JPS6381408A - Production of optical waveguide - Google Patents

Production of optical waveguide

Info

Publication number
JPS6381408A
JPS6381408A JP22916386A JP22916386A JPS6381408A JP S6381408 A JPS6381408 A JP S6381408A JP 22916386 A JP22916386 A JP 22916386A JP 22916386 A JP22916386 A JP 22916386A JP S6381408 A JPS6381408 A JP S6381408A
Authority
JP
Japan
Prior art keywords
optical
clad layer
optical waveguide
lower clad
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22916386A
Other languages
Japanese (ja)
Inventor
Genichi Watanabe
渡辺 元一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP22916386A priority Critical patent/JPS6381408A/en
Publication of JPS6381408A publication Critical patent/JPS6381408A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Integrated Circuits (AREA)

Abstract

PURPOSE:To obtain an optical waveguide which enables miniaturization, non- adjustment, easy mass production, and cost reduction, by forming a lower clad layer, where a binder is added to fine glass particles, on an insulating substrate and forming a core layer having a different fine glass particle composition on the lower clad layer and forming an upper clad layer on this core layer. CONSTITUTION:A photoconductive paste where a transparent binder is added to fine glass particles obtained by burning the same gaseous raw materials as an optical fiber is printed on an alumina substrate 1 with a prescribed pattern as a thick film, and this film is sintered in a sintering furnace to form a lower clad layer 3. Another photoconductive paste having a different fine glass particle composition is printed on said pattern with a pattern slightly smaller than that of the lower clad layer 3 as a thick film, and this film is sintered in the sintering furnace to form a core layer 4 through which the light passes. The same photoconductive paste as the lower clad layer 3 is printed over the core layer 4 and the lower clad layer 3 as a thick film, and this film is sintered in the sintering furnace to form an upper clad layer 5. Thus, optical parts are miniaturized and mass-produced.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 この発明は、光通信システムを構成するための基本コン
ポーネントである光信号の分配・結合等の機能を持ち、
しかも電子回路素子を直接組込み、電気的結合が容易な
光ハイブリット■Cを得るのに好適な光導波路の製造方
法に関する。
[Detailed description of the invention] (a) Industrial application field This invention has functions such as distributing and combining optical signals, which are basic components for configuring an optical communication system, and
Moreover, the present invention relates to a method of manufacturing an optical waveguide suitable for obtaining an optical hybrid (C) in which electronic circuit elements are directly incorporated and electrical coupling is easy.

(ロ)従来の技術 一般に、光通信システムでは、光信号を送受するのに、
電気信号を光に変換するために半導体レーザダイオード
や発光ダイオード等の発光素子、光を導く光ファイバ、
光を電気信号に変換するフォトダイオードやフォトトラ
ンジスタ等の受光素子を基本部品とし、これらとプリズ
ムやレンズ等の光部品の組合わせで構成されるバルク形
部品を使用して行われている。
(b) Conventional technology In general, in optical communication systems, when transmitting and receiving optical signals,
Light-emitting elements such as semiconductor laser diodes and light-emitting diodes to convert electrical signals into light, optical fibers that guide light,
The basic components are light-receiving elements such as photodiodes and phototransistors that convert light into electrical signals, and bulk components are used in combination with optical components such as prisms and lenses.

(ハ)発明が解決しようとする問題点 上記バルク形光部品は、レンズやプリズムを使用してい
るため、組立・調整に時間がかかるために高価であり、
また小型化が困難であるという問題があった。また、上
記のように組立・調整に時間がかかる故に生産性が悪<
、量産が困難であった。
(c) Problems to be Solved by the Invention The above-mentioned bulk type optical components are expensive because they use lenses and prisms, which take time to assemble and adjust.
There is also the problem that miniaturization is difficult. In addition, as mentioned above, assembly and adjustment takes time, which leads to poor productivity.
, mass production was difficult.

この発明は、上記に鑑み、小型化・無調整・量産容易・
低価格を実現し得る光バイブリソZCを構成するのに不
可欠な光導波路の製造方法を提供することを目的として
いる。
In view of the above, this invention is compact, requires no adjustment, is easy to mass produce, and
It is an object of the present invention to provide a method for manufacturing an optical waveguide that is essential for constructing an optical vibrator ZC that can realize a low cost.

(ニ)問題点を解決するための手段及び作用この発明の
光導波路の製造方法は、絶縁基板上に細かいガラス微粒
子に透明な結合剤を加えてなる第1の光導ペーストを印
刷焼成して下部クラッド層を形成し、次に下部クラッド
層に積層してガラス微粒子組成の異なる第2の光導ペー
ストを印刷焼成してコア層を形成し、このコア層に積層
して前記第1の光導ペーストを印刷焼成して上部クラッ
ド層を形成するようにしている。
(d) Means and action for solving the problems The method for manufacturing an optical waveguide of the present invention is to print and bake a first optical waveguide paste made of fine glass particles and a transparent binder on an insulating substrate. A cladding layer is formed, and then a second light guide paste having a different glass particle composition is laminated on the lower clad layer and printed and fired to form a core layer, and the first light guide paste is laminated on the core layer. The upper cladding layer is formed by printing and baking.

この製造方法では、絶縁基板上に下部クラッド層、コア
層及び上部クラッド層用の光導ペーストを順次印刷焼成
するものであるから、種々の形状の光導波路を簡易に形
成でき、発光素子や受光素子の電子部品を容易に組込む
ことが可能であり、光ファイバ等との結合も容易である
ため、これら電子部品、光ファイバを含む光ハイブリッ
)ICを容易に実現できる。
In this manufacturing method, optical waveguide pastes for the lower cladding layer, core layer, and upper cladding layer are sequentially printed and fired on an insulating substrate, so optical waveguides of various shapes can be easily formed, and light-emitting elements and light-receiving elements can be formed. It is possible to easily incorporate the following electronic components, and it is also easy to combine with optical fibers, etc., so it is possible to easily realize an optical hybrid (IC) including these electronic components and optical fibers.

(ホ)実施例 以下、実施例により、この発明をさらに詳細に説明する
(E) Examples The present invention will be explained in more detail with reference to Examples below.

第2図は、この発明が実施される光導波路の斜視図であ
る。
FIG. 2 is a perspective view of an optical waveguide in which the present invention is implemented.

この光導波路装置は、アルミナ基板(絶縁基板)1上に
、Y分岐型の光導波路2が形成されてなるものである。
This optical waveguide device includes a Y-branch type optical waveguide 2 formed on an alumina substrate (insulating substrate) 1.

この光導波路装置の線1−Iで切断した断面図を、第1
図に示している。
A sectional view taken along line 1-I of this optical waveguide device is shown in the first section.
As shown in the figure.

この光導波路2は、次のようにして形成される。This optical waveguide 2 is formed as follows.

先ず、アルミナ基板1上に、光ファイバと同じ気体状原
料を燃焼して得られる細かいガラス微粒子に透明な結合
剤を加えた光導ペーストを所定のパターンで厚膜印刷し
、焼成炉中で焼成して第1層、つまり下部クラッド層3
を形成する。さらにそのパターン上に、下部クラッド層
3よりもやや小さなパターンで、ガラス微粒子組成の異
なる光導ペーストを厚膜印刷し、焼成炉中で焼成して第
2層、つまり光を通すコア層4を形成する。さらに続い
て、コア層4及び下部クラッド層3をそれぞれ覆い、下
部クラッド層3と同じ光導ペーストを厚膜印刷し、焼成
炉中で焼成して第3N、つまり上部クラッド層5を形成
する。
First, on the alumina substrate 1, a thick film of a light guide paste, which is made by adding a transparent binder to fine glass particles obtained by burning the same gaseous raw material as the optical fiber, is printed in a predetermined pattern and fired in a firing furnace. The first layer, that is, the lower cladding layer 3
form. Furthermore, a thick film of light guiding paste with a different composition of glass particles is printed on the pattern in a pattern slightly smaller than that of the lower cladding layer 3, and is fired in a firing furnace to form the second layer, that is, the core layer 4 through which light passes. do. Subsequently, the core layer 4 and the lower cladding layer 3 are respectively covered, the same light guide paste as the lower cladding layer 3 is printed as a thick film, and the third N, that is, the upper cladding layer 5 is formed by firing in a firing furnace.

以上のようにして形成した下部クラフト層3、コア層4
、上部クラッド層5で、光導波路2が形成される。この
ような光導波路2内に光を伝送させる場合には、下部ク
ラッド層3と上部クラッド層5間に閉込められ、コア層
4内を光が伝播することになる。この実施例光導波路2
において、焼成後のコア層4の厚みは約50μ、上下の
クラフト層3.5の厚みは、それぞれ10μ程度に設定
される。
Lower craft layer 3 and core layer 4 formed as above
, an optical waveguide 2 is formed by the upper cladding layer 5. When transmitting light within such an optical waveguide 2, the light is confined between the lower cladding layer 3 and the upper cladding layer 5 and propagates within the core layer 4. This example optical waveguide 2
In this case, the thickness of the core layer 4 after firing is about 50 μm, and the thickness of the upper and lower craft layers 3.5 is each about 10 μm.

この実施例方法により、つまりアルミナ基板1上に下部
クラッド層3、コア層4及び上部クラッド層5を順次積
層して印刷焼成することにより光導波路2を形成する方
法によって、種々の形状の光導波路を製作することがで
きる。
By this method of this embodiment, that is, by the method of forming the optical waveguide 2 by sequentially laminating the lower cladding layer 3, the core layer 4, and the upper cladding layer 5 on the alumina substrate 1 and printing and firing, optical waveguides of various shapes can be formed. can be manufactured.

第3図は、上記実施例方法を用いて光導波路を形成し、
かつ電子部品等を組込んだ光ハイブリッ)ICの一例を
示す斜視図である。
FIG. 3 shows an optical waveguide formed using the method of the above embodiment,
FIG. 2 is a perspective view showing an example of an optical hybrid IC incorporating electronic components and the like.

この光ハイブリッドICは、アルミナ基板10上にIC
チップ13がグイボンドされ、このICチップ13を挟
持する形で、同じくアルミナ基板10上に光導波路11
.11が結合され、さらにこの光導波路11.11に直
交する態様で、ボンディングパット14.14が形成さ
れてなるものであり、ボンディングパット14.14と
ICチップ13がボンディングワイヤ15.15によっ
てそれぞれ接続されている。
This optical hybrid IC has an IC on an alumina substrate 10.
A chip 13 is bonded to the IC chip 13, and an optical waveguide 11 is also formed on the alumina substrate 10 with the IC chip 13 sandwiched therebetween.
.. 11 is coupled, and a bonding pad 14.14 is formed perpendicular to the optical waveguide 11.11, and the bonding pad 14.14 and the IC chip 13 are connected by bonding wires 15.15, respectively. has been done.

このように構成される光ハイブリッドICにおいて、I
Cチップ13に含まれる発光素子が発光すると、光導波
路11を通して光信号が伝送されることになる。あるい
はICチップ13に受光素子を含む場合には、光導波路
11を伝送されてきた光が受光されることになる。
In the optical hybrid IC configured in this way, I
When the light emitting element included in the C chip 13 emits light, an optical signal is transmitted through the optical waveguide 11. Alternatively, if the IC chip 13 includes a light receiving element, the light transmitted through the optical waveguide 11 will be received.

第4図は、上記製造方法によって形成された光導波路と
光ファイバとの結合を示す斜視図であり、アルミナ基板
20上に分岐点を持つ光導波路21を形成し、この光導
波路21を形成する際に、光導波路21の各先端部に、
先端部を挟む形でU字状の光フアイバ案内ガイド22を
形成する。そして、この光フアイバ案内ガイド22の凹
部に光ファイバ23を挿通配置し、光ファイバ23と光
フアイバ案内ガイド22及び光導波路21を接着固定す
ることにより、それぞれ光導波路21と光ファイバを先
約に結合する。これにより、各光フアイバ間を、光導波
路21を通して自由に光の伝送を行うことができる。
FIG. 4 is a perspective view showing the coupling of the optical waveguide and optical fiber formed by the above manufacturing method, in which an optical waveguide 21 having a branch point is formed on an alumina substrate 20, At this time, at each tip of the optical waveguide 21,
A U-shaped optical fiber guide 22 is formed with the tip end sandwiched therebetween. Then, by inserting the optical fiber 23 into the recessed portion of the optical fiber guide 22 and fixing the optical fiber 23, the optical fiber guide 22, and the optical waveguide 21 with adhesive, the optical waveguide 21 and the optical fiber are connected to each other in advance. Join. Thereby, light can be freely transmitted between each optical fiber through the optical waveguide 21.

第5図は、アルミナ基板30上に先ず光4波路3工を形
成し、しかる後に、この光導波路31に交叉して、光導
波路32を形成した斜視図である。
FIG. 5 is a perspective view in which three four-wavelength optical waveguides are first formed on an alumina substrate 30, and then an optical waveguide 32 is formed to intersect with the optical waveguide 31.

このように、第1と第2の光導波路を交叉積層形成する
ことにより、高密度の光導波路回路が実現′できる。
In this way, by forming the first and second optical waveguides in a cross-layered manner, a high-density optical waveguide circuit can be realized.

第6図及び第7図は、上記製造方法によって形成される
光導波路を用いて、光スィッチを構成した一例を示すも
のであり、アルミナ基板40上に、1対の光ファイバ4
2.43を離隔して配置し、その離隔点にアルミナ基板
41を貫通ずる孔44を設け、この孔44に対して遮蔽
板45を上下させることにより、光導波路42から43
、あるいはその逆方向に伝送される光をスイッチングす
ることができる。このように、遮蔽板45によって光導
波路を伝播する光を、アナログ的あるいはデジタル的に
変化させることができるので、このスイッチを用いて、
微小変位計や圧力計等の製作が可能となる。
6 and 7 show an example of an optical switch constructed using an optical waveguide formed by the above manufacturing method, in which a pair of optical fibers 4 are placed on an alumina substrate 40.
2.43 are arranged at a distance from each other, a hole 44 is provided at the separated point through the alumina substrate 41, and the shielding plate 45 is moved up and down with respect to the hole 44, thereby allowing the optical waveguides 42 to 43 to be separated from each other.
, or vice versa. In this way, the light propagating through the optical waveguide can be changed analogously or digitally by the shielding plate 45, so using this switch,
It becomes possible to manufacture minute displacement gauges, pressure gauges, etc.

(へ)発明の効果 この発明によれば、絶縁基板上に、それぞれ下部クラッ
ド層、コア層及び上部クランド層を形成する光導ペース
トを印刷焼成することにより、光導波路を形成するもの
であるから、簡易に種々の形状の光導波路を基板上に構
成することができ、従って、光ファイバとの接続性に優
れた結合及び発光素子や受光素子等の電子部品を含むチ
ップとを自由に組込んだ光ハイブリッドICを容易に製
作することができ、光部品の小型化・量産化が可能とな
る。
(f) Effects of the Invention According to the present invention, an optical waveguide is formed by printing and firing optical guide pastes forming a lower cladding layer, a core layer, and an upper cladding layer, respectively, on an insulating substrate. Optical waveguides of various shapes can be easily constructed on a substrate, and therefore, coupling with excellent connectivity with optical fibers and chips containing electronic components such as light emitting elements and light receiving elements can be freely incorporated. Optical hybrid ICs can be easily manufactured, making it possible to downsize and mass-produce optical components.

また、光導波路にプラスし、光ファイバや発光素子、受
光素子等の電子回路を直接組込んで上記した光ハイブリ
ットICを実現できるから、−層、機能拡大された光部
品を得ることができるという利点がある。
In addition, in addition to the optical waveguide, it is possible to directly incorporate electronic circuits such as optical fibers, light-emitting elements, and light-receiving elements to realize the above-mentioned optical hybrid IC, making it possible to obtain optical components with expanded functionality. There are advantages.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、この発明の製造方法によって製造される光導
波路の断面図、第2図は、同光導波路の斜視図、第3図
は、この発明の製造方法によって形成される光導波路と
ICチップの結合例を示す斜視図、第4図は、この発明
の製造方法によって形成される光導波路と光ファイバの
結合例を示す斜視図、第5図は、この発明の製造方法に
よって可能となる光ファイバの積層構成例を示す斜視図
、第6図は、この発明の製造方法によって形成される光
導波路を用いて光スイツチ部品を構成した一例を示す断
面図、第7図は、同スイッチの概略斜視図である。 1:アルミナ基板、  2:光導波路、3:下部クラッ
ド層、4:コア層、 5:上部クランド層。 特許出願人       株式会社島津製作所代理人 
   弁理士  中 村 茂 信第1図 第2図 第4図 第5図 第6図
FIG. 1 is a cross-sectional view of an optical waveguide manufactured by the manufacturing method of the present invention, FIG. 2 is a perspective view of the optical waveguide, and FIG. 3 is an optical waveguide and an IC formed by the manufacturing method of the present invention. FIG. 4 is a perspective view showing an example of coupling of chips, FIG. 4 is a perspective view showing an example of coupling an optical waveguide and an optical fiber formed by the manufacturing method of the present invention, and FIG. FIG. 6 is a perspective view showing an example of a laminated structure of optical fibers, FIG. 6 is a sectional view showing an example of an optical switch component constructed using an optical waveguide formed by the manufacturing method of the present invention, and FIG. It is a schematic perspective view. 1: Alumina substrate, 2: Optical waveguide, 3: Lower cladding layer, 4: Core layer, 5: Upper cladding layer. Patent applicant: Shimadzu Corporation Agent
Patent Attorney Shigeru Nakamura Figure 1 Figure 2 Figure 4 Figure 5 Figure 6

Claims (1)

【特許請求の範囲】[Claims] (1)絶縁基板上に細かいガラス微粒子に透明な結合剤
を加えてなる第1の光導ペーストを印刷焼成して下部ク
ラッド層を形成し、次に下部クラッド層に積層してガラ
ス微粒子組成の異なる第2の光導ペーストを印刷焼成し
てコア層を形成し、このコア層に積層して前記第1の光
導ペーストを印刷焼成して上部クラッド層を形成するよ
うにした光導波路の製造方法。
(1) A first light guide paste made of fine glass particles and a transparent binder is printed and fired on an insulating substrate to form a lower cladding layer, and then laminated on the lower cladding layer to form glass particles with different compositions. A method for manufacturing an optical waveguide, comprising printing and baking a second light guide paste to form a core layer, laminating the core layer on the core layer, and printing and baking the first light guide paste to form an upper cladding layer.
JP22916386A 1986-09-26 1986-09-26 Production of optical waveguide Pending JPS6381408A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22916386A JPS6381408A (en) 1986-09-26 1986-09-26 Production of optical waveguide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22916386A JPS6381408A (en) 1986-09-26 1986-09-26 Production of optical waveguide

Publications (1)

Publication Number Publication Date
JPS6381408A true JPS6381408A (en) 1988-04-12

Family

ID=16887770

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22916386A Pending JPS6381408A (en) 1986-09-26 1986-09-26 Production of optical waveguide

Country Status (1)

Country Link
JP (1) JPS6381408A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002095459A1 (en) * 2001-05-22 2002-11-28 Siemens Aktiengesellschaft Method for the production of planar optical waveguides
EP1440337B1 (en) * 2001-11-02 2011-01-12 Imego Ab Method for producing a light guide using glass paste printing on a substrate and device produced with the method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002095459A1 (en) * 2001-05-22 2002-11-28 Siemens Aktiengesellschaft Method for the production of planar optical waveguides
EP1440337B1 (en) * 2001-11-02 2011-01-12 Imego Ab Method for producing a light guide using glass paste printing on a substrate and device produced with the method

Similar Documents

Publication Publication Date Title
KR100546856B1 (en) Light reception/emission device embeded photoelectricity mixed loading wiring module and its manufacturing method and its mounting body
DE102004064081B9 (en) Housing for an optical receiver
JP5281075B2 (en) Composite optical transmission board and optical module
JP5102550B2 (en) Optical waveguide holding member and optical transceiver
US7046868B2 (en) Optical waveguide transmitter-receiver module
JP4060023B2 (en) Optical waveguide transceiver module
JPS60169167A (en) Optical communication system
JP2000098157A (en) Optical branching device and its manufacture
TW561288B (en) Passively aligned fiber optical engine for parallel optics interconnect devices
JP2003131081A (en) Semiconductor device, photoelectric combined substrate, method for manufacturing the same, and electronics device using the same
JPS6381408A (en) Production of optical waveguide
JPS6146911A (en) Waveguide type optical module
JPWO2007111327A1 (en) OPTICAL TRANSMISSION BOARD, MANUFACTURING METHOD THEREOF, AND OPTICAL TRANSMISSION DEVICE
JP2003227951A (en) Optical waveguide device, method of manufacturing the same, and optoelectric coexisting substrate using the same
JP3629713B2 (en) Optical connection integrated circuit
JP6419938B2 (en) Optical fiber holding structure and optical transmission module
JPH1195062A (en) Optical connection structure
JPS61117882A (en) Printed circuit board
WO2008121075A1 (en) Optical interconnect structure and method
JP2005115190A (en) Opto-electric composite wiring board and laminated optical waveguide structure
JPS6179290A (en) Light/electron printed substrate
JPH03184384A (en) Optical module submount and manufacture thereof
JPH0566564B2 (en)
JP3941531B2 (en) Optical receiver module
WO2005067062A1 (en) Substrate with light input, substrate with light output, substrate with light input/output, and semiconductor integrated circuit with optical element