier gas. Gases containing Group IIIa elements of the periodic table include BJa, BFs+Al(CH3):+, Ga(C
H3)1. In(CH3)5. Ga(C1ls): + etc. 0 According to the experiments of the present inventors, when C2)1□ is used as the C-containing gas among the above-mentioned gases, an extremely high film formation rate (approximately 5 to 20 μvs/h) can be achieved. We found that it is possible to obtain Therefore, preferred reactive gases for forming the carrier transport layer include at least C2H2 gas, Si-containing gas, and gases from periodic table rIIa with a concentration of 10 to 6 to 1 mol χ.
Select a group element-containing gas. The specific composition of the reaction gas is (
It is desirable that the composition ratio (C, Hl gas:Si-containing gas) is 0.05:1 to 3:1.
本発明によれば、さらに正帯電能を向上させることを目
的としてキャリア発生層としてa−5iCを用いるがこ
のキャリア発生層の形成にあっても、少なくともC,1
1□ガス、Si含有ガスを持ち、これをキャリア輸送層
形成時と同様な組成比で用い、この反応ガスをグロー放
電分解してキャリア輸送層上に形成すれば良い。According to the present invention, a-5iC is used as the carrier generation layer for the purpose of further improving the positive charging ability.
1□ gas and a Si-containing gas are used in the same composition ratio as when forming the carrier transport layer, and this reaction gas is decomposed by glow discharge to form on the carrier transport layer.
さらに本発明によれば、近赤外光に対する分光感度を向
上させることを目的としてキャリア発生層として周期律
表第nla族元素を含有するa−SiCを用いるが、こ
のキャリア発生層の形成にあたっても、キャリア輸送層
の成形時と同様、C2Hzガス、Si含有ガス、周期律
表第IIIa族元素含有ガスを用い、周期律表第III
a族元素含有ガスは1モル%以下の割合で配合されるが
、前述した理由から、キャリア発生層形成時の反応ガス
中の周期律表第■a族元素含有ガスの占める割合がキャ
リア輸送層形成時に比べて少ないことが重要である。Furthermore, according to the present invention, a-SiC containing an element of group NLA of the periodic table is used as a carrier generation layer for the purpose of improving the spectral sensitivity to near-infrared light. , as in the case of forming the carrier transport layer, using a C2Hz gas, a Si-containing gas, and a gas containing an element of Group IIIa of the periodic table,
The gas containing Group A elements is blended in a proportion of 1 mol % or less, but for the reasons mentioned above, the proportion of the gas containing Group I elements of the Periodic Table in the reaction gas when forming the carrier generation layer is higher than that of the carrier transport layer. It is important that the amount is smaller than when it is formed.
本発明における感光体のうち第1図あるいは第2図に示
したようにキャリア注入阻止層や、表面保護層を設ける
場合、その材質としてSiC,a−Si:H。When a carrier injection blocking layer or a surface protection layer is provided on the photoreceptor of the present invention as shown in FIG. 1 or 2, the material thereof may be SiC or a-Si:H.
a−SiC、非晶質カーボンあるいはこれらに不純物を
ドープしたものを用いる場合には同じ成膜装置を用いて
連続的に形成でき、且つその成膜時間を著しく小さくす
ることができる。When a-SiC, amorphous carbon, or a material doped with impurities is used, the films can be formed continuously using the same film forming apparatus, and the film forming time can be significantly shortened.
なお、本発明による感光体におけるN構成中、有機材料
を用いる場合はいずれも周知の手段によって形成するこ
とができ、具体的には、高分子材料あるいは有機顔料、
有機染料等を揮発性溶媒中に溶解又は分散した塗布液を
用いて、浸漬法、ドクターブレード法等によって設ける
ことができる。It should be noted that when an organic material is used in the N composition of the photoreceptor according to the present invention, it can be formed by any well-known means, and specifically, a polymeric material or an organic pigment,
It can be provided by a dipping method, a doctor blade method, etc. using a coating liquid in which an organic dye or the like is dissolved or dispersed in a volatile solvent.
次に本発明の実施例に用いられる容量結合型グロー放電
分解装置を第5図により説明する。Next, a capacitively coupled glow discharge decomposition device used in an embodiment of the present invention will be explained with reference to FIG.
なお、周期律表第1ffa族元素含存ガスとして8□1
1、ガスを用いて例示する。In addition, as a gas containing elements of group 1ffa of the periodic table, 8□1
1. An example will be given using gas.
図中、第1.第2.第3.第4タンク(6) (7)
(8) (9)にはそれぞれSiH4,C2H2、BJ
a、(Ilzガス中にB、!1.が38ppm希釈され
ている)II2ガスが密封されており、11、はキャリ
アーガスとしても用いられる。これらのガスは対応する
第1.第2.第3.第4調整弁(10) (11) (
12) (13)を開放することにより放出され、その
流量がマスフローコントローラ(14) (15) (
16) (17)により制御されてメインパイプ(1日
)へ送られる。In the figure, 1st. Second. Third. 4th tank (6) (7)
(8) (9) are SiH4, C2H2, BJ, respectively.
a, II2 gas (38 ppm of B,!1. diluted in Ilz gas) is sealed, and 11 is also used as a carrier gas. These gases correspond to the first. Second. Third. Fourth regulating valve (10) (11) (
12) It is released by opening (13), and its flow rate is controlled by the mass flow controllers (14) (15) (
16) It is controlled by (17) and sent to the main pipe (1st).
尚、(19)は止め弁である。Note that (19) is a stop valve.
メインパイプ(18)を通じて流れるガスは反応管(2
0)へと送り込まれるが、この反応管内部には容量結合
型放電用電極(21)が設置されており、これに印加さ
れる電力は50W乃至3KWが、その周波数はI M
Hz乃至10MHzが適当である。反応管(20)の内
部には、アルミニウムから成る筒状の成膜用導電性基板
(22)が試料保持台(23)の上に載置されており、
この保持台(23)はモーター(24)により回転駆動
されるようになっており、そして、基板(22)は適当
な加熱手段により約50乃至400℃好ましくは約15
0乃至300℃の温度に均一に加熱される。更に、反応
管(20)の内部はa−Si膜又はa−SiC膜等の形
成時に高度の真空状B(放電圧0.1乃至2.0Tor
r)を必要とすることにより回転ポンプ(25)と拡散
ポンプ(26)に連結される。The gas flowing through the main pipe (18) passes through the reaction tube (2).
A capacitively coupled discharge electrode (21) is installed inside this reaction tube, and the power applied to this is 50W to 3KW, and the frequency is IM.
Hz to 10 MHz is suitable. Inside the reaction tube (20), a cylindrical conductive substrate for film formation (22) made of aluminum is placed on a sample holding table (23).
This holding table (23) is rotatably driven by a motor (24), and the substrate (22) is heated to a temperature of about 50 to 400°C, preferably about 15°C by suitable heating means.
It is uniformly heated to a temperature of 0 to 300°C. Furthermore, the inside of the reaction tube (20) is kept in a high vacuum state B (discharge voltage 0.1 to 2.0 Torr) during the formation of an a-Si film or an a-SiC film.
r) is connected to the rotary pump (25) and the diffusion pump (26).
以上のように構成されたグロー放電分解装置において、
例えばBがドーピングされたa−5iC膜を基板(22
)上に形成するに当たって、第1.第2.第3゜第4
tJi整弁(10) (11) (12) (13)を
開放して第工、第2゜第3.第4タンク(6) (7)
(8) (9)よりそれぞれSiH4ガス、CzHz
ガス、BzHhガス及びH2ガスを放出し、これらの放
出量はマスフローコントローラ(10) (11)(1
2) (13)により規制されてメインパイプ(18)
を介して反応管(20)へと送り込まれ、そして、反応
管(20)の内部が0.1乃至2.0Torrの真空状
態、基板温度が50乃至400℃、容量型放電用電極(
21)に周波数1乃至10MHzの高周波電力が50W
乃至3にV印加されるのに相俟ってグロー放電が起こり
、ガスが分解してホウ素含有のa−5iC膜が基板上に
高速で形成される。In the glow discharge decomposition device configured as above,
For example, a B-doped a-5iC film is used as a substrate (22
1.). Second. 3rd゜4th
tJi valve adjustment (10) (11) (12) (13) is opened and the 2nd and 3rd stages are opened. 4th tank (6) (7)
(8) From (9), SiH4 gas and CzHz, respectively.
Gas, BzHh gas and H2 gas are released, and the amount of these emissions is determined by the mass flow controller (10) (11) (1
2) Main pipe (18) regulated by (13)
The interior of the reaction tube (20) is in a vacuum state of 0.1 to 2.0 Torr, the substrate temperature is 50 to 400°C, and the capacitive discharge electrode (
21) 50W of high frequency power with a frequency of 1 to 10MHz
Coupled with the application of V to 3, a glow discharge occurs, the gas is decomposed, and a boron-containing a-5iC film is formed on the substrate at high speed.
以下、本発明を実施例により説明する。 The present invention will be explained below with reference to Examples.
(例1)
ダイヤモンドバイトを用いた超精密旋盤により鏡面に仕
上げた基板用アルミニウム製ドラムを有m溶剤を用いた
超音波洗浄及び蒸気洗浄、次いで乾燥を行って洗浄し、
第5図に示した容量結合型グロー放電分解装置の反応管
(20)内に設置した。(Example 1) An aluminum drum for a substrate finished with a mirror finish using an ultra-precision lathe using a diamond cutting tool was cleaned by ultrasonic cleaning and steam cleaning using a solvent, and then dried.
It was installed in the reaction tube (20) of the capacitively coupled glow discharge decomposition apparatus shown in FIG.
そして、第1タンク(6)よりS i II sガスを
100sec鵬、第2タンク(7)よりczozガスを
20secm、第3タンク(8)よりB2H&ガスを2
00secm、第4タンク(9)よりUZガスを300
sccn+の流量で放出し、ガス圧を0.4Torr
、高周波電力を200−に基板温度300℃に設定して
前述したグロー放電分解法に基づいてa−5iC:H:
B:N:Oからなるキャリア注入阻止層を形成した。Then, from the first tank (6), S i II s gas is fed for 100 seconds, from the second tank (7), czoz gas is fed for 20 seconds, and from the third tank (8), B2H & gas is fed for 2 seconds.
00sec, 300 UZ gas from the 4th tank (9)
Discharge at a flow rate of sccn+ and set the gas pressure to 0.4 Torr.
, a-5iC:H:
A carrier injection blocking layer made of B:N:O was formed.
さらに同一の装置を用いて第1表に示す条件により順次
約30ppmの8がドープされたa−SiCからなるキ
ャリア輸送!(5) 、a−5iからなるキャリア発生
1!(3a)及びSiCからなる表面保護層(4)を形
成し、厚み30.2μmの感光体を得た。Furthermore, carrier transport consisting of a-SiC doped with about 30 ppm of 8 under the conditions shown in Table 1 using the same equipment! (5) Carrier generation 1 consisting of , a-5i! (3a) and a surface protective layer (4) made of SiC were formed to obtain a photoreceptor having a thickness of 30.2 μm.
かくして得られた電子写真感光体について表面電位、暗
減衰及び光減衰の特性を測定したところ、第6図に示す
通りの結果が得られた。これは暗中で+5.6KVのコ
ロナ放電で正帯電し、暗中での表面電位の経時変化と6
50in+の単色光(露光量0.3μm’/cmり照射
直後の表面電位の経時変化を追ったものである。尚、図
中、Aは暗減衰曲線であり、Bは光減衰曲線である。When the surface potential, dark decay, and light decay characteristics of the electrophotographic photoreceptor thus obtained were measured, the results shown in FIG. 6 were obtained. This is positively charged by +5.6KV corona discharge in the dark, and the change in surface potential with time in the dark and 6
The graph shows the change in surface potential over time immediately after irradiation with 50 in+ monochromatic light (exposure dose: 0.3 μm'/cm). In the figure, A is a dark decay curve and B is a light decay curve.
第6図から明らかな通り、2秒後の表面電位が約750
vと実用的なまでに高くなっており、光減衰の結果より
露光より瞬時にして表面電位が小さくなって残留電位も
著しく小さくなっている。As is clear from Figure 6, the surface potential after 2 seconds is approximately 750
v, which is high enough for practical use, and as a result of optical attenuation, the surface potential becomes smaller instantaneously than exposure, and the residual potential also becomes significantly smaller.
(例2)
本例においては、(例1)よりキャリア注入阻止層を除
いた三層よりなる積層体を成形し、正負両極による帯電
能を調べた。尚、成膜条件及び測定条件は(例1)と同
じにした。この結果は第7図及び第8図に示す通りであ
る。(Example 2) In this example, a laminate consisting of three layers from (Example 1) except for the carrier injection blocking layer was molded, and the charging ability with both positive and negative electrodes was examined. Note that the film formation conditions and measurement conditions were the same as in (Example 1). The results are shown in FIGS. 7 and 8.
即ち、第7図においては+5.6KVのコロナ放電で帯
電させた場合の暗減衰曲線、光減衰曲線であリ、これに
対して、第8図においては−5,6KVのコロナ放電で
帯電させた場合である。この結果より明らかな通り、正
帯電によれば、+ 650Vまで表面電位が大きくなり
、十分に実用可能となるのに対して、負帯電によると約
−55Vまでの表面電位しか得られなかった。That is, Fig. 7 shows the dark decay curve and light decay curve when charged with +5.6 KV corona discharge, whereas Fig. 8 shows the dark decay curve and light decay curve when charged with -5.6 KV corona discharge. This is the case. As is clear from the results, positive charging increases the surface potential to +650V, which is sufficiently practical, whereas negative charging only provides a surface potential of about -55V.
(例3)
次に、第1と同様にしてSiH4,fh+czHzおよ
び81Hbの各々のガスを用いて、第2表に示す流量で
a−Si:B二Neoからなるキャリア注入阻止層、
ppraのBがドープされたa−SiCからなるキャ
リア輸送層(5) 、a−SiCからなるキャリア発生
層(3a)及びSiCからなる表面保護N(4)を形成
し、厚さ30μ鵠の感光体を得た。(Example 3) Next, in the same manner as in the first example, a carrier injection blocking layer made of a-Si:B2Neo was formed using each of the gases of SiH4, fh+czHz and 81Hb at the flow rates shown in Table 2.
A carrier transport layer (5) made of a-SiC doped with ppra B, a carrier generation layer (3a) made of a-SiC, and a surface protection N (4) made of SiC were formed, and a photosensitive layer with a thickness of 30 μm was formed. I got a body.
得られた感光体に対しく例1)と同様に+5.6KVの
コロナ放電で帯電され、暗減衰、光減衰の測定を行い、
第9図の結果を得た。The obtained photoreceptor was charged with +5.6 KV corona discharge in the same manner as in Example 1), and the dark attenuation and light attenuation were measured.
The results shown in Figure 9 were obtained.
第9図から明らかなように優れた正帯電性を示した。As is clear from FIG. 9, excellent positive chargeability was exhibited.
(例4)
例1と同様な方法で5IH41Hz+ C2Hiおよび
thH&のガスを用いて、第3表に示す流量でa−5i
:B:N:Oからなるキャリア注入阻止層、約30pp
mのBがドープされたa−SiCからなるキャリア輸送
11(5)、約15 ppm+のBがドープされたa−
SiCからなるキャリア発生JW(3a)及びSiCか
らなる表面保護N(4)を形成し、厚さ29.9μ蹟の
感光体を得た。(Example 4) Using 5IH41Hz+ C2Hi and thH& gas in the same manner as Example 1, a-5i at the flow rate shown in Table 3.
:B:N:O carrier injection blocking layer, approximately 30pp
Carrier transport 11(5) consisting of a-SiC doped with m B, a- doped with about 15 ppm+ B
A carrier generation JW (3a) made of SiC and a surface protection N (4) made of SiC were formed to obtain a photoreceptor having a thickness of 29.9 μm.
得られた感光体に対しく例1)と同様に+5.6KVの
コロナ放電で帯電され、暗減衰、光減衰の測定を行い第
10図の結果を得た。The obtained photoreceptor was charged by +5.6 KV corona discharge in the same manner as in Example 1), and the dark attenuation and light attenuation were measured, and the results shown in FIG. 10 were obtained.
なお、(例1)、(例3)、(例4)にて製造した感光
体に対して、770r++aの波長の光で分光感度を求
めたところ、(例1)が0.18cm”/erg(例3
)が0.15cm”/erg 、(例4)が0.26c
m”/ergと(例4)の層構成において顕著な感度向
上が確認された。In addition, when the spectral sensitivity of the photoreceptors manufactured in (Example 1), (Example 3), and (Example 4) was determined using light with a wavelength of 770r++a, (Example 1) was 0.18 cm"/erg (Example 3
) is 0.15cm”/erg, (Example 4) is 0.26c
A remarkable improvement in sensitivity was confirmed in the layer structure of m''/erg (Example 4).
以上、詳述した通り1本発明の電子写真感光体の製造方
法は、反応ガスとして少なくともCzHtガス、Si含
有ガス及び周期律表第IIIa族元素含有ガスを用いて
キャリア輸送層として周期律表第IIIa族元素を含む
アモルファスシリコンカーバイドを、また、キャリア発
生層としてアモルファスシリコンカーバイドを、あるい
は特定量の周期律表第IIIa族元素を含むアモルファ
スシリコンカーバイド層を順次形成することによって正
極性帯電能および電子写真特性に優れた電子写真感光体
を得ることができるとともに成膜速度を極めて向上させ
ることができることから量産性に優れている。しかもレ
ーザープリンタ用としての応力も拡充することができる
。As described above in detail, the method for producing an electrophotographic photoreceptor of the present invention uses at least CzHt gas, Si-containing gas, and gas containing an element of Group IIIa of the periodic table as a reactive gas, and a carrier transport layer containing a group IIIa element of the periodic table. Positive charging ability and electron It is possible to obtain an electrophotographic photoreceptor with excellent photographic properties, and the film formation rate can be extremely improved, so it is excellent in mass production. Furthermore, the stress for use in laser printers can be expanded.
第1図は本発明の実施例に用いられる感光体の層構成を
示す断面図、第2図は本発明の他の実施例に用いられる
感光体の層構成を示す断面図、第3図は感光体の一般的
な層構成を示す断面図、第4図(a)及び(b)は本発
明の電子写真感光体の電子写真特性を説明するための図
、第5図は本発明の実施例に用いられる容量結合型グロ
ー放電分解装置の説明図、第6図乃至第10図は暗減衰
曲線および光減衰曲線を示した図であって、第6図、第
7図、第9図、第10図は本発明の感光体を示し、第8
図は比較例を示した図である。
1・・基板
2.2a・・・キャリア注入阻止層
3.3a・・・キャリア発生層
4・・・表面保護層
5・・・キャリア輸送層
特許出願人 (663)京セラ株式会社同 河村孝
夫FIG. 1 is a sectional view showing the layer structure of a photoreceptor used in an embodiment of the present invention, FIG. 2 is a sectional view showing the layer structure of a photoreceptor used in another embodiment of the invention, and FIG. 4(a) and (b) are diagrams for explaining the electrophotographic characteristics of the electrophotographic photoreceptor of the present invention, and FIG. 5 is a cross-sectional view showing the general layer structure of the photoreceptor. Explanatory diagrams of the capacitively coupled glow discharge decomposition device used in the example, FIGS. 6 to 10 are diagrams showing dark attenuation curves and light attenuation curves, and FIGS. 6, 7, 9, FIG. 10 shows the photoreceptor of the present invention, and FIG.
The figure shows a comparative example. 1...Substrate 2.2a...Carrier injection blocking layer 3.3a...Carrier generation layer 4...Surface protection layer 5...Carrier transport layer Patent applicant (663) Kyocera Corporation Takao Kawamura
Claims (3)
10^−^6乃至1モル%の周期律表第IIIa族元素含
有ガスを含む反応ガスをグロー放電分解して導電性基板
上に周期律表第IIIa族元素を含有するアモルファスシ
リコンカーバイドから成るキャリア輸送層を形成した後
、キャリア発生層を順次設けたことを特徴とする正極性
に帯電可能な電子写真感光体の製造方法。(1) Glow discharge decomposition of a reactive gas containing at least C_2H_2 gas, Si-containing gas, and gas containing 10^-^6 to 1 mol % of Group IIIa elements of the Periodic Table, and then depositing Group IIIa elements of the Periodic Table on a conductive substrate. 1. A method for manufacturing an electrophotographic photoreceptor capable of being positively charged, comprising forming a carrier transport layer made of amorphous silicon carbide containing a Group element, and then sequentially providing a carrier generation layer.
10^−^6乃至1モル%の周期律表第IIIa族元素含
有ガスを含む反応ガスをグロー放電分解して導電性基板
上に周期律表第IIIa族元素を含有するアモルファスシ
リコンカーバイドから成るキャリア輸送層を形成した後
、さらに少なくともC_2H_2ガス、Si含有ガスか
ら成る反応ガスをグロー放電分解して、前記キャリア輸
送層上にアモルファスシリコンカーバイドから成るキャ
リア発生層を順次設けたことを特徴とする正極性に帯電
可能な電子写真感光体の製造方法。(2) Glow-discharge decomposition of a reactive gas containing at least C_2H_2 gas, Si-containing gas, and gas containing 10^-^6 to 1 mol% of Group IIIa elements of the Periodic Table, and then depositing Group IIIa elements of the Periodic Table on a conductive substrate. After forming a carrier transport layer made of amorphous silicon carbide containing group elements, further glow discharge decomposition of a reaction gas made of at least C_2H_2 gas and Si-containing gas is performed to generate carriers made of amorphous silicon carbide on the carrier transport layer. A method for manufacturing an electrophotographic photoreceptor capable of being positively charged, characterized by sequentially providing layers.
10^−^6乃至1モル%の周期律表第IIIa族元素含
有ガスを含む反応ガスをグロー放電分解して導電性基板
上に周期律表第IIIa族元素を含有するアモルファスシ
リコンカーバイドから成るキャリア輸送層を形成した後
、さらに少なくともC_2H_2ガス、Si含有ガス及
び1モル%以下の周期律表第IIIa族元素含有ガスを含
む反応ガスをグロー放電分解して前記キャリア輸送層上
に周期律表第IIIa族元素を含有するアモルファスシリ
コンカーバイドから成るキャリア発生層を設けてなり、
前記キャリア発生層形成時のアモルファスシリコンカー
バイド生成用ガスにおける周期律表第III族元素含有ガ
スの占める割合が前記キャリア輸送層形成時に比べて少
ないことを特徴とする正極性に帯電可能な電子写真感光
体の製造方法。(3) Glow discharge decomposition of a reactive gas containing at least C_2H_2 gas, Si-containing gas, and gas containing 10^-^6 to 1 mol % of Group IIIa elements of the Periodic Table, and then depositing Group IIIa elements of the Periodic Table on a conductive substrate. After forming a carrier transport layer made of amorphous silicon carbide containing group elements, further glow discharge decomposition of a reactive gas containing at least C_2H_2 gas, Si-containing gas, and gas containing 1 mol % or less of Group IIIa elements of the periodic table is performed. a carrier generation layer made of amorphous silicon carbide containing a Group IIIa element of the periodic table is provided on the carrier transport layer;
Electrophotographic photosensitive material capable of being positively charged, characterized in that the ratio of a gas containing a Group III element of the periodic table in the amorphous silicon carbide generating gas during the formation of the carrier generation layer is smaller than that during the formation of the carrier transport layer. How the body is manufactured.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22893486A JPS6381434A (en) | 1986-09-26 | 1986-09-26 | Production of electrophotographic sensitive body |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22893486A JPS6381434A (en) | 1986-09-26 | 1986-09-26 | Production of electrophotographic sensitive body |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6381434A true JPS6381434A (en) | 1988-04-12 |
Family
ID=16884148
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP22893486A Pending JPS6381434A (en) | 1986-09-26 | 1986-09-26 | Production of electrophotographic sensitive body |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6381434A (en) |
-
1986
- 1986-09-26 JP JP22893486A patent/JPS6381434A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0233146B2 (en) | ||
JPS62115456A (en) | Electrophotographic sensitive body | |
JPS62115457A (en) | Electrophotographic sensitive body | |
JPH0782240B2 (en) | Electrophotographic photoreceptor | |
JPS6381434A (en) | Production of electrophotographic sensitive body | |
JPH0233148B2 (en) | ||
JP2565314B2 (en) | Electrophotographic photoreceptor | |
JP2562583B2 (en) | Electrophotographic photoreceptor | |
JPS5967549A (en) | Recording body | |
JPS62151857A (en) | Photoconductive member | |
JPS6381436A (en) | Production of electrophotographic sensitive body | |
JPS6381433A (en) | Electrophotographic sensitive body | |
JPS6381435A (en) | Production of electrophotographic sensitive body | |
JPS6381432A (en) | Production of electrophotographic sensitive body | |
JPS63135954A (en) | Electrophotographic sensitive body | |
JPS63132252A (en) | Electrophotographic sensitive body | |
JPS5967545A (en) | Recording body | |
JPS6385752A (en) | Production of electrophotographic sensitive body | |
JPS58215656A (en) | Recording material | |
JPS61223752A (en) | Electrophotographic sensitive body | |
JPS6382421A (en) | Production of electrophotographic sensitive body | |
JPS62151856A (en) | Photoconductive member | |
JPS63135951A (en) | Electrophotographic sensitive body | |
JPS635348A (en) | Electrophotographic sensitive body | |
JPS6382416A (en) | Electrophotographic sensitive body |