JPS6146911A - Waveguide type optical module - Google Patents

Waveguide type optical module

Info

Publication number
JPS6146911A
JPS6146911A JP16767784A JP16767784A JPS6146911A JP S6146911 A JPS6146911 A JP S6146911A JP 16767784 A JP16767784 A JP 16767784A JP 16767784 A JP16767784 A JP 16767784A JP S6146911 A JPS6146911 A JP S6146911A
Authority
JP
Japan
Prior art keywords
optical
optical waveguide
waveguide
face
semiconductor laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16767784A
Other languages
Japanese (ja)
Inventor
Masao Kawachi
河内 正夫
Yasubumi Yamada
泰文 山田
Mitsuho Yasu
安 光保
Hiroshi Terui
博 照井
Morio Kobayashi
盛男 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP16767784A priority Critical patent/JPS6146911A/en
Priority to CA000486477A priority patent/CA1255382A/en
Priority to US06/753,632 priority patent/US4750799A/en
Priority to EP85108730A priority patent/EP0171615B1/en
Priority to DE8585108730T priority patent/DE3575208D1/en
Publication of JPS6146911A publication Critical patent/JPS6146911A/en
Priority to US07/038,127 priority patent/US4735677A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/12007Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/12004Combinations of two or more optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29346Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by wave or beam interference
    • G02B6/29361Interference filters, e.g. multilayer coatings, thin film filters, dichroic splitters or mirrors based on multilayers, WDM filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/30Optical coupling means for use between fibre and thin-film device
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4219Mechanical fixtures for holding or positioning the elements relative to each other in the couplings; Alignment methods for the elements, e.g. measuring or observing methods especially used therefor
    • G02B6/4228Passive alignment, i.e. without a detection of the degree of coupling or the position of the elements
    • G02B6/423Passive alignment, i.e. without a detection of the degree of coupling or the position of the elements using guiding surfaces for the alignment
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4246Bidirectionally operating package structures
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/43Arrangements comprising a plurality of opto-electronic elements and associated optical interconnections

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

PURPOSE:To make a titled module small in size by providing a photodetector and a light emitting element brought to bonding on a silicon substrate, and an optical fiber connected to other end face of an optical waveguide. CONSTITUTION:A waveguide type optical module is operated by applying a driving current to a semiconductor laser 3 and oscillating it. Signal light from the semiconductor laser 3 is led to a quartz compound glass optical waveguide 2 through an end face 2a, and led into an optical fiber 5 through an end face 2c. On the contrary, signal light from the optical fiber 5 is led to the quartz compound glass optical waveguide 2 through the end face 2c, and a part of said light is detected by a photodetector 4 through a Y-shaped branching part and an end face 2b. In this regard, the semiconductor laser 3 is accompanied with heating, but it is radiated on a silicon substrate 1 having good thermal conductivity, therefore, the continuous operation can be executed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、光通信の分野に用いる生産性の高いモジュー
ル形の光部品に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a highly productive modular optical component used in the field of optical communications.

〔従来の技術〕[Conventional technology]

近年、光通信の進展に伴ない、光分岐・・結合回路や光
分波・合波器等の光部品を大量かつ安価に供、給するこ
とが要求されている。従来、これらの光部品としては、
プリズム、レンズまたはフィルターなどの組み合わせか
らなるバルク形光部品が用いられていた。しかし、これ
らのバルク形光部品は、組立て調整に長時間を要するた
めに生産性が悪く、光部品の高価格化を招き、また小形
化も難しく、このため光通信方式の諸分野への発展が阻
害されていた。
In recent years, with the progress of optical communications, there has been a need to supply optical parts such as optical branching/coupling circuits and optical demultiplexing/combining devices in large quantities and at low cost. Conventionally, these optical components are
Bulk optical components consisting of combinations of prisms, lenses, or filters were used. However, these bulk type optical components require a long time to assemble and adjust, resulting in poor productivity, resulting in high prices for optical components, and difficulty in miniaturizing them, which has hindered their development into various fields of optical communication systems. was being inhibited.

上記の問題を解決する方法として、平面心波形の光部品
、すなわち光IC形の光部品を実現しようとする試みが
なされてきたが、従来の平面導波形光部品では、1μm
前後の膜厚の光導波路と光ファイバとの結合が困難であ
り、原理確認の域を脱し得ず、実用に供せられるまでに
は至っていなかった。
As a way to solve the above problem, attempts have been made to realize planar core waveform optical components, that is, optical IC type optical components.
It was difficult to connect optical waveguides with different film thicknesses at the front and back and optical fibers, and this method was still beyond the realm of proof of principle, and had not been put to practical use.

そこで、小形化したプリズムやレンズに受・発光素子を
組み合わせた一体化モジュール構造を採用することによ
り、小形化、低価格化を図ろうとする試みがなされたが
、プリズムやレンズには導波構造がなく、したがって組
み立てに精密な位置合わせを必要とする点に代わりはな
く、広本的な解決策にはなり得なかった。
Therefore, attempts have been made to reduce the size and cost by adopting an integrated module structure that combines miniaturized prisms and lenses with light receiving and emitting elements. Therefore, there is no substitute for the fact that assembly requires precise positioning, and it could not be a comprehensive solution.

〔発明の目的〕[Purpose of the invention]

本発明は、従来の光部品の上記の欠点を解決するために
なされたもので、生産性が高(、したがって低価格化を
実現することができ、しかも小形化をなし得る4波形光
モジュールを提供することを目的とする。
The present invention was made in order to solve the above-mentioned drawbacks of conventional optical components, and provides a four-wave optical module that can achieve high productivity (and therefore, low price) and miniaturization. The purpose is to provide.

(発明の構成) 本発明に係る導波形光モジュールは、シリコン基板上に
形成された石英系ガラス光導波路と、該光導波路の互い
に異なる端面に光結合されてそれぞれ上記シリコン基板
上にボンディングされた受・発光素子と、上記光導波路
の別の端面に接続された光ファイバとから成ることを特
徴とするものである。
(Structure of the Invention) A waveguide optical module according to the present invention includes a silica-based glass optical waveguide formed on a silicon substrate, and optically coupled to mutually different end faces of the optical waveguide, each of which is bonded onto the silicon substrate. It is characterized by comprising a receiving/emitting element and an optical fiber connected to another end face of the optical waveguide.

上記の構成において、光導波路と受・発光素子または光
ファイバとの互いの光軸を合致させる場合には、X、Y
、Z軸の3軸方向の位置合わせを行なう必要があるが、
光軸方向については、光導波路の端面に受・発光素子ま
たは光ファイバを単に接触させればよいから、これは容
易に行うことができる。また、シリコン基板の上下方向
に対する位置合わせについては、受・発光素子または光
ファイバの寸法を光導波路の厚みに対応させておくこと
により、これまた容易に行うことができる。
In the above configuration, when aligning the optical axes of the optical waveguide and the receiving/emitting element or the optical fiber, X, Y
, it is necessary to perform alignment in the 3-axis direction of the Z axis,
Regarding the optical axis direction, this can be easily done because it is sufficient to simply bring the receiving/emitting element or the optical fiber into contact with the end face of the optical waveguide. Furthermore, alignment of the silicon substrate in the vertical direction can also be easily performed by making the dimensions of the receiving/emitting element or the optical fiber correspond to the thickness of the optical waveguide.

結局、上記の構成においては、光導波路と受・発光素子
または光ファイバとの位置合わせを行う場合、X、Y、
Z軸の3軸方向のうち1軸方向についてのみ正確な位置
出しを行えばよいから、従来のバルク形光部品のように
3軸いずれに対しても正確な位置合わせを行う必要があ
るものに比して位置合わせを容易に行うことができる。
After all, in the above configuration, when aligning the optical waveguide and the receiving/emitting element or the optical fiber,
Because it is only necessary to perform accurate positioning in one of the three Z-axis directions, it is possible to perform accurate positioning in all three axes like conventional bulk optical components. In comparison, alignment can be easily performed.

また、レンズ、プリズム等を一切用いていないから、小
形化をなし得るのは勿論である。       (〔実
施例〕 第1図は、本発明の導波形光モジュールを双方向光通信
用として構成した場合の一実施例を示す図であり、図に
おいて符号1はシリコン基板、2は石英系ガラス光導波
路、3は半導体レーザ(発光素子)、4は受光素子、5
は光ファイバ、6は半々体し−ザ用ガイド、7は光フア
イバ用ガイドである。石英系ガラス光導波路2は、7字
形をなしており、3つの端面2a、2b、2Cを有して
いる。端面2aにはガイド6.6間に収容された状態で
シリコン基板1上にボンディングされた半導体レーザ3
が接続され、端面2bにはシリコン基板1上にボンディ
ングされた受光素子4が接続され、さらに端面2Cには
ガイド7.7間に収められた光ファイバ5が接続されて
いる。
Furthermore, since no lenses, prisms, etc. are used, the device can of course be made smaller. ([Embodiment] Fig. 1 is a diagram showing an embodiment of the waveguide optical module of the present invention configured for bidirectional optical communication. In the figure, reference numeral 1 is a silicon substrate, and 2 is a quartz-based glass substrate. Optical waveguide, 3 is a semiconductor laser (light emitting element), 4 is a light receiving element, 5
is an optical fiber, 6 is a guide for a half-piece laser, and 7 is a guide for an optical fiber. The silica-based glass optical waveguide 2 has a seven-figure shape and has three end faces 2a, 2b, and 2C. A semiconductor laser 3 bonded onto the silicon substrate 1 is housed between the guides 6 and 6 on the end face 2a.
A light receiving element 4 bonded onto the silicon substrate 1 is connected to the end surface 2b, and an optical fiber 5 housed between the guides 7 and 7 is connected to the end surface 2C.

上記構成の導波形光モジュールを動作するには、半導体
レーザ3に駆動電流(図ではリード線を省略している)
を印加して発振させる。′12導体レーザ3からの信号
光は、端面2aを経て石英系ガラス光導波路2に尋かれ
、端面2Cを経て光ファイバ5へと導入される。逆に、
光ファイバ5からの信号光は、端面2Cを経て石英系ガ
ラス光導波路2へ尋かれ、その一部は7字形の分岐部お
よび端面2bを経由して受光素子4にて検出される。
To operate the waveguide optical module with the above configuration, a driving current is applied to the semiconductor laser 3 (lead wires are omitted in the figure).
is applied to cause oscillation. The signal light from the '12 conductor laser 3 is transmitted to the silica-based glass optical waveguide 2 via the end face 2a, and is introduced into the optical fiber 5 via the end face 2C. vice versa,
The signal light from the optical fiber 5 passes through the end face 2C to the silica-based glass optical waveguide 2, and a part of it is detected by the light receiving element 4 via the figure 7-shaped branch and the end face 2b.

なお、半導体レーザ3は発熱を伴なうが、これは熱伝導
性の良いシリコン基板1へと放熱されるので、連続的な
動作を行なうことができる。
Note that although the semiconductor laser 3 generates heat, this heat is dissipated to the silicon substrate 1 having good thermal conductivity, so that continuous operation can be performed.

次に、各部の構造についてさらに詳細に説明する。Next, the structure of each part will be explained in more detail.

第2図は、石英系ガラス光導波路2の製造工程説明図で
あって、光導波路2を形成するには、まずシリコン基板
1上に石英系ガラス光η波膜21を形成する。この石英
系ガラス光4波膜21の不要部分をフッ素系ガスを用い
た反応性イオンエツチング等の手法で除去し、光導波路
2を残すのである。石英系光尋波膜21を形成するには
、本出願人が先に提案した「光尋波膜の製造方法」 (
特願昭58−1473号)に記載の方法を用いることが
できる。すなわち、5iCJ4.TiCji等のガラス
形成原料ガスの火炎加水分解反応を利用してシリコン基
板1上にガラス微粒子膜を堆積させた後、電気炉中で、
ガラス微粒子膜を加熱して透明ガラス化することにより
形成できる。先導波膜21は通常バッファ層21a、コ
ア層21b。
FIG. 2 is an explanatory diagram of the manufacturing process of the silica-based glass optical waveguide 2. In order to form the optical waveguide 2, a silica-based glass optical η-wave film 21 is first formed on the silicon substrate 1. Unnecessary portions of the quartz-based glass optical four-wave film 21 are removed by a method such as reactive ion etching using a fluorine-based gas, leaving the optical waveguide 2. In order to form the quartz-based optical diaphragm film 21, the "method for manufacturing an optical diaphragm film" previously proposed by the applicant (
The method described in Japanese Patent Application No. 58-1473) can be used. That is, 5iCJ4. After depositing a glass fine particle film on the silicon substrate 1 using a flame hydrolysis reaction of a glass forming raw material gas such as TiCji, in an electric furnace,
It can be formed by heating a glass fine particle film to make it transparent vitrified. The leading wave film 21 usually includes a buffer layer 21a and a core layer 21b.

クラッドf121cの五石から成っている。コア図21
bの厚みは一緒に用いる光ファイバ5のコア径とほぼ等
しくなるように設定しである。光ファイバ5のコア径は
多モード用で50μm1単一モード用で5〜10μm程
度である。なお、ガイド6.7は第2図に示した光導波
路2のエツチングによる形成時に光導波膜21の一部を
ガイド部用に残しておくことにより形成するのが好都合
である。この際、一枚のフォトマスクをベースにしてフ
ォトリソグラフィの手法で光導波路用およびガイド用パ
ターンをm*良く転写することができるので、光導波路
2とガイド6.7との位置合わせは自動的に達成される
It consists of five stones of cladding F121C. Core diagram 21
The thickness of b is set to be approximately equal to the core diameter of the optical fiber 5 used together. The core diameter of the optical fiber 5 is approximately 50 μm for multimode and 5 to 10 μm for single mode. Note that it is convenient to form the guides 6.7 by leaving a part of the optical waveguide film 21 for a guide portion when forming the optical waveguide 2 shown in FIG. 2 by etching. At this time, the optical waveguide and guide patterns can be transferred m* well by photolithography using a single photomask as a base, so the alignment between the optical waveguide 2 and the guide 6.7 is automatic. will be achieved.

半導体レーザ3や受光素子4をシリコン基板1上にボン
ディングする方法としては所望部分の基板1表面にたと
えばAu−8n合金を蒸着しておき、ガイド6.7の形
状に合わせて切り出した素子をガイド6.7に合わせて
挿入し、熱圧着の手段等でシリコン基板1に接合する等
の手段を適用できる。第1図の実施例では、受光素子4
のための特別のガイドは設けてないが、これは、受光素
子4の受光面積が比較的大ぎく、端面2bとの位置合わ
せが比較的容易なためであり、場合によってはレーザ用
ガイド6と同様のガイドを設けても良い。
As a method of bonding the semiconductor laser 3 and the light receiving element 4 onto the silicon substrate 1, for example, Au-8n alloy is vapor-deposited on the surface of the substrate 1 at a desired portion, and the element cut out according to the shape of the guide 6.7 is guided. 6.7, and bonding to the silicon substrate 1 by thermocompression bonding or the like can be applied. In the embodiment shown in FIG.
A special guide is not provided for this purpose, but this is because the light receiving area of the light receiving element 4 is relatively large and alignment with the end surface 2b is relatively easy. A similar guide may also be provided.

なお、本発明で石英系ガラス光導波路2を用いているの
は、石英ガラスを用いた場合光導波路2をシリコン基板
上1に数10μmもの厚さをもって安定して形成でき、
通常用いられている石英系光ファイバとの接続に寸法や
材質の点で有利であるからである。
The reason why the silica-based glass optical waveguide 2 is used in the present invention is that when silica glass is used, the optical waveguide 2 can be stably formed on the silicon substrate 1 with a thickness of several tens of μm.
This is because it is advantageous in terms of size and material for connection with commonly used silica-based optical fibers.

第2図におけるエツチング深さhはガイド7゜7間に光
ファイバ5を挿入した際、光ファイバ5のコア部が、光
導波路2のコア層21bに一致するように選ぶべぎであ
る。例えば、バフフッ層21a、ファーD21b、クラ
ッド1ff121cの厚みがも それぞれ10μ国、45μm、10μmである光導波路
2に外径70μm、コア径50μmの光ファイバ5を接
続する場合には、エツチング深さhは67μm±5μm
程度にすることが望ましい。
The etching depth h in FIG. 2 should be selected so that the core portion of the optical fiber 5 coincides with the core layer 21b of the optical waveguide 2 when the optical fiber 5 is inserted between the guides 7.7. For example, when connecting an optical fiber 5 with an outer diameter of 70 μm and a core diameter of 50 μm to an optical waveguide 2 in which the thicknesses of the buffing layer 21a, the fur D21b, and the cladding 1ff121c are 10 μm, 45 μm, and 10 μm, respectively, the etching depth h is 67μm±5μm
It is desirable to keep it at a certain level.

この場合、ガイド7.7の間隔を70〜75μm程度に
選んでおくと、ガイド7.7間に光ファイバ5を挿入す
るのみで自動的に光軸合わせが完了し効率的である。光
ファイバ5の固定には接着剤、あるいはCO2レーザに
よる@着法を適用することができる。
In this case, if the interval between the guides 7.7 is selected to be about 70 to 75 μm, optical axis alignment can be completed automatically by simply inserting the optical fiber 5 between the guides 7.7, which is efficient. For fixing the optical fiber 5, an adhesive or a @ bonding method using a CO2 laser can be applied.

また、外径が125μ−の光ファイバ5を接続する場合
には、エツチング深さhを95μm前後にまで深くし、
またガイド7.7の間隔も125〜130μm程度に広
くすれば良い。
In addition, when connecting an optical fiber 5 with an outer diameter of 125 μm, the etching depth h is increased to around 95 μm.
Further, the interval between the guides 7.7 may be widened to about 125 to 130 μm.

半導体レーザ3の厚みは、シリコン基板1上にボンディ
ングした際に、発信層の高さが光導波路2のコア1ff
121bの中心付近に位置するようにしておくことが、
光結合上必要である。従って、半導体レーザ3の厚みは
、50μ−程度にまで薄くしておくことが望ましい。し
かし、半導体レーザ3の厚みを30μm以下にすること
は、取り扱い上困難を伴なう場合が多いので、シリコン
基板1のボンディングすべき部分を選択的に1ライエツ
チングあるいは化学エツチングの手段によってより深く
掘り下げておくことも有効である。
The thickness of the semiconductor laser 3 is such that when bonded onto the silicon substrate 1, the height of the transmission layer is equal to the core 1ff of the optical waveguide 2.
121b is located near the center.
Necessary for optical coupling. Therefore, it is desirable that the thickness of the semiconductor laser 3 be as thin as about 50 .mu.m. However, reducing the thickness of the semiconductor laser 3 to 30 μm or less is often difficult to handle, so the portion of the silicon substrate 1 to be bonded is selectively etched deeper by one-line etching or chemical etching. It is also effective to dig deeper.

第3図は、半導体レーザ3をシリコン基板上に搭載する
別の実施例の樹造図であり、シリコン基板1と半導体レ
ーザ3との間に熱伝導性の良いスペーサ31を介在さぜ
、発信m3aが下側に位置するよう接合し、光導波路2
との高さ調整をするようにしたものである。この場合、
スペーサ31としては、薄片状のシリコン板やダイヤモ
ンド板を用いることができる。光導波路2が単一モード
用の場合には、スペーサ31を省略してしまうことも可
能である。
FIG. 3 is a tree diagram of another embodiment in which a semiconductor laser 3 is mounted on a silicon substrate, in which a spacer 31 with good thermal conductivity is interposed between the silicon substrate 1 and the semiconductor laser 3, and The optical waveguide 2 is joined so that m3a is located on the lower side.
The height can be adjusted. in this case,
As the spacer 31, a flaky silicon plate or a diamond plate can be used. If the optical waveguide 2 is for a single mode, the spacer 31 may be omitted.

なお、半導体レーザ3と光導波路2との結合効率を高め
るために、光導波路2の端面を円状あるいは球面状に加
工しておくのもよい。
Note that in order to increase the coupling efficiency between the semiconductor laser 3 and the optical waveguide 2, the end face of the optical waveguide 2 may be processed into a circular or spherical shape.

半導体レーザ用ガイド6.6の間隔は、半尋体し−If
 3の幅に合わせておくので、光導波路2との位置合わ
せは、自動的に達成されるが、ガイド6.6の間隔が光
導波路2の端面2aから離れるにつれてテーパ状に広が
るようにしておくと、半導体レーザ3の挿入が容易であ
る。
The distance between the semiconductor laser guides 6.6 is half-width - If
3, the alignment with the optical waveguide 2 is automatically achieved, but the distance between the guides 6.6 is made to widen in a tapered shape as it moves away from the end surface 2a of the optical waveguide 2. This makes it easy to insert the semiconductor laser 3.

第4図は、本発明の他の実施例を示す図であり、波長多
重通信用の導波形光モジュールを示している。シリコン
基板1上には、石英系ガラス光導波路2と、ガイド6.
7,8.9が形成されており、ガイド6.6間には半導
体レーザ3が装着され、ガイド7.7間には光ファイバ
5が挿入され、ガイド8,8間には受光素子4が収容さ
れている。
FIG. 4 is a diagram showing another embodiment of the present invention, and shows a waveguide optical module for wavelength multiplex communication. On the silicon substrate 1, a silica-based glass optical waveguide 2 and a guide 6.
7, 8.9 are formed, a semiconductor laser 3 is installed between the guides 6.6, an optical fiber 5 is inserted between the guides 7.7, and a light receiving element 4 is inserted between the guides 8, 8. It is accommodated.

そして、ガイド9,9間には干渉膜形波長フィルタ41
が挿入されている。波長フィルタ41は波長選択性を有
し、半導体レーザ3の発信光波長λ宜を反射し、光ファ
イバ5を伝播してきた光波長λ2を通過させる特性を持
つ。
An interference film type wavelength filter 41 is provided between the guides 9 and 9.
is inserted. The wavelength filter 41 has wavelength selectivity and has the characteristic of reflecting the wavelength λ of the light emitted by the semiconductor laser 3 and passing the wavelength λ2 of the light propagated through the optical fiber 5.

これを動作させるには、半導体レーザ3を駆動して波長
λ1の信号光を光導波路2に送り込む。
To operate this, the semiconductor laser 3 is driven to send signal light with a wavelength λ1 into the optical waveguide 2.

この信号光は波長フィルタ41で反射され、光導波路2
に沿って光ファイバ5へと導入される。光ファイバ5を
伝播してきた波長λ2の信号光は、波長フィルタ41を
通過して受光素子4へと導かれる。使用波長λ1.λ2
の選定は、例えば(λ+−0,85μm 、λ2=1.
3μm ) 、・ (λ1=0.81 μlll、  
λ2  =O,s9μm  )、  (λ1=1.2μ
m、λ3 =1.311m )等が可能である。
This signal light is reflected by the wavelength filter 41, and the optical waveguide 2
is introduced into the optical fiber 5 along the line. The signal light of wavelength λ2 propagated through the optical fiber 5 passes through the wavelength filter 41 and is guided to the light receiving element 4. Usage wavelength λ1. λ2
For example, (λ+-0.85 μm, λ2=1.
3 μm) , (λ1=0.81 μlll,
λ2=O,s9μm), (λ1=1.2μ
m, λ3 = 1.311 m), etc. are possible.

第4図の構造のものは、さらに多数個のレーザや受光素
子、波長フィルタを備えた多波長用台・分波器モジュー
ルへと拡張できることはもちろんである。
It goes without saying that the structure shown in FIG. 4 can be extended to a multi-wavelength platform/demultiplexer module equipped with a large number of lasers, light receiving elements, and wavelength filters.

(発明の効果) 以上、3つの実施例例について説明したが、第1図の実
施例では、Y分岐の角度を約°2°に設定して、素子全
体を20 mmx 3 Bの基板上に収めることができ
た。また、第4図の実施例では、反射角度を30”に設
定して10mmx i Qmmの基板上に収めることが
できた。これは、従来のバルク形光部品に比較してはる
かに小形である。また、本発明の合波形モジュールは、
1枚のフォー−マスク! に同一パターンを繰り返して描いておき、3インチ径あ
るいは4インチ、5インチ径のシリコンウェハ上に多数
個、一括して、フォトリソグラフィの手段で複写できm
産向きである。しかも、光導波路と、光ファイバや受・
発光素子との位置合わせも短時間に遂行することができ
るので、光部品の低価格化が可能となる。さらに、半導
体レーザ等からの発熱はシリコン基板にすみやかに吸熱
されるので、安定に動作を営むことができる。なお、必
要によってはシリコン基板上の空きスペースに、半導体
レーザの駆動用電子回路や受光素子用の増幅器などを搭
載し、光部品の高機能集積化を図ることもできる。
(Effects of the Invention) Three embodiments have been described above. In the embodiment shown in FIG. I was able to fit it in. In addition, in the example shown in Figure 4, the reflection angle was set to 30'' and it was possible to fit it onto a 10 mm x i Qmm substrate.This is much smaller than conventional bulk type optical components. .Furthermore, the combined waveform module of the present invention has the following characteristics:
One four-mask! The same pattern can be repeatedly drawn on a 3-inch, 4-inch, or 5-inch diameter silicon wafer and then copied in bulk using photolithography.
It is suitable for giving birth. Furthermore, optical waveguides, optical fibers, receivers,
Since positioning with the light emitting element can be accomplished in a short time, it is possible to reduce the cost of optical components. Furthermore, heat generated from a semiconductor laser or the like is quickly absorbed by the silicon substrate, so stable operation can be achieved. Note that, if necessary, an electronic circuit for driving a semiconductor laser, an amplifier for a light-receiving element, and the like can be mounted in the empty space on the silicon substrate to achieve high-performance integration of optical components.

また、第1図、第3図あるいは第4図のI造は、最終的
には電気用集積回路と類似のパッケージに収容して使用
できることはもちろんであり、光通信用送受信装置の小
形化、低価格化に貢献するところが大である。
Furthermore, the I-structure shown in FIG. 1, FIG. 3, or FIG. 4 can ultimately be used by being housed in a package similar to that of an electrical integrated circuit; This greatly contributes to lower prices.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示ず斜視図、第2図は石英
系ガラス光導波路の製造工程説明図であって、第2図<
A)はエツチング前における第1図の■−■線矢祝断面
図、第2図(B)はエツチング後における第1図の■−
■線矢視断面図、第3図は本発明の他の実施例の一部を
省略して示す図であって、シリコン基板上への半導体レ
ーザの搭載寸法例を示す説明図、第4図は本発明のさら
に他の実施例を示す斜視図である。 1・・・・・・シリコン基板、2・・・・・・石英系ガ
ラス光導波路、2a、2b、2c・・・・・・光ど導波
路の端面、3・・・・・・半導体レーザ(発光素子)、
3a・・−・・・発信層、4・・・・・・受光素子、5
・・・・・・光ファイバ、6・・・・・・半導体レーザ
用ガイド、7・・・・・・光フアイバ用ガイド、8・・
・・・・受光素子用ガイド、9・・・・・・波長フィル
タ用ガイド、21・・・・・・石英系ガラス光導波膜、
21a・・・・・・バッファ層、21b・・・・・・コ
ア層、21C・・・・・・クラッド層、3a・・・・・
・発信層、31・・・・・・スペーサ、41・・・・・
・波長フィルタ。 第1図 第3図 手続補正書J自和 昭和   年   月   日 特許庁長官殿       岡。 1、事件の表示 昭和59年特許願第167677号 2、発明の名称 導波形光モジュール 3、補正をする者
FIG. 1 is a perspective view of an embodiment of the present invention, and FIG. 2 is an explanatory diagram of the manufacturing process of a silica-based glass optical waveguide.
A) is a sectional view taken along the line ■-■ in Figure 1 before etching, and Figure 2 (B) is a cross-sectional view taken along the line ■-■ in Figure 1 after etching.
■A sectional view taken along the line, FIG. 3 is a diagram showing another embodiment of the present invention with some parts omitted, and is an explanatory diagram showing an example of mounting dimensions of a semiconductor laser on a silicon substrate, and FIG. FIG. 3 is a perspective view showing still another embodiment of the present invention. DESCRIPTION OF SYMBOLS 1... Silicon substrate, 2... Silica-based glass optical waveguide, 2a, 2b, 2c... End face of optical waveguide, 3... Semiconductor laser (light emitting element),
3a... Transmission layer, 4... Light receiving element, 5
...Optical fiber, 6... Guide for semiconductor laser, 7... Guide for optical fiber, 8...
... Guide for light receiving element, 9 ... Guide for wavelength filter, 21 ... Quartz-based glass optical waveguide film,
21a...Buffer layer, 21b...Core layer, 21C...Clad layer, 3a...
・Outgoing layer, 31... Spacer, 41...
・Wavelength filter. Figure 1 Figure 3 Procedural Amendment J JIWA Showa Year Month Date Mr. Oka, Commissioner of the Patent Office. 1. Indication of the incident Patent Application No. 167677 of 1982 2. Name of the invention Waveguide optical module 3. Person making the amendment

Claims (1)

【特許請求の範囲】 (1、)シリコン基板上に形成された石英系ガラス光導
波路と、該光導波路の互いに異なる端面に光結合されて
それぞれ上記シリコン基板上にボンディングされた受・
発光素子と、上記光導波路の別の端面に接続された光フ
ァイバとから成ることを特徴とする導波形光モジュール
。 (2、)上記光導波路のコア層厚が上記光ファイバのコ
ア径とほぼ同寸法に形成されていることを特徴とする特
許請求の範囲第1項記載の導波形光モジュール。
[Scope of Claims] (1.) A silica-based glass optical waveguide formed on a silicon substrate;
A waveguide optical module comprising a light emitting element and an optical fiber connected to another end face of the optical waveguide. (2.) The waveguide optical module according to claim 1, wherein the core layer thickness of the optical waveguide is formed to have approximately the same dimension as the core diameter of the optical fiber.
JP16767784A 1984-08-10 1984-08-10 Waveguide type optical module Pending JPS6146911A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP16767784A JPS6146911A (en) 1984-08-10 1984-08-10 Waveguide type optical module
CA000486477A CA1255382A (en) 1984-08-10 1985-07-08 Hybrid optical integrated circuit with alignment guides
US06/753,632 US4750799A (en) 1984-08-10 1985-07-10 Hybrid optical integrated circuit
EP85108730A EP0171615B1 (en) 1984-08-10 1985-07-12 Hybrid optical integrated circuit and fabrication method thereof
DE8585108730T DE3575208D1 (en) 1984-08-10 1985-07-12 OPTICAL, INTEGRATED HYBRID CIRCUIT AND METHOD FOR THE PRODUCTION THEREOF.
US07/038,127 US4735677A (en) 1984-08-10 1987-04-02 Method for fabricating hybrid optical integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16767784A JPS6146911A (en) 1984-08-10 1984-08-10 Waveguide type optical module

Publications (1)

Publication Number Publication Date
JPS6146911A true JPS6146911A (en) 1986-03-07

Family

ID=15854170

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16767784A Pending JPS6146911A (en) 1984-08-10 1984-08-10 Waveguide type optical module

Country Status (1)

Country Link
JP (1) JPS6146911A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62296116A (en) * 1986-06-17 1987-12-23 Fujitsu Ltd Method for adjusting optical axis of optical device
JPS6338108U (en) * 1986-08-28 1988-03-11
JPS6365406A (en) * 1986-09-05 1988-03-24 Fujitsu Ltd Optical waveguide and its production
FR2873454A1 (en) * 2004-07-26 2006-01-27 E Klo Sarl Photoreceptor component, has waveguides interposed between photodiodes and optical fiber, where waveguides and photodiodes are formed on same substrate and each waveguide has end partially covering active surface of respective photodiode
JP2009116008A (en) * 2007-11-06 2009-05-28 Nitto Denko Corp Method for manufacturing optical waveguide device and optical waveguide device obtained thereby
JP4789619B2 (en) * 2002-11-12 2011-10-12 ホーヤ コーポレイション ユーエスエイ Optical device and optical assembly incorporating optical device
WO2013069743A1 (en) * 2011-11-10 2013-05-16 シチズンホールディングス株式会社 Optical integrated device
JP2019507374A (en) * 2016-04-19 2019-03-14 オプティシス カンパニー リミテッド Optical connector
JP2019207976A (en) * 2018-05-30 2019-12-05 日亜化学工業株式会社 Light source device
WO2021065949A1 (en) 2019-09-30 2021-04-08 京セラ株式会社 Optical waveguide package and light emitting device
WO2021065948A1 (en) 2019-09-30 2021-04-08 京セラ株式会社 Optical waveguide package and light emitting device
CN115356810A (en) * 2021-07-28 2022-11-18 特崴光波导股份有限公司 Method for manufacturing device having optical element and optical transmission device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5784189A (en) * 1980-11-14 1982-05-26 Nec Corp Hybrid integrated optical circuit
JPS5793305A (en) * 1980-10-10 1982-06-10 Thomson Csf Hybrid optical joint in loop interference meter and use thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5793305A (en) * 1980-10-10 1982-06-10 Thomson Csf Hybrid optical joint in loop interference meter and use thereof
JPS5784189A (en) * 1980-11-14 1982-05-26 Nec Corp Hybrid integrated optical circuit

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62296116A (en) * 1986-06-17 1987-12-23 Fujitsu Ltd Method for adjusting optical axis of optical device
JPS6338108U (en) * 1986-08-28 1988-03-11
JPS6365406A (en) * 1986-09-05 1988-03-24 Fujitsu Ltd Optical waveguide and its production
JP4789619B2 (en) * 2002-11-12 2011-10-12 ホーヤ コーポレイション ユーエスエイ Optical device and optical assembly incorporating optical device
FR2873454A1 (en) * 2004-07-26 2006-01-27 E Klo Sarl Photoreceptor component, has waveguides interposed between photodiodes and optical fiber, where waveguides and photodiodes are formed on same substrate and each waveguide has end partially covering active surface of respective photodiode
JP2009116008A (en) * 2007-11-06 2009-05-28 Nitto Denko Corp Method for manufacturing optical waveguide device and optical waveguide device obtained thereby
WO2013069743A1 (en) * 2011-11-10 2013-05-16 シチズンホールディングス株式会社 Optical integrated device
JPWO2013069743A1 (en) * 2011-11-10 2015-04-02 シチズンホールディングス株式会社 Optical integrated device
US9631781B2 (en) 2011-11-10 2017-04-25 Citizen Watch Co., Ltd. Optical integrated device
JP2019507374A (en) * 2016-04-19 2019-03-14 オプティシス カンパニー リミテッド Optical connector
JP2019207976A (en) * 2018-05-30 2019-12-05 日亜化学工業株式会社 Light source device
WO2021065949A1 (en) 2019-09-30 2021-04-08 京セラ株式会社 Optical waveguide package and light emitting device
WO2021065948A1 (en) 2019-09-30 2021-04-08 京セラ株式会社 Optical waveguide package and light emitting device
CN115356810A (en) * 2021-07-28 2022-11-18 特崴光波导股份有限公司 Method for manufacturing device having optical element and optical transmission device
CN115356810B (en) * 2021-07-28 2024-01-26 特崴光波导股份有限公司 Method for manufacturing device having optical element and optical transmission device

Similar Documents

Publication Publication Date Title
US4750799A (en) Hybrid optical integrated circuit
US5499732A (en) Method for fabricating an optical device
JP2002214460A (en) Optical waveguide device and its manufacturing method
JPS6146911A (en) Waveguide type optical module
JP3490745B2 (en) Composite optical waveguide type optical device
JP2003506987A (en) Connector-type optical transceiver using silicon-on-insulator optical waveguide
US6854897B2 (en) Ferrule part and optical communications module
JP2615400B2 (en) Non-adjustable optical connector
JP2000047055A (en) Optical waveguide device and its production
JPS61242069A (en) Hybrid optical integrated circuit and manufacture thereof
JPH03265802A (en) Embedded type quartz optical waveguide and production thereof
US5297218A (en) Optical semiconductor laser and optical waveguide alignment device
JP2771167B2 (en) Optical integrated circuit mounting method
JP3201864B2 (en) Method for manufacturing quartz optical waveguide component
JPS6360413A (en) Coupling method for light emitting element and optical fiber and optical waveguide type coupling device
CN1878035B (en) Hybrid integrated silicon-based photosignal processing chip
JP3100698B2 (en) Manufacturing method of waveguide type optical device
US5432338A (en) Silicon opto-electronic integrated circuit for fiber optic gyros or communication
JP2608585B2 (en) Hybrid optical integrated circuit
JPH11258455A (en) Optical waveguide component and optical waveguide module using the component
JP2628682B2 (en) Optical waveguide component and its connection method
JPH07174944A (en) Optical transmitter/receiver
JP3670654B2 (en) Optical circuit components
JP2857221B2 (en) Optical surface mount circuit and optical component thereof
JP2943629B2 (en) Optical waveguide module, array thereof, and method of manufacturing the same