JPS6377119A - Plasma processor - Google Patents

Plasma processor

Info

Publication number
JPS6377119A
JPS6377119A JP22282286A JP22282286A JPS6377119A JP S6377119 A JPS6377119 A JP S6377119A JP 22282286 A JP22282286 A JP 22282286A JP 22282286 A JP22282286 A JP 22282286A JP S6377119 A JPS6377119 A JP S6377119A
Authority
JP
Japan
Prior art keywords
plasma
coils
magnetic field
solenoid coils
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22282286A
Other languages
Japanese (ja)
Inventor
Toshihiko Minami
利彦 南
Koichiro Nakanishi
幸一郎 仲西
Hiroki Odera
廣樹 大寺
Minoru Hanazaki
花崎 稔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP22282286A priority Critical patent/JPS6377119A/en
Publication of JPS6377119A publication Critical patent/JPS6377119A/en
Pending legal-status Critical Current

Links

Landscapes

  • Drying Of Semiconductors (AREA)

Abstract

PURPOSE:To make a plasma process uniform thereby to increase the processing range of a plasma processor by bringing a center shaft in coincidence with the periphery of a plasma generator, axially disposing a plurality of solenoid coils, energizing any of the coils and altering the combination of the coils to be energized. CONSTITUTION:A plasma generator 1 has solenoid coils 7, 14, 15 for axially generating a static magnetic field, a high-frequency waveguide 4 for introducing a high-frequency magnetic field perpendicularly to the axial direction and a plasma generating glass tube 11. A high-frequency power to the waveguide 4 is supplied by a magnetron 5, and when gas is supplied from a tube 9, a plasma stream 13 is generated along a dispersed magnetic field formed in a reactor 8. When the combination of the coils 7, 14, 15 to be energized is altered and the plasma stream is controlled, the film thickness distribution on a substrate 3 can be altered to form a uniform film thickness distribution in a wide range.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は半導体加工装置であるプラズマ処理装置、と
くに電子サイクロトロン共鳴を用いてプラズマを発生さ
せ、広領域にわたって均一なプラズマ処理が可能となる
プラズマ処理装置に関する゛ものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a plasma processing apparatus which is a semiconductor processing apparatus, and in particular to a plasma processing apparatus which generates plasma using electron cyclotron resonance and which enables uniform plasma processing over a wide area. This relates to processing equipment.

〔従来の技術〕[Conventional technology]

第6図は例えば、特開昭57−79621号公報に示さ
れた従来のプラズマ処理装置を示す断面構成図であり、
図において(1)はプラズマ発生部、(2)はステージ
、(3)は基板、(4)は導波管、(5)はマグネトロ
ン。
FIG. 6 is a cross-sectional configuration diagram showing a conventional plasma processing apparatus disclosed in, for example, Japanese Unexamined Patent Publication No. 57-79621.
In the figure, (1) is the plasma generation section, (2) is the stage, (3) is the substrate, (4) is the waveguide, and (5) is the magnetron.

(6)はマグネトロン用[i、(7)はソレノイドコイ
ル。
(6) is for magnetron [i, (7) is solenoid coil.

(8)はプラズマ反応部、(9)はガス供給管、0旧よ
排気管、αυはプラズマ発生用ガラス管、(2)は直流
電源。
(8) is the plasma reaction section, (9) is the gas supply pipe, 0 is the exhaust pipe, αυ is the glass tube for plasma generation, and (2) is the DC power supply.

α■はプラズマ流である。α■ is the plasma flow.

次に動作について説明する。第5図は従来装置の基本的
な一実施例を示しており、プラズマ発生部(1)および
プラズマ反応部(8)により槽成されている。
Next, the operation will be explained. FIG. 5 shows a basic embodiment of a conventional apparatus, which is composed of a plasma generating section (1) and a plasma reaction section (8).

プラズマ発生部(1)は、軸方向に不均一な静磁場を発
生させるソレノイドコイル(7)と、軸方向に垂直な高
周波電場を導入する高周波導波管(4)と、プラズマ発
生用ガラス管αのとを有しており、高周波導波管(4)
への高周波電力の供給はマグネトロン(5)により行な
われ、プラズマ発生用ガラス管Ql)へのガスの供給は
ガス供給管(9)を通して行なわれるようになっている
The plasma generation section (1) includes a solenoid coil (7) that generates a static magnetic field that is nonuniform in the axial direction, a high-frequency waveguide (4) that introduces a high-frequency electric field perpendicular to the axial direction, and a glass tube for plasma generation. α and has a high frequency waveguide (4)
A magnetron (5) supplies high frequency power to the plasma generating glass tube (Ql), and gas is supplied to the plasma generating glass tube (Ql) through a gas supply tube (9).

プラズマの形成は電子サイクロトロン共鳴により行なわ
れるが、電子サイクロトロン共鳴について説明する。今
、軸方向(Z方向とする)の不均一な静磁場の強度をB
 (z)とする。マグネトロン(5)により高周波導波
管(4)内に供給される高周波は、その高周波の周波数
に応じて共振するように作られた形状のプラズマ発生部
(1)内に不均一な高周波電場Erf (z)を形成す
る。プラズマ発生部(1)内で高周波電場Erf(z)
と電子サイクロトロン共鳴を起こすZ方向の静磁場強度
Bz(z)を第6図に示す。点(ハ)から点■の線はB
z(z)が高周波電場Erf (z)と共鳴を起す磁場
強度の点を結んだものである。
Plasma is formed by electron cyclotron resonance, which will be explained below. Now, the strength of the non-uniform static magnetic field in the axial direction (Z direction) is B
(z). The high frequency waves supplied into the high frequency waveguide (4) by the magnetron (5) generate a non-uniform high frequency electric field Erf within the plasma generating part (1), which is shaped to resonate according to the frequency of the high frequency wave. (z) is formed. High frequency electric field Erf(z) within the plasma generation part (1)
FIG. 6 shows the static magnetic field strength Bz (z) in the Z direction that causes electron cyclotron resonance. The line from point (C) to point ■ is B
z (z) connects points of magnetic field strength that cause resonance with the high-frequency electric field Erf (z).

電子は静磁場B中ではよく知られたサイクロトロン運動
をし、サイクロトロン角周波Wc=eB/mで表わされ
る。(ただし、mは電子の質量である。)プラズマ発生
部(1)内の高周波電場Erf(z)の角周波数をWと
し、W=Wcのサイクロトロン共鳴条件が成立すれば、
高周波のエネルギーは電子に連続的に供給されて電子の
エネルギーが増大する。
Electrons perform the well-known cyclotron motion in the static magnetic field B, and the cyclotron angular frequency is expressed by Wc=eB/m. (However, m is the mass of the electron.) If the angular frequency of the high-frequency electric field Erf (z) in the plasma generation part (1) is W, and the cyclotron resonance condition of W = Wc is established, then
High-frequency energy is continuously supplied to the electrons, increasing the energy of the electrons.

このようなサイクロトロン共鳴条件下で、ガス供給管(
9)内に適当なガス圧のガスを導入すると、予備放電状
態で発生した電子は、高周波から連続的にエネルギーを
供給されて高いエネルギー状態になり、衝突過程を通し
てプラズマが発生し、この発生したプラズマにさらに共
鳴条件のもとて高周波電力が注入される。
Under such cyclotron resonance conditions, the gas supply pipe (
9) When gas at an appropriate gas pressure is introduced into the chamber, the electrons generated in the pre-discharge state are continuously supplied with energy from the high frequency and become in a high energy state. Through the collision process, plasma is generated, and this generated Radio frequency power is further injected into the plasma under resonance conditions.

従って、たとえばガス供給管(9)に導入するガスをS
iH4とすると、ガスの圧力以外に高周波の電力を適当
に調整することにより、Sl 、 SiH、SiH2、
SiH。
Therefore, for example, the gas introduced into the gas supply pipe (9) is
In the case of iH4, by appropriately adjusting the high frequency power in addition to the gas pressure, Sl, SiH, SiH2,
SiH.

などのイオンおよびそれぞれのイオンの種類、濃度ある
いはそのエネルギーを制御できると同時に、Si’、 
SiH”などのラジカルの種類、濃度あるいはそのエネ
ルギーを制御できる。
At the same time, it is possible to control ions such as Si', and the type, concentration, or energy of each ion.
The type, concentration, or energy of radicals such as "SiH" can be controlled.

一方、不均一な静磁場B (z)と不均一な電場Er 
f(z)の間では、電子には次式で与えられるような軸
方向の力Fzが作用し、電子は軸方向に加速される。
On the other hand, the non-uniform static magnetic field B (z) and the non-uniform electric field Er
Between f(z), an axial force Fz given by the following equation acts on the electron, and the electron is accelerated in the axial direction.

B ただし、μは磁気モーメント、Woは電子の円運動のエ
ネルギー、Boはプラズマ発生部での磁束密度。
B, where μ is the magnetic moment, Wo is the energy of circular motion of electrons, and Bo is the magnetic flux density at the plasma generation area.

Mはイオンの質量である。M is the mass of the ion.

したがって、第5図のプラズマ発生部(1)で発生した
プラズマ中の電子がプラズマ反応部(8)1こ向は軸方
向に加速され、このためにプラズマ中にはイオンを加速
する静電場Eo(z)によってプラズマは全体として軸
方向に加速されることになり、プラズマ反応部(8)に
軸方向に沿うプラズマ流が発生する。
Therefore, the electrons in the plasma generated in the plasma generation part (1) in FIG. (z) causes the plasma as a whole to be accelerated in the axial direction, and a plasma flow along the axial direction is generated in the plasma reaction section (8).

ソレノイドコイル(7)によってつくられた磁力線がプ
ラズマ反応部(8)ではr方向成分をもつようになるの
で(即ち発散磁場となる。)、プラズマ流α[有]は磁
力線にそって拡がってゆく。
Since the magnetic field lines created by the solenoid coil (7) have an r-direction component in the plasma reaction section (8) (that is, become a divergent magnetic field), the plasma flow α spreads along the magnetic field lines. .

この第5図実施例によるプラズマ処理装置は、プラズマ
エツチング、プラズマCVD 、プラズマ酸化をはじめ
とする各皿表面処理に応用でき、これらの処理を効果的
に行うことができる。
The plasma processing apparatus according to the embodiment of FIG. 5 can be applied to various dish surface treatments including plasma etching, plasma CVD, and plasma oxidation, and can effectively perform these treatments.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来の電子サイクロトロン共鳴を用いたプラズマ処理装
置は以上のように構成されているので、高周波電場と共
鳴をおこす静磁場のZ方向成分Bz(z)は隼6図に示
されたように特定の領域に制御され、プラズマ処理の均
一性が得られに<<、また、大口径の基板にプラズマ処
理を行うにはソレノイドコイルの内径を大きくする必要
があり、装置が大型化する問題点があった。
Since the conventional plasma processing apparatus using electron cyclotron resonance is configured as described above, the Z-direction component Bz (z) of the static magnetic field that resonates with the high-frequency electric field has a specific value as shown in Figure Hayabusa 6. Furthermore, in order to perform plasma processing on large-diameter substrates, it is necessary to increase the inner diameter of the solenoid coil, which increases the size of the equipment. Ta.

この発明は上記のような問題点を解消するためになされ
たもので、プラズマ処理の均一性を高めるとともに、大
口径の基板にも対応できるプラズマ処理装置を得ること
を目的とする。
This invention was made to solve the above-mentioned problems, and aims to provide a plasma processing apparatus that can improve the uniformity of plasma processing and can also handle large-diameter substrates.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係るプラズマ処理装置はプラズマ発生部の周
囲に各中心軸を一致させて軸方向に並ぶ複数個のソレノ
イドコイルを配置し、これら複数個のソレノイドコイル
のうちの任意にソレノイドコイルに電流を流すと共に、
上記電流を脆すソレノイドコイルの組合せを変化させる
ようにしたものである。
The plasma processing apparatus according to the present invention arranges a plurality of solenoid coils aligned in the axial direction around a plasma generation part with their central axes coincident, and applies current to any one of the solenoid coils. Along with flowing,
The combination of solenoid coils that weaken the current is changed.

〔作用〕[Effect]

この発明におけるプラズマ処理装置は、軸方向に並ぶ複
数個のソレノイドコイルの各々へ流す電流を制御して、
電流を流すソレノイドコイルの組合せを変化させること
により、プラズマ発生部及びプラズマ反応部におけるソ
レノイドコイルの作る発散磁場分布を変化させ、プラズ
マ発生部からプラズマ反応部へ引出されるプラズマ流を
制御することが可能となる。これにより、小型の装置で
、大口径の基板にも均一なプラズマ処理が可能となる。
The plasma processing apparatus according to the present invention controls the current flowing through each of a plurality of solenoid coils arranged in the axial direction,
By changing the combination of solenoid coils through which current flows, the divergent magnetic field distribution created by the solenoid coils in the plasma generation section and the plasma reaction section can be changed, and the plasma flow drawn from the plasma generation section to the plasma reaction section can be controlled. It becomes possible. This makes it possible to perform uniform plasma processing on large-diameter substrates with a small device.

〔実施例〕〔Example〕

以下この発明の一実施例を図について説明する。 An embodiment of the present invention will be described below with reference to the drawings.

第1図はこの発明の一実施例によるプラズマ処理装置を
示す断面構成図であり、図において、(7)。
FIG. 1 is a cross-sectional configuration diagram showing a plasma processing apparatus according to an embodiment of the present invention, and in the figure, (7).

αJ、QFJはプラズマ発生部(])の周囲に配設され
た複数個のソレノイドコイルであり、各中心軸を一致さ
せて軸方向に並んでいる。α→、αη、(至)は各ソレ
ノイドコイル(7)、α荀、αQに流す電流をON、O
FFするスイッチ、(2)、αす、翰はソレノイドコイ
ル(7)。
αJ and QFJ are a plurality of solenoid coils disposed around the plasma generating part ( ), and are arranged in the axial direction with their respective central axes coincident. α →, αη, (to) turn ON and OFF the current flowing through each solenoid coil (7), αX, and αQ.
The FF switch (2), α, and the solenoid coil (7).

α→、 06に電流を供給する直流電源である。This is a DC power supply that supplies current to α→, 06.

次に動作について説明する。Next, the operation will be explained.

プラズマ発生部(1)は、軸方向に静磁場を発生させる
複数個のソレノイドコイル(7)、α→、αυと1ll
l11方向に垂直な高周波電場を導入する高周波導波管
(4)と、プラズマ発生用ガラス管01)とを有してお
り、高周波導波管(4)への高周波電力の供給はマグネ
トロン(5)により行われ、プラズマ発生用ガラス管a
υへのガスの供給はガス供給管(9)を通して行われる
The plasma generation section (1) includes a plurality of solenoid coils (7), α→, αυ and 1ll that generate a static magnetic field in the axial direction.
It has a high-frequency waveguide (4) that introduces a high-frequency electric field perpendicular to the l11 direction and a glass tube for plasma generation (01), and a magnetron (5) that supplies high-frequency power to the high-frequency waveguide (4). ), the plasma generation glass tube a
Gas is supplied to υ through a gas supply pipe (9).

プラズマの形成は電子サイクロトロン共鳴により行われ
るが、電子サイクロトロン共鳴は高周波電場Erf(z
)と、ソレノイドコイル(7)、Q41.αθの合成静
磁場Bz(z)により生ずる。
Plasma formation is carried out by electron cyclotron resonance, which is generated by a high-frequency electric field Erf(z
), solenoid coil (7), Q41. It is generated by a composite static magnetic field Bz(z) of αθ.

また、電子に作用する軸方向の力Fzは、z 部(1)で発生したプラズマ中の1子がプラズマ反応部
(8)に向は軸方向に加速され、このためにプラズマ中
にはイオンを加速する電場Eo(z)が軸方向に形成さ
れる。この電場Eo (z)によってプラズマは全体と
して軸方向に加速されることになり、プラズマ反応部(
8)に形成される発散磁場(こ沿うプラズマ流α]が発
生する。今、第1図において、例えばスイッチαeをO
N、スイッチαη、(至)をOFFにして、ソレノイド
コイル(7)のみに電流を流すと、その時のプラズマ流
(18a)及び基板(3)上に形成される薄膜の膜厚分
布は第2図(a)及び第8図(a)のようになる。また
、例えばスイッチQeをOFF、スイッチαη、0椋を
ONにしてソレノイドコイル04.(5f;jのみに電
流を流すと、その時のプラズマ流(18b)及び基板上
に形成される薄膜の膜厚分布は第2図(ロ)及び第8図
(6)のようになる。したがって、例えば8個のソレノ
イドコイル(7)、 Q4)、 Qυに流す電流をスイ
ッチαQ、αカ。
In addition, the axial force Fz acting on the electrons causes one child in the plasma generated in the z part (1) to be accelerated in the axial direction toward the plasma reaction part (8), and for this reason, ions are generated in the plasma. An electric field Eo(z) is created in the axial direction that accelerates the . The plasma as a whole is accelerated in the axial direction by this electric field Eo (z), and the plasma reaction part (
8) A diverging magnetic field (plasma flow α along this line) is generated.Now, in Fig. 1, for example, switch αe is turned to O.
When N, switch αη, (to) is turned OFF and a current is applied only to the solenoid coil (7), the plasma flow (18a) and the film thickness distribution of the thin film formed on the substrate (3) at that time are as follows. The result will be as shown in FIG. 8(a) and FIG. 8(a). Also, for example, by turning off the switch Qe and turning on the switches αη and 0, the solenoid coil 04. (If a current is applied only to 5f; j, the plasma flow (18b) and the film thickness distribution of the thin film formed on the substrate will be as shown in Fig. 2 (b) and Fig. 8 (6). Therefore, , for example, the current flowing through the eight solenoid coils (7), Q4), and Qυ is passed through the switches αQ and α.

α均のON・OFF制御により第4図に示した電流波形
(a) 、 (b) 、 (C)(/f Jl/ ス幅
t=数μs〜数S)でそれぞれに流すと、プラズマ流α
→は第2図(a)及び(b)の状態を交互にくり返すの
で基板上に均一な膜厚分布をもった薄膜が形成される。
When the current waveforms (a), (b), (C) (/f Jl/span width t=several μs to several S) shown in Fig. 4 are applied to each of them using α-uniform ON/OFF control, the plasma flow α
→ The conditions shown in FIGS. 2(a) and 2(b) are repeated alternately, so that a thin film with a uniform thickness distribution is formed on the substrate.

以上のように、電流を流すソレノイドコイル(7)。As mentioned above, the solenoid coil (7) that conducts current.

(14,αOの組合せを変え、プラズマ流を制御するこ
とにより、基板(3)上での膜厚分布を変えられるので
、広範囲で均一な膜厚分布をもった例えばアモルファス
・シリコン膜等が形成可能となる。
(14. By changing the combination of αO and controlling the plasma flow, the film thickness distribution on the substrate (3) can be changed, so for example, an amorphous silicon film with a uniform film thickness distribution over a wide range can be formed. It becomes possible.

第1図実施例によるプラズマ処理装置は、プラズマエッ
、チング、プラズマCVD、プラズマ酸化をはじめとす
る各種表面処理に応用でき、広範囲に均一な処理を行う
ことができる。
The plasma processing apparatus according to the embodiment shown in FIG. 1 can be applied to various surface treatments including plasma etching, etching, plasma CVD, and plasma oxidation, and can perform uniform treatments over a wide range.

なお、上記実施例ではソレノイドコイルの個数は8個で
あったが、複数であればよく、電流を流す時間も第4図
で示した倒置外にいろいろと変化させても、上記実施例
と同様の効果を奏する。
In the above embodiment, the number of solenoid coils was eight, but it may be any number, and even if the current flow time is varied other than the inverted position shown in Fig. 4, the same effect as in the above embodiment can be achieved. It has the effect of

〔発明の効果〕〔Effect of the invention〕

以上のようにこの発明によれば、プラズマ発生部の周囲
に各中心軸を一致させて軸方向に並ぶ複数個のソレノイ
ドコイルを配置し、これら複数個のソレノイドコイルの
うちの任意のソレノイドコイルに電流を流すと共に、上
記電流を流すソレノイドコイルの組合せを変化させるよ
うにしたので、プラズマ発生部からプラズマ反応部へ向
うプラズマ流が制御でき、均一なプラズマ処理が可能と
なる。また、大口径の基板にも精度よくプラズマ処理が
行なえる効果がある。
As described above, according to the present invention, a plurality of solenoid coils are arranged in the axial direction around the plasma generation part with their respective central axes coincident, and any one of the plurality of solenoid coils is Since the combination of the solenoid coils through which the current flows is changed as well as the current flow, the plasma flow from the plasma generation section to the plasma reaction section can be controlled, making it possible to perform uniform plasma processing. Furthermore, it is possible to perform plasma processing with high accuracy even on large diameter substrates.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例によるプラズマ処理装置を
示す断面構成図、第2図(a)及び第3図(a)は各々
この発明の一実施例に係るソレノイドコイルのうちの上
1つに電流を流した時のプラズマ流及び基板上に形成さ
れる薄膜の膜厚分布を示す断面図及び分布図、第2図(
b)及び第8図(b)は各々この発明の一実施例に係る
ソレノイドコイルのうちの下2つに電流を流した時のプ
ラズマ流及び基板上に形成される薄膜の膜厚分布を示す
断面図及び分布図、第4図(a) (b) (C)は各
々この発明の一実施例に係るソレノイドコイルへ流され
る電流を示す波形図、第5図は従来のプラズマ処理装置
を示す断面構成図、並びに第6図は従来のプラズマ処理
装置において、電子サイクロトロン共鳴を起こすZ軸方
向の静磁場強度Bz(z)のプラズマ発生部での分布を
示す分布図である。 (1)・・・プラズマ発生部     (3)・・・基
板(7)θ→αQ・・・ソレノイドコイル (8)・・
・プラズマ反応部Q3 (113a)(18b)・・・
プラズマ流  000力(ハ)・・・スイッチ(2)(
1’l)−・・直流[源 なお、図中、同一符号は同−又は相当部分を示す。
FIG. 1 is a cross-sectional configuration diagram showing a plasma processing apparatus according to an embodiment of the present invention, and FIG. 2(a) and FIG. A cross-sectional view and a distribution diagram showing the plasma flow when current is applied to the substrate and the film thickness distribution of the thin film formed on the substrate, Figure 2 (
b) and FIG. 8(b) respectively show the plasma flow and the film thickness distribution of the thin film formed on the substrate when current is passed through the lower two of the solenoid coils according to an embodiment of the present invention. A sectional view and a distribution diagram, FIGS. 4(a), 4(b), and 4(c) are waveform diagrams each showing the current flowing to a solenoid coil according to an embodiment of the present invention, and FIG. 5 shows a conventional plasma processing apparatus. The cross-sectional configuration diagram and FIG. 6 are distribution diagrams showing the distribution of the static magnetic field strength Bz(z) in the Z-axis direction, which causes electron cyclotron resonance, in the plasma generation part in a conventional plasma processing apparatus. (1)...Plasma generation part (3)...Substrate (7)θ→αQ...Solenoid coil (8)...
・Plasma reaction section Q3 (113a) (18b)...
Plasma flow 000 force (c)...switch (2) (
1'l) --- DC source Note that in the figures, the same reference numerals indicate the same or equivalent parts.

Claims (1)

【特許請求の範囲】[Claims] 電子サイクロトロン共鳴を用いてプラズマを発生させ、
基板をプラズマ処理するものにおいて、上記プラズマを
発生させるプラズマ発生部の周囲に各中心軸を一致させ
て軸方向に並ぶ複数個のソレノイドコイルを配置し、こ
れら複数個のソレノイドコイルのうちの任意のソレノイ
ドコイルに電流を流すと共に、上記電流を流すソレノイ
ドコイルの組合せを変化させるようにしたことを特徴と
するプラズマ処理装置。
Generate plasma using electron cyclotron resonance,
In a device that performs plasma processing on a substrate, a plurality of solenoid coils arranged in the axial direction with their respective central axes coincident are arranged around the plasma generation part that generates the plasma, and any one of the plurality of solenoid coils is arranged. A plasma processing apparatus characterized in that a current is passed through the solenoid coils and a combination of the solenoid coils through which the current is passed is changed.
JP22282286A 1986-09-19 1986-09-19 Plasma processor Pending JPS6377119A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22282286A JPS6377119A (en) 1986-09-19 1986-09-19 Plasma processor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22282286A JPS6377119A (en) 1986-09-19 1986-09-19 Plasma processor

Publications (1)

Publication Number Publication Date
JPS6377119A true JPS6377119A (en) 1988-04-07

Family

ID=16788453

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22282286A Pending JPS6377119A (en) 1986-09-19 1986-09-19 Plasma processor

Country Status (1)

Country Link
JP (1) JPS6377119A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992015714A1 (en) * 1991-02-27 1992-09-17 Avny Industries Corporation Spólka Z O.O. Methods and chemo-thermal reactor apparatus for extracting mineral values from particulate materials
WO1992015715A1 (en) * 1991-02-27 1992-09-17 Avny Industries Corporation Spólka Z O.O. Methods and apparatus for extracting mineral values from particulate materials
JPH0547710A (en) * 1991-08-08 1993-02-26 Nec Corp Ecr plasma etching device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992015714A1 (en) * 1991-02-27 1992-09-17 Avny Industries Corporation Spólka Z O.O. Methods and chemo-thermal reactor apparatus for extracting mineral values from particulate materials
WO1992015715A1 (en) * 1991-02-27 1992-09-17 Avny Industries Corporation Spólka Z O.O. Methods and apparatus for extracting mineral values from particulate materials
JPH0547710A (en) * 1991-08-08 1993-02-26 Nec Corp Ecr plasma etching device

Similar Documents

Publication Publication Date Title
US4947085A (en) Plasma processor
US5345145A (en) Method and apparatus for generating highly dense uniform plasma in a high frequency electric field
JPS6377119A (en) Plasma processor
JPS61213377A (en) Method and apparatus for plasma deposition
JPH09115882A (en) Plasma treating method and apparatus therefor
JPS6377120A (en) Plasma processor
JPS6377121A (en) Plasma processor
JPS6365623A (en) Plasma processor
JPS63244615A (en) Plasma treatment system
JPH01304724A (en) Plasma processing apparatus
JPS6267822A (en) Plasma processor
JPS6365624A (en) Plasma processor
JPS61181534A (en) Plasma treating device
JPS63240022A (en) Plasma processor
JPH0724761B2 (en) Plasma processing device
JPH0963792A (en) Magnetic neutral beam discharging plasma source
JPS63244614A (en) Plasma treatment system
JP2000114240A (en) Plasma treatment apparatus and plasma confinement method
JP2515885B2 (en) Plasma processing device
JPH0626195B2 (en) Plasma processing device
JPH01194420A (en) Plasma processor
JPH04107919A (en) Plasma processor provided with magnetic field and absorbing microwave
JPH04355915A (en) Plasma growth method and device thereof
JPS6369232A (en) Plasma processing device
JP2866381B2 (en) Plasma processing equipment