JPS6381433A - Electrophotographic sensitive body - Google Patents
Electrophotographic sensitive bodyInfo
- Publication number
- JPS6381433A JPS6381433A JP22893386A JP22893386A JPS6381433A JP S6381433 A JPS6381433 A JP S6381433A JP 22893386 A JP22893386 A JP 22893386A JP 22893386 A JP22893386 A JP 22893386A JP S6381433 A JPS6381433 A JP S6381433A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- carrier
- periodic table
- group iiia
- sic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000000737 periodic effect Effects 0.000 claims abstract description 29
- 229910021417 amorphous silicon Inorganic materials 0.000 claims abstract description 22
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 claims abstract description 20
- 239000000758 substrate Substances 0.000 claims abstract description 20
- 108091008695 photoreceptors Proteins 0.000 claims description 58
- 229910052799 carbon Inorganic materials 0.000 abstract description 4
- 229910052736 halogen Inorganic materials 0.000 abstract description 4
- 150000002367 halogens Chemical class 0.000 abstract description 4
- 229910052710 silicon Inorganic materials 0.000 abstract description 3
- 239000010410 layer Substances 0.000 description 95
- 239000007789 gas Substances 0.000 description 36
- 239000007924 injection Substances 0.000 description 18
- 238000002347 injection Methods 0.000 description 18
- 229910010271 silicon carbide Inorganic materials 0.000 description 15
- 230000000903 blocking effect Effects 0.000 description 13
- 238000006243 chemical reaction Methods 0.000 description 7
- 239000000203 mixture Substances 0.000 description 7
- 238000000354 decomposition reaction Methods 0.000 description 6
- 239000010408 film Substances 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 230000035945 sensitivity Effects 0.000 description 6
- 229910052739 hydrogen Inorganic materials 0.000 description 5
- 206010034972 Photosensitivity reaction Diseases 0.000 description 4
- 125000004429 atom Chemical group 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 229910052796 boron Inorganic materials 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 230000036211 photosensitivity Effects 0.000 description 4
- 239000011241 protective layer Substances 0.000 description 4
- 239000004065 semiconductor Substances 0.000 description 4
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 239000011368 organic material Substances 0.000 description 3
- 239000012495 reaction gas Substances 0.000 description 3
- 230000003595 spectral effect Effects 0.000 description 3
- AZQWKYJCGOJGHM-UHFFFAOYSA-N 1,4-benzoquinone Chemical compound O=C1C=CC(=O)C=C1 AZQWKYJCGOJGHM-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 229910003481 amorphous carbon Inorganic materials 0.000 description 2
- 239000012159 carrier gas Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 229910052731 fluorine Inorganic materials 0.000 description 2
- 229910010272 inorganic material Inorganic materials 0.000 description 2
- 239000011147 inorganic material Substances 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 1
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 1
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 229910052681 coesite Inorganic materials 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 229910052906 cristobalite Inorganic materials 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 238000007606 doctor blade method Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- -1 for example Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000003446 memory effect Effects 0.000 description 1
- 229910003465 moissanite Inorganic materials 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000012860 organic pigment Substances 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 125000002080 perylenyl group Chemical group C1(=CC=C2C=CC=C3C4=CC=CC5=CC=CC(C1=C23)=C45)* 0.000 description 1
- CSHWQDPOILHKBI-UHFFFAOYSA-N peryrene Natural products C1=CC(C2=CC=CC=3C2=C2C=CC=3)=C3C2=CC=CC3=C1 CSHWQDPOILHKBI-UHFFFAOYSA-N 0.000 description 1
- IEQIEDJGQAUEQZ-UHFFFAOYSA-N phthalocyanine Chemical compound N1C(N=C2C3=CC=CC=C3C(N=C3C4=CC=CC=C4C(=N4)N3)=N2)=C(C=CC=C2)C2=C1N=C1C2=CC=CC=C2C4=N1 IEQIEDJGQAUEQZ-UHFFFAOYSA-N 0.000 description 1
- 229920003227 poly(N-vinyl carbazole) Polymers 0.000 description 1
- 125000003367 polycyclic group Chemical group 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 239000009719 polyimide resin Substances 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000005546 reactive sputtering Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000013020 steam cleaning Methods 0.000 description 1
- 229910052682 stishovite Inorganic materials 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 229910052905 tridymite Inorganic materials 0.000 description 1
- 238000004506 ultrasonic cleaning Methods 0.000 description 1
- 238000007738 vacuum evaporation Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03G—ELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
- G03G5/00—Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
- G03G5/02—Charge-receiving layers
- G03G5/04—Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
- G03G5/08—Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic
- G03G5/082—Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic and not being incorporated in a bonding material, e.g. vacuum deposited
- G03G5/08214—Silicon-based
- G03G5/08235—Silicon-based comprising three or four silicon-based layers
Landscapes
- Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Photoreceptors In Electrophotography (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は正帯電能を有し、長期間に亘って安定した電子
写真特性を維持すると共に耐久性に優れた電子写真感光
体に関するものである。[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to an electrophotographic photoreceptor that has a positive charging ability, maintains stable electrophotographic characteristics over a long period of time, and has excellent durability. be.
近年、超高速複写機やレーザービームプリンタなどの開
発が活発に進められており、これに伴ってこの機器に搭
載される電子写真感光体ドラムに安定した動作特性及び
耐久性が要求されている。2. Description of the Related Art In recent years, the development of ultra-high speed copying machines, laser beam printers, etc. has been actively progressing, and as a result, electrophotographic photosensitive drums installed in these devices are required to have stable operating characteristics and durability.
この要求に対して水素化アモルファスシリコンが耐摩耗
性、耐熱性、無公害性並びに光感度特性等に優れている
という理由から注目されている。In response to this demand, hydrogenated amorphous silicon is attracting attention because of its excellent wear resistance, heat resistance, pollution-free property, and photosensitivity characteristics.
かかるアモルファスシリコン(以下、a−3iと略す)
から成る電子写真感光体には第3図に示す通りの積層型
感光体が提案されている。Such amorphous silicon (hereinafter abbreviated as a-3i)
As an electrophotographic photoreceptor, a laminated type photoreceptor as shown in FIG. 3 has been proposed.
即ち、第3図によれば、アルミニウムなどの導電性基板
(1)上にa−5iキャリア注入阻止層(2)、a−5
t光導電層(3)及び表面保護層(4)を順次積層して
おり、このキャリア注入阻止層(2)は基板(1)から
のキャリアの注入を層すると共に残留電位を低下させる
ために形成されており、そして、表面保護層(4)には
高硬度な材料を用いて感光体の耐久性を高めている。That is, according to FIG. 3, an a-5i carrier injection blocking layer (2), an a-5
A photoconductive layer (3) and a surface protection layer (4) are sequentially laminated, and this carrier injection blocking layer (2) is used to prevent carrier injection from the substrate (1) and to reduce residual potential. A highly hard material is used for the surface protective layer (4) to increase the durability of the photoreceptor.
ところが、このa−si感光体によれば、a−5i光導
電N(3)自体が有する暗抵抗率が101、Ω・cry
以下であり、これにより、この感光体の暗減衰率が大き
くなると共にその自体の帯電能を高めることが難しくな
り、その結果、この感光体を高速複写用に用いた場合に
は光メモリ効果により先の画像が完全に瞭去されずに残
留し、次の画像形成に伴って先の画像が現れる(ゴース
ト現象)という問題がある。However, according to this a-si photoreceptor, the dark resistivity of the a-5i photoconductive N(3) itself is 101, Ω・cry
This increases the dark decay rate of this photoreceptor and makes it difficult to increase its own charging ability.As a result, when this photoreceptor is used for high-speed copying, the optical memory effect There is a problem in that the image remains without being completely cleared, and the previous image appears when the next image is formed (ghost phenomenon).
この問題を解決するために第1図に示すような機能分離
型感光体が提案されている。In order to solve this problem, a functionally separated photoreceptor as shown in FIG. 1 has been proposed.
即ち、第1図および第2図によれば、基本的構成として
は導電性基板(1)上にキャリア輸送N(5)およびキ
ャリア発生1i(3a)を順次積層したもので、所望に
より導電性基板(1)とキャリア輸送層(5)との間に
キャリア注入阻止7!(2a)を、あるいはキャリア発
生層(3a)上に表面保護N(4)を設けたものである
。キャリア輸送層(5)は暗抵抗及びキャリア移動度の
それぞれが大きい材料で形成し、これによって表面電位
及び光感度に優れ且つ残留電位が小さい高性能な感光体
が得られる。That is, according to FIGS. 1 and 2, the basic structure is that a carrier transport N (5) and a carrier generation 1i (3a) are sequentially laminated on a conductive substrate (1), and if desired, a conductive substrate (1i) is laminated on a conductive substrate (1). Preventing carrier injection between the substrate (1) and the carrier transport layer (5) 7! (2a) or a surface protection layer N (4) is provided on the carrier generation layer (3a). The carrier transport layer (5) is formed of a material having high dark resistance and carrier mobility, thereby providing a high-performance photoreceptor with excellent surface potential and photosensitivity and low residual potential.
このキャリア輸送層(5)については高抵抗且つ広いバ
ンドギャップ並びに半導体特性を具備した水素化アモル
ファスシリコンカーバイドを用いることが特開昭58−
192046号公報などに提案されている。For this carrier transport layer (5), it is recommended to use hydrogenated amorphous silicon carbide, which has high resistance, wide bandgap, and semiconductor properties.
It has been proposed in Publication No. 192046 and the like.
一方、電子写真法において感光体を負極性に帯電して使
用する場合、コロナ放電により発生するオゾンによって
感光体表面が劣化し、電子写真特性が低下し、長期間に
亘り、安定した画像を供給することができない等の不都
合が生じることから感光体の帯電極性として、正極性に
帯電可能なものが望まれている。On the other hand, when using electrophotography with a photoreceptor charged to a negative polarity, the surface of the photoreceptor deteriorates due to ozone generated by corona discharge, reducing the electrophotographic characteristics and providing stable images over a long period of time. Therefore, it is desired that the photoreceptor be charged to a positive polarity.
そこで、前述した先行技術では正極性あるいは負極性の
帯電能については十分に研究されておらず、正帯電能で
の電子写真特性上はとんど実用化することはできないも
のである。Therefore, in the prior art described above, the charging ability of positive polarity or negative polarity has not been sufficiently researched, and it is almost impossible to put it into practical use in terms of electrophotographic characteristics with positive charging ability.
従って、本発明の目的は優れた正帯電能と電子写真特性
、即ち、優れた暗減衰、光減衰特性を有し耐久性のある
電子写真感光体を提供するにある。Therefore, an object of the present invention is to provide a durable electrophotographic photoreceptor having excellent positive chargeability and electrophotographic properties, that is, excellent dark decay and light decay properties.
本発明の他の目的は近赤外領域の波長に対する分光感度
のあるレーザープリンタ用として適した電子写真感光体
を提供するにある。Another object of the present invention is to provide an electrophotographic photoreceptor suitable for use in laser printers and having spectral sensitivity to wavelengths in the near-infrared region.
即ち、本発明によれば導電性基板上に少なくともキャリ
ア輸送層とキャリア発生層を形成した電子写真感光体に
おいて、前記キャリア輸送層が0゜1乃至10,0OO
ppfnの周期律表第IIIa族元素を含むアモルファ
スシリコンカーバイドから成ることを特徴とする正極性
に帯電可能な電子写真感光体が提供される。That is, according to the present invention, in an electrophotographic photoreceptor in which at least a carrier transport layer and a carrier generation layer are formed on a conductive substrate, the carrier transport layer has a thickness of 0°1 to 10,000°C.
Provided is an electrophotographic photoreceptor that can be charged to a positive polarity and is made of amorphous silicon carbide containing an element of Group IIIa of the periodic table of ppfn.
さらに、本発明によれば、導電性基板上に少なくともキ
ャリア輸送層とキャリア発生層を形成した電子写真感光
体において、前記キャリア輸送層が0.1乃至10.0
00ppmの周期律表第IIIa族元素を含むアモルフ
ァスシリコンカーバイドから成り、前記キャリア発生層
がアモルファスシリコンカーバイドから成ることを特徴
とする正極性に帯電可能な電子写真感光体が提供される
。Furthermore, according to the present invention, in the electrophotographic photoreceptor in which at least a carrier transport layer and a carrier generation layer are formed on a conductive substrate, the carrier transport layer has a thickness of 0.1 to 10.0.
Provided is an electrophotographic photoreceptor that can be charged to a positive polarity and is made of amorphous silicon carbide containing 00 ppm of Group IIIa elements of the periodic table, and the carrier generation layer is made of amorphous silicon carbide.
さらに本発明によれば、導電性基板上に少なくともキャ
リア輸送層とキャリア発生層を形成した電子写真感光体
において、前記キャリア輸送層が0.1乃至10. O
OOppmの周期律表第IIIa族元素を含むアモルフ
ァスシリコンカーバイドおよび前記キャリア発生層がt
o、ooopp−以下の周期律表第rfIa族元素を含
むアモルファスシリコンカーバイドから成り、前記キャ
リア発生層における周期律表第IIIa族元素の量が前
記キャリア輸送層よりも少ないことを特徴とする正極性
に帯電可能な電子写真感光体が提供される。Further, according to the present invention, in the electrophotographic photoreceptor in which at least a carrier transport layer and a carrier generation layer are formed on a conductive substrate, the carrier transport layer has a thickness of 0.1 to 10. O
The amorphous silicon carbide containing Group IIIa elements of the periodic table of OOppm and the carrier generation layer are t
positive polarity, characterized in that the amount of the group IIIa element of the periodic table in the carrier generation layer is smaller than that in the carrier transport layer; An electrophotographic photoreceptor that can be charged is provided.
以下、本発明を詳述する。The present invention will be explained in detail below.
本発明の電子写真感光体は第1図及び第2図に示す構造
を基本とする機能分離型積層感光体である。The electrophotographic photoreceptor of the present invention is a functionally separated laminated photoreceptor having the structure shown in FIGS. 1 and 2 as a basic structure.
本発明によれば、上記構造のうち、キャリア輸送層をア
モルファスシリコンカーバイド(以下、a−5iCと略
す)を主要構成元素とし、SiとCのダングリングボン
ドを終端させるために、例えばHやF、Cl1Brl1
等のハロゲン元素をドーピングし、更に周期律表第II
Ia族元素を所定の範囲内で含有させることによって感
光体としての優れた正帯電能を付与することができる。According to the present invention, in the above structure, the carrier transport layer has amorphous silicon carbide (hereinafter abbreviated as a-5iC) as a main constituent element, and in order to terminate the dangling bonds of Si and C, for example, H or F , Cl1Brl1
Doping with halogen elements such as
By containing the Group Ia element within a predetermined range, it is possible to impart excellent positive charging ability as a photoreceptor.
即ち、周期律表第■a族元索の添加によって、キャリア
輸送層はP型半導体となる。That is, the carrier transport layer becomes a P-type semiconductor due to the addition of the group IV a element of the periodic table.
これを第1図の構成の感光体を例にとってその電子写真
特性を第4図(a)および(b)をもとに説明すると、
コロナ放電等の帯電手段により正帯電を施す(第4図(
a)参照)0次に露光を行うと、キャリア発生層(5)
に電子と正孔が発生し、電子は感光体表面の正電荷と中
和し、正孔は輸送層を移行して基板側に注入接地され、
露光部の全体としての電荷は零となる。(第4図(b)
参照)。Taking the photoreceptor with the configuration shown in FIG. 1 as an example, its electrophotographic characteristics will be explained based on FIGS. 4(a) and (b).
Apply positive charging using charging means such as corona discharge (Figure 4 (
(See a)) When the 0th exposure is performed, the carrier generation layer (5)
Electrons and holes are generated at
The total charge of the exposed area becomes zero. (Figure 4(b)
reference).
本発明の電子写真感光体におけるキャリア輸送層は前述
した通り、基本的にa−5tCから成るものであるが、
具体的には下記式(1)
%式%(1)
で表わされ、式中0.01≦X≦0.9特に0.05≦
X≦0.5に設定することによって暗抵抗10”0m以
上とすることができる。As mentioned above, the carrier transport layer in the electrophotographic photoreceptor of the present invention basically consists of a-5tC,
Specifically, it is expressed by the following formula (1) % formula % (1) where 0.01≦X≦0.9, especially 0.05≦
By setting X≦0.5, the dark resistance can be set to 10” or more.
また、添加する周期律表第IIIa族元素としては13
.711.Ga、1mが挙げられ特にホウ素が望ましい
。これらはキャリア輸送層中に0.1乃至10,000
ppm、特に0.5乃至11000pp+の量で含有さ
せ、含有量が0、lppm未満では、周期律表第III
a族元素添加効果がなく、感光体は負帯電型となる。In addition, the Group IIIa elements of the periodic table to be added are 13
.. 711. Examples include Ga and 1m, and boron is particularly desirable. These are 0.1 to 10,000 in the carrier transport layer.
ppm, especially in an amount of 0.5 to 11000 ppm, and if the content is less than 0.1 ppm, the periodic table III
There is no effect of adding the group a element, and the photoreceptor becomes negatively charged.
なお、キャリア輸送層のa−SiCのダングリングボン
ドを終端させるためのHやハロゲン元素の含有量は全組
成中5乃至40原子χ、好適には10乃至30原子χの
範囲内が好ましい。The content of H and halogen elements for terminating the dangling bonds of a-SiC in the carrier transport layer is preferably in the range of 5 to 40 atoms χ, preferably 10 to 30 atoms χ in the total composition.
更にこのキャリア輸送層の厚みは1乃至100 μm、
好適には5乃至50μ請の範囲内に設定するのがよく、
1μm未満であれば電荷保持能力に劣ってゴースト現象
が顕著になり、100μmを越えると画像の分解能が劣
化すると共に残留電位が大きくなるf噴量にある。Furthermore, the thickness of this carrier transport layer is 1 to 100 μm,
Preferably, it is set within the range of 5 to 50 micrometers,
If it is less than 1 .mu.m, the charge retention ability will be poor and the ghost phenomenon will become noticeable, and if it exceeds 100 .mu.m, the image resolution will deteriorate and the residual potential will increase.
本発明の感光体におけるキャリア輸送層以外の層はそれ
自体周知の光導電性材料を用いることができ、キャリア
発生層としては、ポリビニルカルバゾール系、フタロシ
アニン系、ペリレン系、アゾ系、多環キノン系等の有機
半導体やSe、 5e−Te+ Se−A s lCd
S + Z n S + a −S i: H+ a
−S iG e : H* a −S I C等の無
機半導体を用いることができる。Layers other than the carrier transport layer in the photoreceptor of the present invention can be made of well-known photoconductive materials, and the carrier generation layer can be polyvinylcarbazole-based, phthalocyanine-based, perylene-based, azo-based, or polycyclic quinone-based. organic semiconductors such as Se, 5e-Te+ Se-A s lCd
S + Z n S + a −S i: H+ a
-S iG e : H* a An inorganic semiconductor such as -S IC can be used.
また、キャリア注入阻止層(2a)はキャリア輸送層(
5)へのキャリア注入を阻止するために設けられており
、例えばポリイミド樹脂などの有機材料、SiO2+S
10.A1z03+SIC+513Na+ 非晶質カー
ボンの他、a−5iまたはa−SiCに水素、フッ素、
酸素あるいは窒素等をドープして抵抗値を制御した無機
材を用いて形成される。Si系又はSiC系を用いた場
合にはホウ素等の周期律表第IIIa族元素やP等の第
Va族元素を50乃至50QOppmの範囲内で添加し
てキャリアの注入阻止を一段と高めることができる。Further, the carrier injection blocking layer (2a) is a carrier transporting layer (
5) is provided to prevent carrier injection into, for example, organic materials such as polyimide resin, SiO2+S
10. A1z03+SIC+513Na+ In addition to amorphous carbon, a-5i or a-SiC contains hydrogen, fluorine,
It is formed using an inorganic material doped with oxygen or nitrogen to control the resistance value. When Si-based or SiC-based materials are used, carrier injection prevention can be further enhanced by adding a group IIIa element of the periodic table such as boron or a group Va element such as P within a range of 50 to 50 QOppm. .
なお、本発明の電子写真感光体については前述した組成
のキャリア輸送層が十分に大きな暗抵抗を得ることがで
きるので、このキャリア注入阻止層を必ず形成しなくて
はならぬというものではなく、本発明者等が繰り返し行
った実験によれば、キャリア輸送層の暗抵抗率が10+
3Ω・0m以上であればキャリア注入阻止層を形成しな
くても電子写真感光体として十分実用に供することがで
きることを確認した。In addition, in the electrophotographic photoreceptor of the present invention, since the carrier transport layer having the composition described above can obtain a sufficiently large dark resistance, it is not necessary to form this carrier injection blocking layer. According to experiments repeatedly conducted by the present inventors, the dark resistivity of the carrier transport layer is 10+
It has been confirmed that if the resistance is 3Ω·0m or more, it can be sufficiently put to practical use as an electrophotographic photoreceptor without forming a carrier injection blocking layer.
また、表面保護層にはそれ自体高絶縁性、高耐食性及び
高硬度特性を有するものであれば種々の材料を用いるこ
とができ、例えば前記のキャリア注入阻止層に用いたの
と同様な無機材料や有機材料を用いることができ、これ
により、感光体の耐久性及び耐環境性を高めることがで
きる。In addition, various materials can be used for the surface protective layer as long as they themselves have high insulating properties, high corrosion resistance, and high hardness characteristics, such as inorganic materials similar to those used for the carrier injection blocking layer described above. or organic materials can be used, thereby increasing the durability and environmental resistance of the photoreceptor.
なお、キャリア輸送層以外の各層の層厚はキャリア注入
阻止層がO,L乃至10μ鶴、キャリア発生層を0.1
乃至10μm、表面絶縁層を0.1乃至10μIに設定
するのが望ましい。The thickness of each layer other than the carrier transport layer is O, L to 10 μm for the carrier injection blocking layer, and 0.1 μm for the carrier generation layer.
It is desirable to set the thickness of the surface insulating layer to 0.1 to 10 μI.
上述した構成により本発明の機能分離型電子写真感光体
はその表面をコロナ放電によって有利に正極化すること
ができ、本発明者等の実験によれば、+ 600V以上
の帯電能が得られており、これによって実用上支障のな
い感光体が提供できる。With the above-described structure, the functionally separated electrophotographic photoreceptor of the present invention can advantageously make its surface positive polarized by corona discharge, and according to experiments conducted by the present inventors, a charging ability of +600V or more can be obtained. This makes it possible to provide a photoreceptor with no practical problems.
次に、本発明者等は前述した組成のキャリア輸送層に対
して適合し得るキャリア発生層としてアモルファスシリ
コンカーバイドを選択することによって正帯電能をさら
に向上し得ることを知見した。Next, the present inventors found that the positive charging ability could be further improved by selecting amorphous silicon carbide as a carrier generation layer compatible with the carrier transport layer having the composition described above.
用いられるa−5iCは下記式(2)
%式%(2)
で表わされ、式中0.01≦Y≦0.9、特に0.05
≦Y≦0.5であることが望ましい。The a-5iC used is represented by the following formula (2) % formula % (2) where 0.01≦Y≦0.9, especially 0.05
It is desirable that ≦Y≦0.5.
このキャリア発生層を生成するに当たってもa−SiC
のダングリングボンドを終端させるのに前述したように
Hやハロゲン元素を用いる必要があり、これらの元素の
含有量は全組成中5乃至40原子χ、好適には10乃至
30原子χの範囲内になるようにすればよい。In producing this carrier generation layer, a-SiC is also used.
As mentioned above, it is necessary to use H or a halogen element to terminate the dangling bonds, and the content of these elements is within the range of 5 to 40 atoms χ, preferably 10 to 30 atoms χ in the total composition. All you have to do is make it look like this.
以上、前述した本発明の感光体は光波長300乃至90
0nsの範囲に対して光感度を有するが、本発明によれ
ば、前述したa−SiCから成るキャリア発生層中に周
期律表第111a族元素を添加することによって特に近
赤外領域における光感度を高めることができ、それによ
りレーザープリンタ用感光体としての応用が可能となる
。キャリア発生層中の周期律表第n[a族元素の量は1
0.000ppn+以下、特に11000pp+の範囲
で配合し得るが、キャリア輸送層中の周期律表第III
a族元素添加量と比較して、少ないことが重要である。As mentioned above, the photoreceptor of the present invention described above has a light wavelength of 300 to 900 nm.
It has photosensitivity in the range of 0 ns, but according to the present invention, by adding an element of group 111a of the periodic table to the carrier generation layer made of a-SiC, the photosensitivity can be increased particularly in the near-infrared region. This makes it possible to use it as a photoreceptor for laser printers. The amount of group n [a group element of the periodic table in the carrier generation layer is 1
It can be blended in a range of 0.000 ppn+ or less, especially 11000 ppn+, but
It is important that the amount is small compared to the amount of group a elements added.
キャリア発生層中への添加量がキャリア輸送層への添加
量を上回ると、励起キャリアのキャリア発生層からキャ
リア輸送層への注入が阻害され感度低下し、残存電位が
増大する。これはキャリア発生層とキャリア輸送層のエ
ネルギーバンドにおいて、キャリア発生層のエネルギー
レベルがキャリア輸送層よりも高エネルギー側に移行す
るため、正孔のキャリア輸送層への注入に際し、界面に
エネルギー的障壁が形成されるためである。When the amount added to the carrier generation layer exceeds the amount added to the carrier transport layer, injection of excited carriers from the carrier generation layer to the carrier transport layer is inhibited, sensitivity decreases, and residual potential increases. This is because in the energy band between the carrier generation layer and carrier transport layer, the energy level of the carrier generation layer shifts to a higher energy side than that of the carrier transport layer, so when holes are injected into the carrier transport layer, there is an energy barrier at the interface. This is because it is formed.
用いられる周期律表第IIIa族元素としてはキャリア
輸送層の場合と同等、B + A I + G a +
I n等が挙げられ、特にBが好ましい。The Group IIIa elements of the periodic table used are the same as in the carrier transport layer, B + A I + G a +
Examples include In and the like, with B being particularly preferred.
本発明の感光体を製造するに際して、無機質の感光体の
生成にはグロー放電分解法、イオンブレーティング法、
反応性スパッタリング法、真空蒸着法、CVO法等の薄
膜形成技術を用いることができる。When producing the photoreceptor of the present invention, the inorganic photoreceptor can be produced by glow discharge decomposition method, ion blating method,
Thin film forming techniques such as reactive sputtering, vacuum evaporation, and CVO can be used.
例えば本発明の感光体のうち前述したようなキャリア輸
送層を形成する際は、グロー放電分解法が望ましく、用
いられる気体原料として5t)14+51zH,、Si
、H,などのSi系ガス、CH4,CJ4.Czlh、
Ctlli、C3118などのC系ガスを用いればよ(
、更に11□、IIe+Ne、 Arなどをキャリアー
ガスとして用いてもよい。For example, when forming the carrier transport layer as described above in the photoreceptor of the present invention, the glow discharge decomposition method is preferable, and the gaseous raw material used is 5t)14+51zH, Si.
, H, Si-based gases such as CH4, CJ4. Czlh,
You can use a C-based gas such as Ctlli or C3118 (
, 11□, IIe+Ne, Ar, etc. may be used as a carrier gas.
周期律表第1[[a族元素含有ガスとしてはBZI16
. BF3Al(C)la) i、Ga(CH3) :
l+ In(CIIIa) 3.Ga(C113) 3
等が挙げられる。本発明者等の実験によれば、前述した
ガスのうちC含有ガスとしてC,H,を用いると極めて
大きな成膜速度(約5乃至20μts /h)が得られ
ることを知見した。よってキャリア輸送層形成時の好ま
しい反応ガスとしては少なくともCtHzガス、Si含
有ガス及び104乃至1モルχの周期律表第■a族元素
含有ガスを選択する。反応ガスの具体的組成は(CJz
ガス:Si含有ガス)組成比が0.05:1乃至3:1
であることが望ましい。Periodic Table 1 [[As a gas containing group a elements, BZI16
.. BF3Al(C)la) i, Ga(CH3):
l+ In(CIIIa) 3. Ga(C113) 3
etc. According to experiments conducted by the present inventors, it has been found that an extremely high film forming rate (approximately 5 to 20 .mu.ts/h) can be obtained when C and H are used as the C-containing gas among the above-mentioned gases. Therefore, as preferable reactive gases for forming the carrier transport layer, at least CtHz gas, Si-containing gas, and gas containing 104 to 1 mole χ of Group IV a elements of the periodic table are selected. The specific composition of the reaction gas is (CJz
Gas: Si-containing gas) composition ratio is 0.05:1 to 3:1
It is desirable that
本発明によれば、さらに正帯電能を向上させることを目
的としてキャリア発生層としてa−SiCを用いるがこ
のキャリア発生層の形成にあっても、少なくともC21
1□ガス、Si含有ガスを持ち、これをキャリア輸送層
形成時と同様な組成比で用い、この反応ガスをグロー放
電分解してキャリア輸送層上に形成すれば良い。According to the present invention, a-SiC is used as a carrier generation layer for the purpose of further improving the positive charging ability, but even in the formation of this carrier generation layer, at least C21
1□ gas and a Si-containing gas are used in the same composition ratio as when forming the carrier transport layer, and this reaction gas is decomposed by glow discharge to form on the carrier transport layer.
さらに本発明によれば、近赤外光に対する分光感度を向
上させることを目的としてキャリア発生層として周期律
表第IIIa族元素を含有するa−SiCを用いるが、
このキャリア発生層の形成にあたワても、キャリア輸送
層の成形時と同様、CZ)1にガス、Si含有ガス、周
期律表第IIIa族元素含有ガスを用い、周期律表第I
IIa族元素含有ガスは1モル2以下の割合で配合され
るが、前述した理由から、キャリア発生層形成時の反応
ガス中の周期律表第■a族元素含有ガスの占める割合が
キャリア輸送層形成時に比べて少ないことが重要である
。Furthermore, according to the present invention, a-SiC containing Group IIIa elements of the periodic table is used as a carrier generation layer for the purpose of improving spectral sensitivity to near-infrared light.
In forming this carrier generation layer, as in the case of forming the carrier transport layer, gas, Si-containing gas, and gas containing elements of group IIIa of the periodic table were used for CZ)1, and
The gas containing the Group IIa element is blended in a ratio of 1 mol 2 or less, but for the reasons mentioned above, the proportion of the gas containing the Group Ia element of the periodic table in the reaction gas when forming the carrier generation layer is higher than that of the carrier transport layer. It is important that the amount is smaller than when it is formed.
本発明の感光体のうち第1図あるいは第2図に示したよ
うにキャリア注入阻止層や、表面保護層を設ける場合、
その材質としてSiC,a−Si:H,a−SiC1非
晶質カーボンあるいはこれらに不純物をドープしたもの
を用いる場合には同じ成膜装置を用いて連続的に形成で
き、且つその成膜時間を著しく小さくすることができる
。When the photoreceptor of the present invention is provided with a carrier injection blocking layer or a surface protective layer as shown in FIG. 1 or 2,
When using SiC, a-Si:H, a-SiC1 amorphous carbon, or those doped with impurities as the material, it can be formed continuously using the same film-forming equipment, and the film-forming time can be reduced. It can be made significantly smaller.
なお、本発明の感光体における層構成中、有機材料を用
いる場合はいずれも周知の手段によって形成することが
でき、具体的には、高分子材料あるいは有機顔料、有機
染料等を揮発性溶媒中に溶解又は分散した塗布液を用い
て、浸漬法、ドクターブレード法等によって設けること
ができる。In the layer structure of the photoreceptor of the present invention, when organic materials are used, they can be formed by well-known means. Specifically, polymer materials, organic pigments, organic dyes, etc. are mixed in a volatile solvent. It can be provided by a dipping method, a doctor blade method, or the like using a coating solution dissolved or dispersed in a liquid.
次に本発明の実施例に用いられる容量結合型グロー放電
分解装置を第y図により説明する。Next, a capacitively coupled glow discharge decomposition device used in an embodiment of the present invention will be explained with reference to FIG.
なお、周期律表第IIIa族元素含有ガスとしてB。In addition, B is used as a gas containing Group IIIa elements of the periodic table.
H,ガスを用いて例示する。An example will be given using H gas.
図中、第1.第2.第3.第4タンク(6) (7)
(8) (9)にはそれぞれ5IHt+ CJz+ B
Ji+ (Hzガス中にBJaが38ppm希釈されて
いる)H2ガスが密封されており、H2はキャリアーガ
スとしても用いられる。これらのガスは対応する第1.
第2.第3.第4調整弁(10) (11) (12)
(13)を開放することにより放出され、その流量が
マスフローコントローラ(14) (15) (16)
(17)により制御されてメインパイプ(18)へ送
られる。In the figure, 1st. Second. Third. 4th tank (6) (7)
(8) and (9) each have 5IHt+CJz+B
Ji+ (38 ppm BJa diluted in Hz gas) H2 gas is sealed, and H2 is also used as a carrier gas. These gases correspond to the first.
Second. Third. Fourth regulating valve (10) (11) (12)
(13) is released by opening the mass flow controller (14) (15) (16)
(17) and sent to the main pipe (18).
尚、(19)は止め弁である。Note that (19) is a stop valve.
メインパイプ(18)を通じて流れるガスは反応管(2
0)へと送り込まれるが、この反応管内部には容量結合
型放電用電極(21)が設置されており、これに印加さ
れる電力は50−乃至3KWが、その周波数はIMHz
乃至10MHzが適当である。反応管(20)の内部に
は、アルミニウムから成る筒状の成膜用導電性基板(2
2)が試料保持台(23)の上に載置されており、この
保持台(23)はモーター(24)により回転駆動され
るようになっており、そして、基板(22)は適当な加
熱手段により約50乃至400℃好ましくは約150乃
至300℃の温度に均一に加熱される。更に、反応管(
20)の内部はa−S i 119又はa−SiC膜等
の形成時に高度の真空状a(放電圧0.1乃至2.0T
orr)を必要とすることにより回転ポンプ(25)と
拡散ポンプ(26)に連結される。The gas flowing through the main pipe (18) passes through the reaction tube (2).
A capacitively coupled discharge electrode (21) is installed inside this reaction tube, and the power applied to this is 50-3KW, and the frequency is IMHz.
10MHz to 10MHz is suitable. Inside the reaction tube (20), there is a cylindrical conductive substrate for film formation (2) made of aluminum.
2) is placed on a sample holder (23), this holder (23) is rotated by a motor (24), and the substrate (22) is heated appropriately. It is uniformly heated by means to a temperature of about 50 to 400°C, preferably about 150 to 300°C. Furthermore, the reaction tube (
20) is in a high vacuum state (discharge voltage 0.1 to 2.0T) during the formation of a-Si 119 or a-SiC film, etc.
orr) is connected to the rotary pump (25) and the diffusion pump (26).
以上のように構成されたグロー放電分解装置において、
例えばBがドーピングされたa−SiC膜を基板(22
)上に形成するに当たって、第1.第2.第3゜第4調
整弁(10) (11) (12) (13)を開放し
て第1.第2゜第3.第4タンク(6) (7) (8
) (9)よりそれぞれSiH4ガス、Cdhガス、B
Jiガス及びH8ガスを放出し、これらの放出量はマス
フローコントローラ(10) (11)(12) (1
3)により規制されてメインパイプ(18)を介して反
応管(20)へと送り込まれ、そして、反応管(20)
の内部が0.1乃至2.0Torrの真空状態、基板温
度が50乃至400℃、容量型放電用電極(21)に周
波数1乃至10MHzの高周波電力が5〇−乃至3にV
印加されるのに相俟ってグロー放電が起こり、ガスが分
解してホウ素含有のa−SiC膜が基板上に高速で形成
される。In the glow discharge decomposition device configured as above,
For example, a B-doped a-SiC film is used as a substrate (22
1.). Second. Open the 3rd and 4th regulating valves (10), (11), (12), and (13), and open the 1st. 2nd゜3rd. 4th tank (6) (7) (8
) From (9), SiH4 gas, Cdh gas, B
Ji gas and H8 gas are released, and the amount of these released is controlled by the mass flow controller (10) (11) (12) (1
3) into the reaction tube (20) via the main pipe (18), and then the reaction tube (20).
The interior is in a vacuum state of 0.1 to 2.0 Torr, the substrate temperature is 50 to 400°C, and high frequency power with a frequency of 1 to 10 MHz is applied to the capacitive discharge electrode (21) at a voltage of 50 to 3 V.
In conjunction with this application, a glow discharge occurs, the gas is decomposed, and a boron-containing a-SiC film is formed on the substrate at high speed.
以下、本発明を実施例により説明する。 The present invention will be explained below using examples.
(例1)
ダイヤモンドバイトを用いた超精密旋盤により鏡面に仕
上げた基板用アルミニウム製ドラムを有機溶剤を用いた
超音波洗浄及び蒸気洗浄、次いで乾燥を行って洗浄し、
第5図に示した容量結合型グロー放電分解装置の反応管
(20)内に設置した。(Example 1) An aluminum drum for a substrate finished to a mirror finish using an ultra-precision lathe using a diamond cutting tool was cleaned by ultrasonic cleaning and steam cleaning using an organic solvent, and then by drying.
It was installed in the reaction tube (20) of the capacitively coupled glow discharge decomposition apparatus shown in FIG.
そして、第1タンク(6)よりSiH<ガスを1010
05e、第2タンク(7)よりCJzガスを20sec
m、第3タンク(8)よりB、H,ガスを200sec
m、第4タンク(9)よりnzガスを300secmの
流量で放出し、ガス圧を0.4Torr、高周波電力を
200Wに基板温度300℃に設定して前述したグロー
放電分解法に基づいてa−StC:H:B:N:Oから
なるキャリア注入阻止層を形成した。Then, from the first tank (6), SiH<gas was added to 1010
05e, CJz gas from the second tank (7) for 20 seconds
m, B, H, gas from the third tank (8) for 200 seconds
m, nz gas was released from the fourth tank (9) at a flow rate of 300 sec, the gas pressure was set to 0.4 Torr, the high frequency power was set to 200 W, and the substrate temperature was set to 300°C, and a- A carrier injection blocking layer made of StC:H:B:N:O was formed.
さらに同一の装置を用いて第1表に示す条件により順次
約30ppmのBがドープされたa−3iCからなるキ
ャリア輸送層(5) 、a−Siからなるキャリア発生
層(3a)及びSiCからなる表面保護層(4)を形成
し、厚み30μmの感光体を得た。Furthermore, using the same apparatus, under the conditions shown in Table 1, a carrier transport layer (5) made of a-3iC doped with about 30 ppm of B, a carrier generation layer (3a) made of a-Si, and a carrier generation layer made of SiC are sequentially formed. A surface protective layer (4) was formed to obtain a photoreceptor having a thickness of 30 μm.
かくして得られた電子写真感光体について表面電位、暗
減衰及び光減衰の特性を測定したところ、第6図に示す
通りの結果が得られた。これは暗中で+5.6にVのコ
ロナ放電で正帯電し、暗中での表面電位の経時変化と6
50nmの単色光(露光量0.3μW’/cmり照射直
後の表面電位の経時変化を追ったものである。尚、図中
、Aは暗減衰曲線であり、Bは光減衰曲線である。When the surface potential, dark decay, and light decay characteristics of the electrophotographic photoreceptor thus obtained were measured, the results shown in FIG. 6 were obtained. This is positively charged by a corona discharge of V to +5.6 in the dark, and the change in surface potential over time in the dark and 6.
The graph shows the change in surface potential over time immediately after irradiation with 50 nm monochromatic light (exposure dose: 0.3 μW'/cm). In the figure, A is a dark decay curve and B is a light decay curve.
第6図から明らかな通り、2秒後の表面電位が約750
Vと実用的なまでに高くなっており、光減衰の結果より
露光より瞬時にして表面電位が小さくなって残留電位も
著しく小さくなっている。As is clear from Figure 6, the surface potential after 2 seconds is approximately 750
V, which is high enough for practical use, and as a result of optical attenuation, the surface potential becomes smaller instantaneously than exposure, and the residual potential also becomes significantly smaller.
(例2)
本例においては、(例1)よりキャリア注入阻止層を除
いた三層よりなる積層体を成形し、正負両種による帯電
能を調べた。尚、成膜条件及び測定条件は(例1)と同
じにした。この結果は第7図及び第8図に示す通りであ
る。(Example 2) In this example, a laminate consisting of three layers from (Example 1) except for the carrier injection blocking layer was molded, and the charging ability in both positive and negative types was examined. Note that the film formation conditions and measurement conditions were the same as in (Example 1). The results are shown in FIGS. 7 and 8.
即ち、第7図においては+5.6KVのコロナ放電で帯
電させた場合であり、Cは暗減衰曲線、Dは光減衰曲線
であり、これに対して、第S図においては−5,6Kv
のコロナ放電で帯電させた場合であり、Eは暗減衰曲線
、Fは光減衰曲線である。That is, Fig. 7 shows the case of charging with a +5.6 KV corona discharge, C is a dark decay curve, D is a light decay curve, and in contrast, -5.6 KV is shown in Fig. S.
In this case, E is a dark decay curve and F is a light decay curve.
この結果より明らかな通り、正帯電によれば、+ 65
0Vまで表面電位が大きくなり、十分に実用可能となる
のに対して、負帯電によると約−55νまでの表面電位
しか得られなかった。As is clear from this result, according to positive charging, +65
The surface potential becomes large up to 0V, making it sufficiently practical, whereas with negative charging, a surface potential of only about -55ν can be obtained.
(例3)
次に、第1と同様にして5iHn+Hz、Czlhおよ
びB2H4の各々のガスを用いて、第2表に示ず流量で
a−St:B:N:Oからなるキャリア注入阻止層、i
’7(OppmのBがドープされたa−5iCからなる
キャリア輸送層(5) 、a−Stからなるキャリア発
生層(3a)及びSiCからなる表面保護層(4)を形
成し、厚さ30μmの感光体を得た。(Example 3) Next, in the same manner as in the first example, using each of the gases of 5iHn+Hz, Czlh, and B2H4, a carrier injection blocking layer consisting of a-St:B:N:O was formed at a flow rate not shown in Table 2. i
'7 (Oppm) A carrier transport layer (5) made of a-5iC doped with B, a carrier generation layer (3a) made of a-St, and a surface protection layer (4) made of SiC were formed to a thickness of 30 μm. A photoreceptor was obtained.
得られた感光体に対しく例1)と同様に+5.6KVの
コロナ放電で帯電され、暗減衰、光減衰の測定を行い、
第9図の結果を得た。The obtained photoreceptor was charged with +5.6 KV corona discharge in the same manner as in Example 1), and the dark attenuation and light attenuation were measured.
The results shown in Figure 9 were obtained.
第9図から明らかなように優れた正帯電性を示した。As is clear from FIG. 9, excellent positive chargeability was exhibited.
(例4)
例1と同様な方法で5iIIIa、Ht、CzHhおよ
びB z II bのガスを用いて、第3表に示す流量
でa−Si:B:N:0からなるキャリア注入阻止層、
約30ppmのBがドープされたa−SiCからなるキ
ャリア輸送層(5)、約15 ppmのBがドープされ
たa−SiCからなるキャリア発生層(3a)及びSi
Cからなる表面保護Ji(4)を形成し、厚さ30μm
の感光体を得た。(Example 4) A carrier injection blocking layer consisting of a-Si:B:N:0 was prepared using 5iIIIa, Ht, CzHh and BzIIb gases in the same manner as in Example 1 at the flow rates shown in Table 3.
A carrier transport layer (5) made of a-SiC doped with about 30 ppm B, a carrier generation layer (3a) made of a-SiC doped with about 15 ppm B, and a Si
Form a surface protection Ji (4) consisting of C with a thickness of 30 μm.
A photoreceptor was obtained.
得られた感光体に対しく例1)と同様に+5.6KVの
コロナ放電で帯電され、暗減衰、光減衰の測定を行い第
10図の結果を得た。The obtained photoreceptor was charged by +5.6 KV corona discharge in the same manner as in Example 1), and the dark attenuation and light attenuation were measured, and the results shown in FIG. 10 were obtained.
なお、(例1)、(例3)、(例4)にて製造した感光
体に対して、770nn+の波長の光で分光感度を求め
たところ、(例1)が0.18cm”/erg (例3
)が0.15cm2/erg 、(例4)が0.26c
m”/ergと(例4)の層構成において顕著な感度向
上が確認された。In addition, when the spectral sensitivity of the photoreceptors manufactured in (Example 1), (Example 3), and (Example 4) was determined using light with a wavelength of 770 nn+, (Example 1) was 0.18 cm"/erg. (Example 3
) is 0.15cm2/erg, (Example 4) is 0.26c
A remarkable improvement in sensitivity was confirmed in the layer structure of m''/erg (Example 4).
以上、詳述した通り1本発明の電子写真感光体はキャリ
ア輸送層として周期律表第IIIa族元素をドープさせ
たアモルファスシリコンカーバイド、さらにはキャリア
発生層として、アモルファスシリコンカーバイドあるい
はこれに周期律表第IIIa族元素を特定の関係でドー
プすることにより実用的に優れた正帯電能および電子写
真特性を示し、さらには近赤外領域に対しても優れた感
度を有することからレーザープリンタ用等としても応用
を拡げることができる。As detailed above, the electrophotographic photoreceptor of the present invention has a carrier transport layer made of amorphous silicon carbide doped with an element of group IIIa of the periodic table, and a carrier generation layer made of amorphous silicon carbide or amorphous silicon carbide doped with a group IIIa element of the periodic table. By doping Group IIIa elements in a specific relationship, it exhibits practically excellent positive charging ability and electrophotographic properties, and also has excellent sensitivity in the near-infrared region, so it can be used for laser printers, etc. can also expand its applications.
第1図は本発明の実施例に用いられる感光体の層構成を
示す断面図、第2図は本発明の他の実施例に用いられる
感光体の層構成を示す断面図、第3図は感光体の一般的
な層構成を示す断面図、第4図(a)及び(b)は本発
明の電子写真感光体の電子写真特性を説明するための図
、第5図は本発明の実施例に用いられる容量結合型グロ
ー放電分解装置の説明図、第6図乃至第10図は暗減衰
面′線および光減衰曲線を示した図であって、第6図、
第7図、第9図、第10図は本発明の感光体を示し、第
8図は比較例を示した図である。
1・・基板
2.2a・・・キャリア注入阻止層
3.3a・・・キャリア発生層
4・・・表面保護層
5・・・キャリア輸送層
特許出願人 (663)京セラ株式会社同 河村孝
夫FIG. 1 is a sectional view showing the layer structure of a photoreceptor used in an embodiment of the present invention, FIG. 2 is a sectional view showing the layer structure of a photoreceptor used in another embodiment of the invention, and FIG. 4(a) and (b) are diagrams for explaining the electrophotographic characteristics of the electrophotographic photoreceptor of the present invention, and FIG. 5 is a cross-sectional view showing the general layer structure of the photoreceptor. Explanatory diagrams of the capacitively coupled glow discharge decomposition device used in the example, FIGS. 6 to 10 are diagrams showing the dark attenuation surface' line and the light attenuation curve,
FIG. 7, FIG. 9, and FIG. 10 show the photoreceptor of the present invention, and FIG. 8 shows a comparative example. 1...Substrate 2.2a...Carrier injection blocking layer 3.3a...Carrier generation layer 4...Surface protection layer 5...Carrier transport layer Patent applicant (663) Kyocera Corporation Takao Kawamura
Claims (3)
リア発生層を形成した電子写真感光体において、前記キ
ャリア輸送層が0.1乃至10,000ppmの周期律
表第IIIa族元素を含むアモルファスシリコンカーバイ
ドから成ることを特徴とする正極性に帯電可能な電子写
真感光体。(1) In an electrophotographic photoreceptor in which at least a carrier transport layer and a carrier generation layer are formed on a conductive substrate, the carrier transport layer is made of amorphous silicon carbide containing 0.1 to 10,000 ppm of Group IIIa elements of the periodic table. An electrophotographic photoreceptor that can be charged to positive polarity.
リア発生層を形成した電子写真感光体において、前記キ
ャリア輸送層が0.1乃至10,000ppmの周期律
表第IIIa族元素を含むアモルファスシリコンカーバイ
ドから成り、前記キャリア発生層がアモルファスシリコ
ンカーバイドから成ることを特徴とする正極性に帯電可
能な電子写真感光体。(2) In an electrophotographic photoreceptor in which at least a carrier transport layer and a carrier generation layer are formed on a conductive substrate, the carrier transport layer is amorphous silicon carbide containing 0.1 to 10,000 ppm of Group IIIa elements of the periodic table. An electrophotographic photoreceptor capable of being positively charged, characterized in that the carrier generation layer is made of amorphous silicon carbide.
リア発生層を形成した電子写真感光体において、前記キ
ャリア輸送層が0.1乃至10,000ppmの周期律
表第IIIa族元素を含むアモルファスシリコンカーバイ
ドおよび前記キャリア発生層が10,000ppm以下
の周期律表第IIIa族元素を含むアモルファスシリコン
カーバイドから成り、前記キャリア発生層における周期
律表第IIIa族元素の量が前記キャリア輸送層よりも少
ないことを特徴とする正極性に帯電可能な電子写真感光
体。(3) In an electrophotographic photoreceptor in which at least a carrier transport layer and a carrier generation layer are formed on a conductive substrate, the carrier transport layer is amorphous silicon carbide containing 0.1 to 10,000 ppm of Group IIIa elements of the periodic table. and the carrier generation layer is made of amorphous silicon carbide containing 10,000 ppm or less of a Group IIIa element of the periodic table, and the amount of the Group IIIa element of the periodic table in the carrier generation layer is smaller than that of the carrier transport layer. An electrophotographic photoreceptor that can be charged to positive polarity.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22893386A JPS6381433A (en) | 1986-09-26 | 1986-09-26 | Electrophotographic sensitive body |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22893386A JPS6381433A (en) | 1986-09-26 | 1986-09-26 | Electrophotographic sensitive body |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6381433A true JPS6381433A (en) | 1988-04-12 |
Family
ID=16884132
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP22893386A Pending JPS6381433A (en) | 1986-09-26 | 1986-09-26 | Electrophotographic sensitive body |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6381433A (en) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5895876A (en) * | 1981-12-01 | 1983-06-07 | Canon Inc | Photoconductive member |
JPS58219560A (en) * | 1982-06-15 | 1983-12-21 | Konishiroku Photo Ind Co Ltd | Recording body |
JPS5967549A (en) * | 1982-10-11 | 1984-04-17 | Konishiroku Photo Ind Co Ltd | Recording body |
JPS59212842A (en) * | 1983-05-18 | 1984-12-01 | Konishiroku Photo Ind Co Ltd | Photosensitive body |
JPS60235150A (en) * | 1984-05-09 | 1985-11-21 | Konishiroku Photo Ind Co Ltd | Photosensitive body |
JPS61126557A (en) * | 1984-11-26 | 1986-06-14 | Toshiba Corp | Photoconductive material |
JPS61138958A (en) * | 1984-12-12 | 1986-06-26 | Toshiba Corp | Photoconductive material |
-
1986
- 1986-09-26 JP JP22893386A patent/JPS6381433A/en active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5895876A (en) * | 1981-12-01 | 1983-06-07 | Canon Inc | Photoconductive member |
JPS58219560A (en) * | 1982-06-15 | 1983-12-21 | Konishiroku Photo Ind Co Ltd | Recording body |
JPS5967549A (en) * | 1982-10-11 | 1984-04-17 | Konishiroku Photo Ind Co Ltd | Recording body |
JPS59212842A (en) * | 1983-05-18 | 1984-12-01 | Konishiroku Photo Ind Co Ltd | Photosensitive body |
JPS60235150A (en) * | 1984-05-09 | 1985-11-21 | Konishiroku Photo Ind Co Ltd | Photosensitive body |
JPS61126557A (en) * | 1984-11-26 | 1986-06-14 | Toshiba Corp | Photoconductive material |
JPS61138958A (en) * | 1984-12-12 | 1986-06-26 | Toshiba Corp | Photoconductive material |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS6381433A (en) | Electrophotographic sensitive body | |
JPS6381431A (en) | Electrophotographic sensitive body | |
JPS6381432A (en) | Production of electrophotographic sensitive body | |
JPS6381434A (en) | Production of electrophotographic sensitive body | |
JPS6381436A (en) | Production of electrophotographic sensitive body | |
JPS6381435A (en) | Production of electrophotographic sensitive body | |
JPS635348A (en) | Electrophotographic sensitive body | |
JPS6332558A (en) | Electrophotographic sensitive body | |
JPS634240A (en) | Electrophotographic sensitive body | |
JPS6385566A (en) | Electrophotographic sensitive body | |
JPS6385752A (en) | Production of electrophotographic sensitive body | |
JPS6382417A (en) | Production of electrophotographic sensitive body | |
JPS6381442A (en) | Electrophotographic sensitive body | |
JPS634242A (en) | Electrophotographic sensitive body | |
JPS63137243A (en) | Electrophotographic sensitive body | |
JPS6329762A (en) | Electrophotographic sensitive body | |
JPS6330855A (en) | Electrophotographic sensitive body | |
JPS634241A (en) | Electrophotographic sensitive body | |
JPS638650A (en) | Electrophotographic sensitive body | |
JPS63165857A (en) | Electrophotographic sensitive body | |
JPS6381440A (en) | Electrophotographic sensitive body | |
JPS63104062A (en) | Electrophotographic sensitive body | |
JPS63108346A (en) | Electrophotographic sensitive body | |
JPS63132252A (en) | Electrophotographic sensitive body | |
JPS6381439A (en) | Electrophotographic sensitive body |