JPS6377182A - Semiconductor light emitting device - Google Patents

Semiconductor light emitting device

Info

Publication number
JPS6377182A
JPS6377182A JP61220884A JP22088486A JPS6377182A JP S6377182 A JPS6377182 A JP S6377182A JP 61220884 A JP61220884 A JP 61220884A JP 22088486 A JP22088486 A JP 22088486A JP S6377182 A JPS6377182 A JP S6377182A
Authority
JP
Japan
Prior art keywords
band gap
energy band
compound semiconductor
semiconductor layer
layers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61220884A
Other languages
Japanese (ja)
Other versions
JPH0828545B2 (en
Inventor
Toshio Fujii
俊夫 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP22088486A priority Critical patent/JPH0828545B2/en
Publication of JPS6377182A publication Critical patent/JPS6377182A/en
Publication of JPH0828545B2 publication Critical patent/JPH0828545B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)
  • Led Devices (AREA)

Abstract

PURPOSE:To reduce the loss of injection carrier in a semiconductor light emitting device by suppressing nonlight emitting recombination of minority carrier impregnated to a compound semiconductor layer having a large gap from a compound semiconductor side having a small energy band gap for forming a hetero junction. CONSTITUTION:Nonlight emitting recombination suppressing layers 6, 7 have predetermined thickness and predetermined impurity concentration as essential data. A compound semiconductor for forming the layers 6, 7 selects GaAs which has a value substantially equal to an energy band gap in InAlAs for forming clad layers 3, 5 and has less center of deep level. When the thickness of the layers 6, 7 is, for example, approx. 30Angstrom , no dislocation due to irregular lattice matching occurs in the state a strain is applied thereto. Thus, since the nonlight emitting recombination of minority carrier impregnated to the semiconductor layer having small energy band gap from the semiconductor layer having large energy band gap for forming a hetero junction is suppressed, the loss of injection carrier is reduced.

Description

【発明の詳細な説明】 〔概要〕 本発明は、半導体発光装置に於いて、ヘテロ界面にエネ
ルギ・バンド・ギャップ及び厚さが特定された化合物半
導体層を介挿することに依り、闇値電流密度を従来の標
準と比較して半減した。
[Detailed Description of the Invention] [Summary] The present invention provides a semiconductor light-emitting device with a compound semiconductor layer having a specified energy band gap and thickness, thereby reducing the dark value current. Density has been halved compared to previous standards.

〔産業上の利用分野〕[Industrial application field]

本発明は、例えば半導体レーザめように、ヘテロ接合を
用いる半導体発光装置の改良に関する。
The present invention relates to improvements in semiconductor light emitting devices using heterojunctions, such as semiconductor lasers.

〔従来の技術〕[Conventional technology]

前記へテロ接合を用いる半導体発光装置、例えば半導体
レーザは、光通信システムに於いて、キー・デバイスと
して位置づけされ、甚だ重要な部品になっている。
Semiconductor light emitting devices using the above heterojunction, such as semiconductor lasers, are positioned as key devices and extremely important components in optical communication systems.

現在、半導体レーザの作成に必要なヘテロ接合構造をな
す多層化合物半導体層は液相エピタキシャル成長(li
quid  phase  epitaxy:LPE)
法にて形成されているが、近年□に於ける分子線エピタ
キシャル成長(molecular  beam  e
pitaxy:MBE)法の急激な進歩に依り、所謂、
量子井戸半導体レーザが実現され゛、G a A s 
/ A I C; a A S系半導体レーザに於ける
闇値電流密度が著しく改善されされた。
At present, multilayer compound semiconductor layers forming the heterojunction structure required to create semiconductor lasers are grown by liquid phase epitaxial growth (LI).
(quid phase epitaxy: LPE)
However, in recent years, molecular beam epitaxial growth (molecular beam epitaxial growth) in
Due to rapid progress in the pitaxy (MBE) law, the so-called
A quantum well semiconductor laser has been realized, Ga As
/AIC;a The dark current density in an AS-based semiconductor laser has been significantly improved.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

前記したように、G a A s / A I G a
 A s系量子井戸半導体レーザは実用化されたが、長
波長帯の材料、例えばInGaAs/I nAlAs系
を用いた量子井戸半導体レーザに於いては、未だ低閾値
電流化が達成されていない。尚、長波長帯のレーザ光は
、それを伝播させる光伝送路として、著しく低損失のも
のが存在するので好都合であることは良く知られている
As mentioned above, Ga As / AI Ga
Although As-based quantum well semiconductor lasers have been put into practical use, low threshold currents have not yet been achieved in quantum well semiconductor lasers using long wavelength band materials, such as InGaAs/InAlAs systems. It is well known that laser light in a long wavelength band is advantageous because there is an optical transmission path with extremely low loss for propagating the laser light.

さて、長波長帯の半導体レーザが低閾値電流化されてい
ない最大の理由としては、ヘテロ接合構造をなす多層化
合物半導体層に於ける光学的な品質の悪さを挙げること
ができる。
Now, the main reason why long wavelength band semiconductor lasers have not been made to have a low threshold current is the poor optical quality of the multilayer compound semiconductor layer forming the heterojunction structure.

その原因としては、MBE法の場合、燐(P)を用いる
ことが困難であり、従って、長波長帯半導体レーザを作
成する為の材料としてはPを含まないもの、例えばIn
GaAs/I nAlAs系を用いるようにしている。
The reason for this is that in the case of the MBE method, it is difficult to use phosphorus (P), and therefore materials that do not contain P, such as In
A GaAs/InAlAs system is used.

第2図は実験的に試作したI n G a A s /
 I nAI!As系半導体レーザの層構成を説明する
為の要部切断正面図を表している。
Figure 2 shows the experimentally produced I n Ga As /
I nAI! FIG. 2 is a front view with a main part cut away for explaining the layer structure of an As-based semiconductor laser.

図に於いて、1はn+型InP基板、2はn型InGa
Asバッファ層、3はn型1nAj!Asクラッド層、
4はノン・ドープInGaAs活性層、5はp型In、
An!Asクラッド層をそれぞれ示している。
In the figure, 1 is an n+ type InP substrate, 2 is an n type InGa substrate
As buffer layer, 3 is n-type 1nAj! As clad layer,
4 is a non-doped InGaAs active layer, 5 is a p-type In,
An! Each shows an As cladding layer.

図示例に於ける各層の主要データを例示すると次の通り
である。
Examples of main data of each layer in the illustrated example are as follows.

■ 基板1 不純物濃度:2X1018(■−3〕 ■ バッファ層2 厚さ:1 〔μm〕 不純物濃度: 2 X 10 I8(cm−’)■ ク
ラッド層3 厚さ:1.5(μm) 不純物濃度: 5 X I Q”  (cm−’)■ 
活性層4 厚さ:300 〔人〕 ■ クラッドN5 厚さ:1.5(μm〕 不純物濃度: 5 X 1017(am−”)ところが
、ここで用いるInAlAsは母体構成元素にAlを含
んでいる為、結晶の品質は良くない。
■ Substrate 1 Impurity concentration: 2X1018 (■-3) ■ Buffer layer 2 Thickness: 1 [μm] Impurity concentration: 2 X 10 I8 (cm-') ■ Clad layer 3 Thickness: 1.5 (μm) Impurity concentration : 5 X I Q"(cm-')■
Active layer 4 Thickness: 300 [people] ■ Clad N5 Thickness: 1.5 (μm) Impurity concentration: 5 × 1017 (am-”) However, since the InAlAs used here contains Al as a matrix constituent element, , the quality of the crystal is not good.

本発明者は、Aji!GaAsの場合、成長温度を従来
に比較して約100(’C)程度高くすることで高品質
化に成功したが、In/lj!Asの場合には、Inの
再蒸発の問題がある為、成長温度をやたらに高くするこ
とはできない。
The inventor is Aji! In the case of GaAs, we succeeded in increasing the quality by raising the growth temperature by about 100 ('C) higher than conventional ones, but In/lj! In the case of As, there is a problem of re-evaporation of In, so the growth temperature cannot be increased excessively.

前記したように、InAlAsの品質が悪い場合、I 
nGaAs/I nAlAs系では次のような問題が起
きる。
As mentioned above, if the quality of InAlAs is poor, I
The following problems occur in the nGaAs/I nAlAs system.

即ち、In、6j!AsはInGaAsに比較して大き
なエネルギ・バンド・ギャップを有している為、キャリ
ヤ及び光を閉じ込める役割を果たさなくてはならない。
That is, In, 6j! Since As has a larger energy band gap than InGaAs, it must play a role in confining carriers and light.

ここで問題となるのは、I nGaAsの品質は良好で
あるから、その領域では発光再結合が盛ん番こ行われる
が、InAlAsの品質は悪いので、そこに滲み出した
少数キャリヤは深いレベルなどのセンタを介して非発光
再結合が行われることである。
The problem here is that the quality of InGaAs is good, so radiative recombination takes place actively in that region, but the quality of InAlAs is poor, so the minority carriers seeping out there are at deep levels. Non-radiative recombination occurs through the center of

従って、低品質のInAlAsの存在は、全体として、
注入されたキャリヤに大きな損失を発生させ、半導体レ
ーザの低閾値電流化を妨げているものである。
Therefore, the presence of poor quality InAlAs overall
This causes a large loss in the injected carriers and prevents the semiconductor laser from achieving a low threshold current.

本発明は、前記エネルギ・バンド・ギャップが大きい化
合物半導体層側に滲み出した少数キャリヤの非発光再結
合を防止し、閾値電流を低減させた半導体発光装置を提
供するものである。
The present invention provides a semiconductor light-emitting device in which non-radiative recombination of minority carriers leaked to the compound semiconductor layer side having a large energy band gap is prevented, and the threshold current is reduced.

〔問題点を解決するための手段〕[Means for solving problems]

本発明に依る半導体発光装置では、ヘテロ接合を構成す
る為のエネルギ・バンド・ギャップ大なる化合物半導体
層(例えばn型1nAIAsクラッド層3、p型InA
lAsクラッド層5)及びエネルギ・バンド・ギャップ
小なる化合物半導体層(例えばノン・ドープ1nGaA
s活性層4)の間に介挿され、エネルギ・バンド・ギャ
ップが前記エネルギ・バンド・ギャップ大なる化合物半
導体層に於けるそれと略同じであり、厚さが前記エネル
ギ・バンド・ギャップ小なる化合物半導体層から前記エ
ネルギ・バンド・ギャップ大なる化合物半導体層に滲み
出す少数キャリヤの平均自由行程程度である化合物半導
体N(例えばn型GaAs非発光再結合抑止層6、n型
GaAs非発光再結合抑止層7)を有する構成になって
いる。
In the semiconductor light emitting device according to the present invention, a compound semiconductor layer with a large energy band gap (for example, n-type 1nAIAs cladding layer 3, p-type InA
lAs cladding layer 5) and a compound semiconductor layer with a small energy band gap (for example, non-doped 1nGaA
s active layer 4), the energy band gap is approximately the same as that of the compound semiconductor layer with the large energy band gap, and the thickness is the compound semiconductor layer with the small energy band gap. Compound semiconductor N (e.g., n-type GaAs non-radiative recombination suppressing layer 6, n-type GaAs non-radiative recombination suppressing layer 6, n-type GaAs non-radiative recombination suppressing layer 6, layer 7).

〔作用〕[Effect]

前記手段を採ることに依り、ヘテロ接合を構成するエネ
ルギ・バンド・ギャップ小なる化合物半導体層側からエ
ネルギ・バンド・ギャップ大なる化合物半導体層側に滲
み出す少数キャリヤの非発光再結合は抑止されるので、
注入キャリヤの損失は少なくなり、闇値電流密度は従来
の標準的な値に比較して半減する。
By taking the above measures, non-radiative recombination of minority carriers leaking from the compound semiconductor layer side with a small energy band gap to the compound semiconductor layer side with a large energy band gap constituting the heterojunction is suppressed. So,
The loss of injected carriers is reduced and the dark current density is halved compared to the conventional standard value.

〔実施例〕〔Example〕

第1図は本発明一実施例の要部切断正面図を表し、第2
図に於いて用いた記号と同記号は同部分を示すか或いは
同じ意味を持つものとする。
FIG. 1 shows a cutaway front view of essential parts of one embodiment of the present invention, and FIG.
Symbols used in the drawings indicate the same parts or have the same meaning.

図に於いて、6はn型GaAs非発光再結合抑止層、7
はn型GaAs非発光再結合抑止層をそれぞれ示してい
る。
In the figure, 6 is an n-type GaAs non-radiative recombination suppressing layer;
1 and 2 respectively indicate n-type GaAs non-radiative recombination inhibiting layers.

各非発光再結合抑止層6及び7の主要データを例示する
と次の通りである。
Examples of main data of each of the non-radiative recombination suppression layers 6 and 7 are as follows.

■ 非発光再結合抑止層6 厚さ=30 〔人〕 不純物濃度: 5 X I Q”  (cm−’)■ 
非発光再結合抑止層7 厚さ:30 〔人〕 不純物濃度:5X1017C値1〕 本実施例に於いては、非発光再結合抑止層6及び7を構
成する化合物半導体として、クラフト層3及び5を構成
するInAlAsに於けるエネルギ・バンド・ギャップ
と略同じそれを有し且つ深いレベルなどのセンタが少な
いGaAsを選択した。尚、非発光再結合抑止層6及び
7としてGaAsを用いるのであれば、クラッド層にG
aAsを用いることも考えられようが、これはInP基
板1との格子整合が採れないので不可能であり、実施例
のように、GaAs非発光再結合抑止層6及び7の厚さ
が30 〔人〕程度であれば、そこには、所謂、歪が加
わった状態であって、格子不整合に依る転位は発生しな
い。
■ Non-radiative recombination suppression layer 6 Thickness = 30 [people] Impurity concentration: 5 X I Q” (cm-') ■
Non-radiative recombination suppressing layer 7 Thickness: 30 [person] Impurity concentration: 5×1017C value 1] In this example, the craft layers 3 and 5 are used as compound semiconductors constituting the non-radiative recombination suppressing layers 6 and 7. We selected GaAs, which has approximately the same energy band gap as InAlAs constituting the material and has fewer centers such as deep levels. Note that if GaAs is used as the non-radiative recombination suppressing layers 6 and 7, G is used in the cladding layer.
Although it may be possible to use aAs, this is impossible because it cannot achieve lattice matching with the InP substrate 1.As in the example, the thickness of the GaAs non-radiative recombination suppressing layers 6 and 7 is 30 mm. If it is about the size of a human being, it is in a state where so-called strain is applied, and dislocations due to lattice mismatch do not occur.

このGaAs非発光再結合抑止層6或いは7を成長させ
る際の主な条件は、 成長温度:550(”C) 成長速度:1 〔μm/時間〕 基板自転速度:10〔回転7分〕 であった。
The main conditions for growing this GaAs non-radiative recombination suppression layer 6 or 7 are: Growth temperature: 550 ("C) Growth rate: 1 [μm/hour] Substrate rotation speed: 10 [rotation 7 minutes]" Ta.

〔発明の効果〕〔Effect of the invention〕

本発明に依る半導体発光装置に於いては、ヘテロ界面に
エネルギ・バンド・ギャップ及び厚さが特定された化合
物半導体層を介挿する構成になっている。
The semiconductor light emitting device according to the present invention has a structure in which a compound semiconductor layer having a specified energy band gap and thickness is inserted at the hetero interface.

このような構成を採ることに依り、ヘテロ接合を構成す
るエネルギ・バンド・ギャップ大なる化合物半導体層側
からエネルギ・バンド・ギャップ小なる化合物半導体層
側に滲み出す少数キャリヤの非発光再結合は抑止される
ので、注入キャリヤの損失は少なくなり、闇値電流密度
は従来の標準的な値に比較して半減する。
By adopting such a configuration, non-radiative recombination of minority carriers leaking from the compound semiconductor layer side with a large energy band gap to the compound semiconductor layer side with a small energy band gap constituting the heterojunction can be suppressed. Therefore, the loss of injected carriers is reduced, and the dark value current density is halved compared to the conventional standard value.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明一実施例の要部切断正面図、第2図は従
来例の要部切断正面図をそれぞれ表している。 図に於いて、lはn+型InP基板、2はn型InGa
Asバッファ層、3はn型1nA/!Asクラッド層、
4はノン・ドープInGaAs活性層、5はp型I n
A#Asクラッド層、6はn型GaAs非発光再結合抑
止層、7はn型GaAs非発光再結合抑止層をそれぞれ
示している。 特許出願人   冨士通株式会社 代理人弁理士  相 谷 昭 司 代理人弁理士  渡 邊 弘 − 実施例の要部切断正面図 第1図 従来例の要部切断正面図 第2図
FIG. 1 is a cutaway front view of essential parts of an embodiment of the present invention, and FIG. 2 is a cutaway front view of essential parts of a conventional example. In the figure, l is an n+ type InP substrate and 2 is an n type InGa substrate.
As buffer layer 3 is n-type 1nA/! As clad layer,
4 is a non-doped InGaAs active layer, 5 is a p-type InGaAs active layer, and 5 is a p-type InGaAs active layer.
A#As cladding layer, 6 an n-type GaAs non-radiative recombination suppressing layer, and 7 an n-type GaAs non-radiative recombination suppressing layer, respectively. Patent Applicant: Fujitsu Co., Ltd. Representative Patent Attorney: Akira Aitani Representative Patent Attorney: Hiroshi Watanabe - Cutaway Front View of Main Parts of Embodiment Figure 1 Cutaway Front View of Main Parts of Conventional Example Figure 2

Claims (1)

【特許請求の範囲】 ヘテロ接合を構成する為のエネルギ・バンド・ギャップ
大なる化合物半導体層及びエネルギ・バンド・ギャップ
小なる化合物半導体層の間に介挿され、 エネルギ・バンド・ギャップが前記エネルギ・バンド・
ギャップ大なる化合物半導体層に於けるそれと略同じで
あり、 厚さが前記エネルギ・バンド・ギャップ小なる化合物半
導体層から前記エネルギ・バンド・ギャップ大なる化合
物半導体層に滲み出す少数キャリヤの平均自由行程程度
である化合物半導体層を有してなることを特徴とする半
導体発光装置。
[Claims] A compound semiconductor layer with a large energy band gap and a compound semiconductor layer with a small energy band gap are interposed to form a heterojunction, and the energy band gap is the same as that of the energy band gap. band·
It is approximately the same as that in a compound semiconductor layer with a large gap, and the thickness is the mean free path of minority carriers leaking from the compound semiconductor layer with a small energy band gap to the compound semiconductor layer with a large energy band gap. 1. A semiconductor light-emitting device comprising a compound semiconductor layer of about 100% or less.
JP22088486A 1986-09-20 1986-09-20 Semiconductor light emitting device Expired - Lifetime JPH0828545B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22088486A JPH0828545B2 (en) 1986-09-20 1986-09-20 Semiconductor light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22088486A JPH0828545B2 (en) 1986-09-20 1986-09-20 Semiconductor light emitting device

Publications (2)

Publication Number Publication Date
JPS6377182A true JPS6377182A (en) 1988-04-07
JPH0828545B2 JPH0828545B2 (en) 1996-03-21

Family

ID=16758046

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22088486A Expired - Lifetime JPH0828545B2 (en) 1986-09-20 1986-09-20 Semiconductor light emitting device

Country Status (1)

Country Link
JP (1) JPH0828545B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59155978A (en) * 1983-02-25 1984-09-05 Fujitsu Ltd Semiconductor light emitting device
JPS59208888A (en) * 1983-05-13 1984-11-27 Nec Corp Compound semiconductor light emitting element

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59155978A (en) * 1983-02-25 1984-09-05 Fujitsu Ltd Semiconductor light emitting device
JPS59208888A (en) * 1983-05-13 1984-11-27 Nec Corp Compound semiconductor light emitting element

Also Published As

Publication number Publication date
JPH0828545B2 (en) 1996-03-21

Similar Documents

Publication Publication Date Title
EP0038085B1 (en) Buried heterostructure laser diode and method for making the same
EP0293000B1 (en) Light emitting device
JPH0677580A (en) Semiconductor structure for optoelectronic component
US4287485A (en) GaInAsP/InP Double-heterostructure lasers
US4429397A (en) Buried heterostructure laser diode
JPH0529713A (en) Semiconductor laser element
US4679199A (en) High power InGaAsP/InP semiconductor laser with low-doped active layer and very low series resistance
JPH06112593A (en) Semiconductor light emitting device
JPS6377182A (en) Semiconductor light emitting device
JPH0834338B2 (en) Semiconductor laser
CA1165851A (en) Epitaxial devices having reduced dislocation count
JPS6414986A (en) Semiconductor laser
JPS63150982A (en) Semiconductor light emitting device
JPS59208888A (en) Compound semiconductor light emitting element
JPH1084131A (en) Semiconductor light emitting element
JP3171324B2 (en) Semiconductor laser and method of manufacturing the same
JPH0712103B2 (en) Semiconductor laser device
JPH08195356A (en) Manufacture of semiconductor element and semiconductor device
JPS55123191A (en) Semiconductor light emitting device
JPS62205682A (en) Semiconductor light emitting element
CA1189177A (en) Planar narrow-stripe laser with improved contact resistance
JPS59148382A (en) Manufacture of injection laser
JPS61242088A (en) Semiconductor laser device
JPH0712101B2 (en) Semiconductor light emitting device
JPH07249575A (en) Manufacture of semiconductor optical element