JPS6379731A - Production of porous base material for optical fiber - Google Patents

Production of porous base material for optical fiber

Info

Publication number
JPS6379731A
JPS6379731A JP22208986A JP22208986A JPS6379731A JP S6379731 A JPS6379731 A JP S6379731A JP 22208986 A JP22208986 A JP 22208986A JP 22208986 A JP22208986 A JP 22208986A JP S6379731 A JPS6379731 A JP S6379731A
Authority
JP
Japan
Prior art keywords
glass
glass rod
base material
porous base
burner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22208986A
Other languages
Japanese (ja)
Other versions
JPH085689B2 (en
Inventor
Tatsuo Saito
達男 斎藤
Futoshi Mizutani
太 水谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP61222089A priority Critical patent/JPH085689B2/en
Publication of JPS6379731A publication Critical patent/JPS6379731A/en
Publication of JPH085689B2 publication Critical patent/JPH085689B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/0148Means for heating preforms during or immediately prior to deposition

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

PURPOSE:To deposit fine glass particles good in adhesion properties and to produce a uniformly transparent glass body by the post-transparent treatment by depositing the fine glass particles while detachedly heating a glass rod of a rotating shaft without using flame. CONSTITUTION:While arranging a carbon heater 6 around a solid glass bar 3 (or hollow glass bar) and heating the glass bar 3 at the prescribed temp. with infrared projected therefore, a porous base material is produced by depositing fine glass particles around it. By this method, since fine glass particles good in adhesion properties can be deposition on the bar, a uniformly transparent glass body is obtained by performing the post-transparent treatment. Further since the flame of a burner for synthesizing the fine glass particles is not disturbed, the porous base material can be stably produced without disturbing the forming velocity and the outer diameter, etc., of the porous base material, and furthermore optical fiber having low loss can be produced because OH or the like is not formed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は光ファイバ用多孔質母材の製造方法に関するも
ので、詳しくは中実又は中空ガラス棒にガラス微粒子を
密着性良く堆積する方法に関し、光ファイバ製造分野等
で広く利用できる技術である。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for manufacturing a porous base material for optical fibers, and more specifically, to a method for depositing fine glass particles on a solid or hollow glass rod with good adhesion. This is a technology that can be widely used in the field of optical fiber manufacturing.

〔従来の技術〕[Conventional technology]

中実又は中空ガラス棒に気相化学反応を用いてガラス微
粒子を堆積させる従来技術の一例を第2図に示す。第2
因においてガラス棒3は回転たつ上下動可能となってお
り、ガラス微粒子合成用バーナー2には例えばB10L
4 、 Ge0t4 。
An example of a prior art technique for depositing glass particles onto a solid or hollow glass rod using a vapor phase chemical reaction is shown in FIG. Second
Incidentally, the glass rod 3 can be rotated and moved up and down, and the burner 2 for glass particle synthesis is equipped with a B10L, for example.
4, Ge0t4.

02 、 H2、Ar  等の気体が供給され、これK
より合成さnたガラス微粒子は該ガラス棒3の夕1周上
にガラス微粒子体1として堆積し、多孔質母材を形成す
る。4は排気管である。
02, H2, Ar, etc. are supplied, and this K
The more synthesized glass fine particles are deposited as a glass fine particle body 1 on one circumference of the glass rod 3 to form a porous base material. 4 is an exhaust pipe.

この方法にて得らnた多孔質母材の半径方向における密
度分布は、第5図に示すようにガラス棒近傍にて大きく
落ち込んでいる。この念めガラス棒とガラス微粒子体と
の密着性が悪く、透明化処理等の場合にガラス棒−ガラ
ス微粒子体界面でスリップが生じ、この部分に気泡等が
残留して、光ファイバの強度低下、伝送損失の増加等を
もたらす原因となっている。
The density distribution in the radial direction of the porous base material obtained by this method has a large drop in the vicinity of the glass rod, as shown in FIG. In this case, the adhesion between the glass rod and the glass particles is poor, and slippage occurs at the interface between the glass rod and the glass particles during the transparent treatment, and air bubbles remain in this area, reducing the strength of the optical fiber. This causes an increase in transmission loss.

そこで、この問題t−屏決するため、第3図に示すよう
にガラス棒3の予熱バーナー5に例えばH鵞、プロパン
ガス、02等の加熱用ガスを供給し、該予熱バーナー5
に形成される火炎によりガラス棒5を直接予熱し、その
後にガラス微粒子をガラス棒3の外周に堆積することで
、密度が高く密着性の良いガラス微粒子体1を形成しよ
うとする方法が提案されている。なお第3図において第
2図と共通符番のものは第2図と同じを意味する。
Therefore, in order to solve this problem, as shown in FIG.
A method has been proposed in which a glass rod 5 is directly preheated by a flame formed in the glass rod 5, and then glass fine particles are deposited on the outer periphery of the glass rod 3, thereby forming a glass fine particle body 1 with high density and good adhesion. ing. In FIG. 3, the same reference numerals as those in FIG. 2 have the same meanings as in FIG. 2.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

前記し次ガラス棒を予熱する方法は、密着性の良いガラ
ス微粒子体を形成するのに有効な方法である。
The method of preheating the glass rod described above is an effective method for forming glass fine particles with good adhesion.

しかしながら、従来技術に示されるような予熱バーナー
を用い次加熱方法には次のような問題がある。まず、予
熱バーナー5による火炎はガラス微粒子合成バーナー2
の火炎と干渉し合う為に、ガラス微粒子体1の生成速度
が不安定となフ、第3図に示すように多孔質母材に変形
を生じさせる。これに対し、予熱バーナー5をガラス微
粒子合成用バーナー2の火炎と干渉しない位置に配する
と、ガラス棒3の予熱される位置がガラス微粒子の堆積
位置〃為ら岨れ1しまい、予熱の効果が薄れてしまう。
However, the subsequent heating method using a preheating burner as shown in the prior art has the following problems. First, the flame from the preheating burner 5 is heated by the glass fine particle synthesis burner 2.
Due to interference with the flame, the production rate of the glass particles 1 becomes unstable, causing deformation of the porous base material as shown in FIG. On the other hand, if the preheating burner 5 is placed in a position where it does not interfere with the flame of the burner 2 for synthesizing glass fine particles, the preheating position of the glass rod 3 will be deviated from the position where the glass fine particles are deposited, and the effect of preheating will be reduced. It will fade.

さらに、u、−〇鵞火炎による予熱バーナー?用いるな
らば、ガラス棒へ多量のOH基が拡散してしまい、光フ
ァイバの伝送損失の悪化を招いてしまう。第7図はガラ
ス棒外周からの深さくμm)と浸入OH基濃度(ppm
)の関係を示すグラフであって、第3図の従来技術によ
る場合は白線すのように深さ50μm近く着でOH基か
浸入しており、その濃度も高い。
Furthermore, u, -〇flame preheating burner? If used, a large amount of OH groups will diffuse into the glass rod, resulting in worsening of the transmission loss of the optical fiber. Figure 7 shows the depth from the outer periphery of the glass rod (μm) and the infiltrated OH group concentration (ppm).
), in the case of the prior art shown in FIG. 3, OH groups have penetrated to a depth of nearly 50 μm, as shown by the white line, and their concentration is high.

本発明は従来技術におけるこのような問題点を解決し、
気相化学反応法により、中実又は中空ガラス棒にガラス
微粒子体を密着住良(OII基の浸入もなく堆積して、
伝送特性に優れ次光ファイバ用多孔質母材を製造する方
法を提案するものである。
The present invention solves these problems in the prior art,
By vapor-phase chemical reaction method, glass fine particles are deposited in close contact with a solid or hollow glass rod (without infiltration of OII groups,
This paper proposes a method for manufacturing a porous preform for optical fibers with excellent transmission characteristics.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は自らの軸を回転軸として回転する中実又は中空
ガラス棒の近傍にガラス微粒子合成用バーナーを配し、
該バーナーよりガラス原料を投入して上記ガラス棒外周
上にガラス微粒子を堆積させ、かつ該バーナーと該ガラ
ス棒の位置を相対的に離すことによりガラス微粒子堆積
体を該ガラス棒軸方向に形成してゆく方法において、上
記ガラス棒を火炎を用いずに非接触で加熱しながらガラ
ス微粒子を堆積させることを特徴とする光ファイバ用多
孔質母材の製造方法である。該ガラス棒を火炎を用いず
に非接触で加熱するには、赤外線または高周波誘導によ
ることが特に好ましい。
In the present invention, a burner for synthesizing glass particles is disposed near a solid or hollow glass rod that rotates about its own axis,
A glass raw material is introduced from the burner to deposit glass particles on the outer periphery of the glass rod, and a glass particle deposit is formed in the axial direction of the glass rod by relatively separating the positions of the burner and the glass rod. This method of manufacturing a porous preform for an optical fiber is characterized in that glass fine particles are deposited while heating the glass rod in a non-contact manner without using a flame. For contactless heating of the glass rod without using a flame, infrared or high frequency induction is particularly preferred.

本発明者らは種々検討の結果、以上のような問題点を解
決する為には、火炎を一切使用せず非接触でガラス棒を
加熱しながらガラス微粒子を堆積させることが有効であ
る、との結論に達し、具体的には赤外線あるいは高周波
誘導による加熱が最適であることを見出した。
As a result of various studies, the present inventors have concluded that in order to solve the above problems, it is effective to deposit glass particles while heating the glass rod in a non-contact manner without using any flame. We reached the conclusion that heating using infrared rays or high-frequency induction is optimal.

第1図は本発明の実施態様を示す図であって、予熱バー
ナーに代えてカーゼ/ヒーター6及び石英ガラス管7か
らなる加熱装!iヲ設け、これによりガラス棒3を予熱
する。なお、第1図中第2図と共通符番の部分のものは
第2図と同じを意味する。ま九、第1図の加熱装置にか
えて、同様に火炎の形成がなくガラス棒を非接触で加熱
しうる高周波誘導装置を用いることも好ましい。勿論、
その他の火炎形成がなく非接触で加熱する手段も用いう
る。
FIG. 1 is a diagram showing an embodiment of the present invention, in which a heating device consists of a case/heater 6 and a quartz glass tube 7 instead of a preheating burner! i is provided, thereby preheating the glass rod 3. In addition, parts in FIG. 1 having the same reference numerals as those in FIG. 2 have the same meanings as in FIG. 2. (9) Instead of the heating device shown in FIG. 1, it is also preferable to use a high-frequency induction device that similarly does not generate flame and can heat the glass rod in a non-contact manner. Of course,
Other means of non-contact heating without flame formation may also be used.

〔作用〕[Effect]

気相化学反応法により光ファイバ用多孔質母材を製造す
る場合における堆積面温度(℃)と堆積ガラス微粒子の
密度(t /cya” )の関係を見ると第6図に示す
ように、堆積面の温度が高い程密度の高いガラス微粒子
が堆積する性質がある。
When looking at the relationship between the deposition surface temperature (°C) and the density of deposited glass particles (t/cya”) in the case of manufacturing a porous base material for optical fibers by the vapor phase chemical reaction method, as shown in Figure 6, the deposition The higher the temperature of the surface, the more dense the glass particles will accumulate.

これはガラス棒にガラス微粒子?堆積させる場合にも轟
てはまる。さらに、ガラス微粒子の密度が高まる程ガラ
ス棒との@層性が向上するので、該多孔質母材を透明ガ
ラス化する場合に、ガラス棒とガラス微粒子との間でス
リップ等が生ずること無く、均一に透明なガラス体を得
ることができる。この場合、ガラス棒周辺のガラス微粒
子の密度はα21711以上であることが必要であり、
これはガラス棒を約600℃以上かつ該ガラス棒の軟化
点である約1100℃以下の温度に加熱することで実現
される。
Are these glass particles on a glass rod? This also applies when depositing. Furthermore, as the density of the glass fine particles increases, the layering property with the glass rod improves, so when the porous base material is made into transparent vitrification, slipping etc. does not occur between the glass rod and the glass fine particles. A uniformly transparent glass body can be obtained. In this case, the density of glass particles around the glass rod needs to be α21711 or more,
This is accomplished by heating the glass rod to a temperature above about 600° C. and below about 1100° C., which is the softening point of the glass rod.

本発明では、ガラス棒の加熱を赤外線あるいは高周波誘
導により、火炎を用いず非接触的に行うことから、ガラ
ス微粒子合成用バーナーの火炎を乱すことが無く、高密
度のガラス微粒子をガラス棒との密着性良く堆積できる
ので、多孔質母材上安定して製造することができる。ま
た、化学反応を伴わないのでOH基の浸透といった光フ
ァイバの伝送損失を増加させるような物質の生成が無く
、低損失の光7アイバ全製造することができる。
In the present invention, since the glass rod is heated by infrared rays or high-frequency induction in a non-contact manner without using flame, the flame of the burner for glass particle synthesis is not disturbed, and high-density glass particles are heated with the glass rod. Since it can be deposited with good adhesion, it can be stably manufactured on a porous base material. In addition, since no chemical reaction is involved, there is no generation of substances that increase the transmission loss of the optical fiber, such as penetration of OH groups, and it is possible to manufacture all optical fibers with low loss.

〔実施例〕〔Example〕

実施例1 第1図に示すように、中実のガラス棒5の同曲にカーボ
ンヒーター6t−配し、これより放射される赤外線にて
該ガラス棒3を約1000℃に加熱しながら、その周り
にガラス微粒子全堆積させ、直径150■、長さ700
■の多孔質母材を製造し友。該多孔質母材の半径方向の
密度分布を第4図に示すが、ガラス棒との界面での密度
の低下はなかった。またガラス棒外周からのOH基浸入
深さと濃度は、第7図の曲線乙に示すとおフで、浸入深
さ、濃度のいずれも少なかつ友。この多孔質母材を約1
7oo℃の高温炉にて透明化処理を施し次ところ、均一
に透明化したガラス体を得た。
Example 1 As shown in Fig. 1, a carbon heater 6t is arranged on the same curve of a solid glass rod 5, and the glass rod 3 is heated to about 1000°C with infrared rays emitted from the carbon heater 6t. All glass particles are deposited around it, diameter 150cm, length 700cm
■Manufacturers of porous base materials. The density distribution in the radial direction of the porous base material is shown in FIG. 4, and there was no decrease in density at the interface with the glass rod. In addition, the penetration depth and concentration of OH groups from the outer periphery of the glass rod are as shown in curve A in Figure 7, and both the penetration depth and concentration are small. Approximately 1
A transparentizing treatment was performed in a high-temperature furnace at 70° C. to obtain a uniformly transparent glass body.

比較例1 第3図に示すように、予熱用酸水素炎バーナー5t′使
用してガラス棒3t−加熱しながら、その他は実施例1
と同一の条件にて、多孔質母材を製造し九ところ、ガラ
ス微粒子合成用バーナー2の炎が予熱バーナー5の炎と
干渉し、ガラス微粒子が安定して堆積せず、一定外径の
多孔質母材′t−得ることができなかつ穴。またガラス
棒へのOH基浸入は第7図の曲線すに示すとおり、浸入
深さ、濃度とも大きかった。
Comparative Example 1 As shown in FIG. 3, the glass rod 3t was heated using a preheating oxyhydrogen flame burner 5t', while the other conditions were as in Example 1.
When a porous base material was manufactured under the same conditions as above, the flame of the burner 2 for glass particle synthesis interfered with the flame of the preheating burner 5, and the glass particles were not deposited stably, resulting in a porous base material with a constant outer diameter. The quality of the base material't-cannot be obtained and the holes. Furthermore, as shown by the curve in FIG. 7, the penetration depth and concentration of OH groups into the glass rod were large.

比較例2 2g2図に示すように、ガラス棒3の加熱手段が無い他
は、実施例1と同一の条件にて多孔質母材を製造した。
Comparative Example 2 As shown in Figure 2g2, a porous base material was produced under the same conditions as Example 1, except that there was no heating means for the glass rod 3.

該多孔質母材の密度分布は第5図に示すとおりで、ガラ
ス棒との界面で密度の落ちこみが見られ友。しかしOH
基の浸入とその濃度は第7図の曲線aのとおりであった
The density distribution of the porous base material is as shown in Figure 5, and a drop in density can be seen at the interface with the glass rod. But OH
The infiltration of the group and its concentration were as shown in curve a in FIG.

この多孔質母材全豹1700℃の高温炉にて透明化処理
を施し之ところ、ガラス棒表面にてガラス微粒子がスリ
ップして気泡が残留してしまい、良好なガラス体を得ら
れなかった。
When this porous base material was subjected to a transparent treatment in a high-temperature furnace at 1700°C, fine glass particles slipped on the surface of the glass rod and bubbles remained, making it impossible to obtain a good glass body.

〔発明の効果〕〔Effect of the invention〕

の良いガラス微粒子をガラス棒に堆積することができる
ので、その後の透明化処理等を施こすと均一に透明なガ
ラス体を得られる。ま九本発明ではガラス微粒子合成用
バーナーの火炎全乱すことがないので、多孔質母材の生
成速度や外径等を乱すことなく、安定に多孔質母材を製
造することができ、さらにOH等の生成が無い為低損失
の光ファイバを製造することができる。
Since fine glass particles with good quality can be deposited on a glass rod, a uniformly transparent glass body can be obtained by subsequent transparentization treatment. In the present invention, the flame of the burner for glass particle synthesis is not completely disturbed, so the porous base material can be stably produced without disturbing the production rate or outer diameter of the porous base material. Since there is no generation of such things, it is possible to manufacture an optical fiber with low loss.

以上のことから、本発明は光ファイバ製造分野における
1リフオームま九は石英管の製造方法として利用して非
常に有効な方法である。
From the above, the present invention is a very effective method for manufacturing quartz tubes in the optical fiber manufacturing field.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の光ファイバ用多孔質母材の製造方法の
実施態様を模式的に示す断面図であり、第2図はガラス
棒予熱手段の無い従来法、第3図はガラス棒予熱用バー
ナーを用いる従来法をそれぞれ模式的に示す断面図であ
る。 第4図及び第5図はガラス棒外周にガラス微粒子体を形
成し九多孔質母材の半径方向密度分施例1による場合、
第5図は従来法による場合(比較例2)である。 第6図は堆積面温度とガラス微粒子体の密度の関係全軍
すグラフである。 第7図はガラス棒へのOH没入深さとOH濃度の関係を
示すグラフで、曲線aは本発明の実施例1又は予熱バー
ナーを用いない従来法(比較例2)の場合であり、曲線
すは予熱バーナーを用いる従来法(比較例1)の場合で
ある。
FIG. 1 is a cross-sectional view schematically showing an embodiment of the method for manufacturing a porous preform for optical fiber according to the present invention, FIG. 2 is a conventional method without a means for preheating a glass rod, and FIG. FIG. 3 is a cross-sectional view schematically showing a conventional method using a commercial burner. FIGS. 4 and 5 show the case of Example 1 in which glass fine particles are formed on the outer periphery of the glass rod and the density in the radial direction of the porous base material is 9.
FIG. 5 shows the case using the conventional method (Comparative Example 2). FIG. 6 is a graph showing the relationship between the deposition surface temperature and the density of glass particles. Figure 7 is a graph showing the relationship between the depth of OH immersion into the glass rod and the OH concentration, where curve a is for Example 1 of the present invention or the conventional method (comparative example 2) that does not use a preheating burner; This is the case of the conventional method (Comparative Example 1) using a preheating burner.

Claims (3)

【特許請求の範囲】[Claims] (1)自らの軸を回転軸として回転する中実又は中空ガ
ラス棒の近傍にガラス微粒子合成用バーナーを配し、該
バーナーよりガラス原料を投入して上記ガラス棒外周上
にガラス微粒子を堆積させ、かつ該バーナーと該ガラス
棒の位置を相対的に離すことによりガラス微粒子堆積体
を該ガラス棒軸方向に形成してゆく方法において、上記
ガラス棒を火炎を用いずに非接触で加熱しながらガラス
微粒子を堆積させることを特徴とする光ファイバ用多孔
質母材の製造方法。
(1) A burner for glass particle synthesis is arranged near a solid or hollow glass rod that rotates about its own axis, and glass raw materials are introduced from the burner to deposit glass particles on the outer periphery of the glass rod. , and a method of forming a glass fine particle deposit body in the axial direction of the glass rod by relatively separating the positions of the burner and the glass rod, while heating the glass rod in a non-contact manner without using a flame. A method for producing a porous base material for an optical fiber, the method comprising depositing glass fine particles.
(2)該ガラス棒を赤外線によって加熱する特許請求の
範囲第(1)項記載の光ファイバ用多孔質母材の製造方
法。
(2) A method for producing a porous preform for an optical fiber according to claim (1), wherein the glass rod is heated by infrared rays.
(3)該ガラス棒を高周波誘導によって加熱する特許請
求の範囲第(1)項記載の光ファイバ用多孔質母材の製
造方法。
(3) A method for producing a porous preform for an optical fiber according to claim (1), wherein the glass rod is heated by high-frequency induction.
JP61222089A 1986-09-22 1986-09-22 Method for producing porous base material for optical fiber Expired - Lifetime JPH085689B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61222089A JPH085689B2 (en) 1986-09-22 1986-09-22 Method for producing porous base material for optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61222089A JPH085689B2 (en) 1986-09-22 1986-09-22 Method for producing porous base material for optical fiber

Publications (2)

Publication Number Publication Date
JPS6379731A true JPS6379731A (en) 1988-04-09
JPH085689B2 JPH085689B2 (en) 1996-01-24

Family

ID=16776951

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61222089A Expired - Lifetime JPH085689B2 (en) 1986-09-22 1986-09-22 Method for producing porous base material for optical fiber

Country Status (1)

Country Link
JP (1) JPH085689B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0629590A1 (en) * 1993-06-16 1994-12-21 Sumitomo Electric Industries, Limited Process for producing glass preform for optical fiber
WO2002090276A1 (en) * 2001-04-27 2002-11-14 Pirelli & C. S.P.A. Method for producing an optical fiber preform

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61291434A (en) * 1985-06-19 1986-12-22 Furukawa Electric Co Ltd:The Production of base material for optical fiber

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61291434A (en) * 1985-06-19 1986-12-22 Furukawa Electric Co Ltd:The Production of base material for optical fiber

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0629590A1 (en) * 1993-06-16 1994-12-21 Sumitomo Electric Industries, Limited Process for producing glass preform for optical fiber
US5597398A (en) * 1993-06-16 1997-01-28 Sumitomo Electric Industries, Ltd. Process for producing glass preform for optical fiber
WO2002090276A1 (en) * 2001-04-27 2002-11-14 Pirelli & C. S.P.A. Method for producing an optical fiber preform

Also Published As

Publication number Publication date
JPH085689B2 (en) 1996-01-24

Similar Documents

Publication Publication Date Title
US4378985A (en) Method and apparatus for forming an optical waveguide fiber
CN1012813B (en) Method of soot overcoating optical preform
US4235616A (en) Optical waveguide manufacturing process and article
JPS6379731A (en) Production of porous base material for optical fiber
JPH038737A (en) Production of preform for optical fiber
JP5678467B2 (en) Glass base material manufacturing method
JPS593942B2 (en) Manufacturing method of glass fiber base material
JPS60264338A (en) Manufacture of optical fiber preform
JPH0425215B2 (en)
JPH0867524A (en) Production of preform of optical fiber
JPH0525817B2 (en)
JPS604978Y2 (en) Glass particle synthesis torch
JPS62182126A (en) Production of glass preform for optical fiber
JPS6259063B2 (en)
JP4634684B2 (en) Quartz glass body manufacturing method and quartz glass holding element
JPS6086043A (en) Manufacture of optical fiber preform
JPH0383829A (en) Preparation of base material for optical fiber
JPS61158836A (en) Production of parent material for optical glass
JPH0583497B2 (en)
JPH013030A (en) Manufacturing method of glass base material for optical fiber
JPH0986948A (en) Production of porous glass base material for optical fiber
JPS6054936A (en) Manufacture of preform rod
JPH02124736A (en) Production of optical fiber preform
JPS6317236A (en) Production of preform for optical fiber
KR20020008433A (en) Manufacturing System and Method for Preform Optical Fiber