JPH01304724A - Plasma processing apparatus - Google Patents

Plasma processing apparatus

Info

Publication number
JPH01304724A
JPH01304724A JP13615488A JP13615488A JPH01304724A JP H01304724 A JPH01304724 A JP H01304724A JP 13615488 A JP13615488 A JP 13615488A JP 13615488 A JP13615488 A JP 13615488A JP H01304724 A JPH01304724 A JP H01304724A
Authority
JP
Japan
Prior art keywords
plasma
magnetic field
coils
solenoid
solenoid coils
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13615488A
Other languages
Japanese (ja)
Inventor
Toshihiko Minami
利彦 南
Atsuhiro Fujii
淳弘 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP13615488A priority Critical patent/JPH01304724A/en
Publication of JPH01304724A publication Critical patent/JPH01304724A/en
Pending legal-status Critical Current

Links

Landscapes

  • Drying Of Semiconductors (AREA)

Abstract

PURPOSE:To achieve uniform and high speed plasma processing by arranging second plural solenoid coils around a plasma reactor so that the axes of the coils do not meet each other and applying different phase currents to the solenoid coils successively. CONSTITUTION:A plurality of second solenoid coils 14a-14d are placed around a plasma reactor 8 such that each center axis does not meet each other. As magnetic field generated by those coils 14a-14d revolves, a plasma current 13 also revolves around Z axis in accordance with the revolving magnetic field. Therefore, the plasma current 13 can be drawn in a wide area in the plasma reactor 8. Also, a first solenoid coil 7 and the second solenoid coils 14a-14d form a weak mirror magnetic field, thereby the plasma current diverging in the plasma reactor 8 is focused, and loss of the plasma at the side wall, etc., of the plasma reactor is reduced. Furthermore, higher density plasma is obtained by plasma confinement. Thus, the plasma processing can be applied uniformly in a wide area and at high speed in the plasma reactor 8.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、半導体加工装置であるプラズマ処理装置に
係り、特に電子サイクロトロン共鳴を用いてプラズマを
発生させ広い領域にわたって基板に均一でかつ高速なプ
ラズマ処理を行なうプラズマ処理装置に関するものであ
る0 〔従来の技術〕 第4図は、例えば特開昭57−79621号公報に記載
される従来のプラズマ処理装置を示す断面構成図であり
、図において、1はプラズマ発生部、2はステージ、3
は基板、4は導波管、5はマグネトロン、6は駆動電源
、7はソレノイドコイル、8はプラズマ反応部、9はガ
ス供給管、10は排気管、11はプラズマ発生用ガラス
管、12は直流電源、13はプラズマ流である。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a plasma processing apparatus which is a semiconductor processing apparatus, and in particular to a plasma processing apparatus that uses electron cyclotron resonance to generate plasma over a wide area uniformly and at high speed. 0 [Prior Art] Fig. 4 is a cross-sectional configuration diagram showing a conventional plasma processing apparatus described in, for example, Japanese Unexamined Patent Publication No. 57-79621. , 1 is a plasma generation part, 2 is a stage, 3
1 is a substrate, 4 is a waveguide, 5 is a magnetron, 6 is a driving power source, 7 is a solenoid coil, 8 is a plasma reaction section, 9 is a gas supply pipe, 10 is an exhaust pipe, 11 is a glass tube for plasma generation, 12 is a A DC power supply, 13 is a plasma flow.

次に動作について説明する。Next, the operation will be explained.

プラズマ発生部1゛は、軸方向に不均一な静磁場を発生
させるソレノイドコイルTと、軸方向に垂直な高周波電
場を導入する高周波導波管4と、プラズマ発生用ガラス
管11とを有しており、高周波導波管4への高周波電力
の供給はマグネトロン5により行なわれ、プラズマ発生
用ガラス管11へのガスの供給はガス供給管9を通して
行なわれるようになっている。
The plasma generation section 1'' includes a solenoid coil T that generates a static magnetic field that is non-uniform in the axial direction, a high frequency waveguide 4 that introduces a high frequency electric field perpendicular to the axial direction, and a glass tube 11 for plasma generation. High frequency power is supplied to the high frequency waveguide 4 by a magnetron 5, and gas is supplied to the plasma generating glass tube 11 through a gas supply pipe 9.

プラズマの形成は電子サイクロトロン共鳴により行なわ
れるが、次に電子サイクロトロン共鳴について説明する
Plasma is formed by electron cyclotron resonance, which will be explained next.

今、軸方向(2方向とする)の不均一な静磁場の強度を
B (z)とする。マグネトロン5により高周波導波管
4内に供給される高周波は、その高周波の周波数に応じ
て共振するように作られた形状のプラズマ発生部1内に
不均一な高周波電場Erf(z)を形成する。
Now, let B(z) be the strength of the nonuniform static magnetic field in the axial direction (two directions). The high-frequency waves supplied into the high-frequency waveguide 4 by the magnetron 5 form a non-uniform high-frequency electric field Erf(z) in the plasma generation section 1, which is shaped to resonate according to the frequency of the high-frequency waves. .

電子は静磁場B中ではよく知られたサイクロトロン運動
をし、サイクロトロン角周波ωCはωC=eB/mで表
わされる。(ただし、mは電子の質量である。)プラズ
マ発生部1内の高周波電場Er f (z)の角周波数
をωとし、ω=ωCのサイクロトロン共鳴条件が成立す
れば、高周波のエネルギーは電子に連続的に供給されて
電子のエネルギーが増大する。
Electrons perform the well-known cyclotron motion in the static magnetic field B, and the cyclotron angular frequency ωC is expressed as ωC=eB/m. (However, m is the mass of the electron.) If the angular frequency of the high-frequency electric field Er f (z) in the plasma generation section 1 is ω, and the cyclotron resonance condition of ω = ωC is satisfied, the high-frequency energy is transferred to the electrons. Continuous supply increases the energy of electrons.

このようなサイクロトロン共鳴条件下で、ガス供給管s
内に適当なガス圧のガスを導入すると、予備放電状態で
発生した電子は、高周波から連続的にエネルギーを供給
されて高いエネルギー状態になり、衝突過程を通してプ
ラズマが発生し、この発生したプラズマにさらに共鳴条
件のもとて高周波電力が注入される。
Under such cyclotron resonance conditions, the gas supply pipe s
When gas at an appropriate gas pressure is introduced into the chamber, the electrons generated in the pre-discharge state are continuously supplied with energy from the high frequency and become in a high energy state. Through the collision process, plasma is generated, and this generated plasma Furthermore, high frequency power is injected under resonance conditions.

従って、例えばガス供給管9に導入するガスをS 1l
(4とすると、ガスの圧力以外に高周波の電力を適当に
調整することにより、81  、SIH。
Therefore, for example, the gas introduced into the gas supply pipe 9 is
(If it is 4, by appropriately adjusting the high frequency power in addition to the gas pressure, 81, SIH.

S凰)Is  、 5tI(s  などのイオンおよび
それぞれのイオンの種類、濃度あるいはそのエネルギー
を制御できる走間時に’s 、 5IHX などのラジ
カルの種類、濃度あるいはそのエネルギーを制御できる
It is possible to control the type, concentration, or energy of radicals such as 's, 5IHX, etc. during the run, which can control ions such as Is and 5tI(s), and the type, concentration, or energy of each ion.

一方、不均一な静磁場B(z)と不均一な電場Erf(
z)の間では、電子には次式で与えられるような軸方向
の力Fzが作用し、電子は軸方向に加速される。
On the other hand, the non-uniform static magnetic field B(z) and the non-uniform electric field Erf(
z), an axial force Fz given by the following equation acts on the electrons, and the electrons are accelerated in the axial direction.

B ただし、μは磁気モーメント、ω0は電子の円運動のエ
ネルギー、Boはプラズマ発生部での磁束密度、Mはイ
オンの質量である。
B where μ is the magnetic moment, ω0 is the energy of circular motion of electrons, Bo is the magnetic flux density at the plasma generation part, and M is the mass of the ions.

従って、第4図のプラズマ発生部1で発生したプラズマ
中の電子がプラズマ反応部8に向は軸方向に加速され、
このためにプラズマ中にはイオンを加速する静電場Eo
(z)が軸方向に形成される。
Therefore, electrons in the plasma generated in the plasma generation section 1 in FIG. 4 are accelerated in the axial direction toward the plasma reaction section 8,
For this reason, there is an electrostatic field Eo in the plasma that accelerates ions.
(z) is formed in the axial direction.

この静電場E o (z)によってプラズマは全体とし
て軸方向に加速されることになり、プラズマ反応部8に
軸方向に沿うプラズマ流13が発生する。ソレノイドコ
イル7によってつくられた磁力線が、プラズマ反応部8
ではr方向成分をもつようになるので、プラズマ流13
は磁力線に沿って拡がってゆく。
The plasma as a whole is accelerated in the axial direction by this electrostatic field E o (z), and a plasma flow 13 along the axial direction is generated in the plasma reaction section 8 . The magnetic field lines created by the solenoid coil 7 are connected to the plasma reaction section 8.
Then, since it has an r-direction component, the plasma flow 13
spreads along the magnetic field lines.

このようなプラズマ処理装置は、プラズマエツチング、
プラズマCVD 、プラズマ酸化をはじめとする各種表
面処理に応用でき、これらの処理を効果的に行なうこと
ができる。
Such plasma processing equipment is capable of plasma etching,
It can be applied to various surface treatments such as plasma CVD and plasma oxidation, and these treatments can be performed effectively.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来の電子サイクロトロン共鳴を使ったプラズマ処理装
置は、以上のように構成されているので、基板付近の磁
束密度の軸方向成分は第5図(a)に示されるように径
方向で不均一である。プラズマ流は磁力線に沿って拡が
るので、径方向で不均一となり、プラズマCVDによる
薄膜形成を例にとれば第5図(ロ)に示すようにその膜
厚分布が不均一になるなど一般にプラズマ処理の均一性
が得られにくい。また、磁力線が発散しているため、反
応部側壁等でのプラズマの損失が大きく、プラズマの処
理効率が悪かった。
Since the conventional plasma processing apparatus using electron cyclotron resonance is configured as described above, the axial component of the magnetic flux density near the substrate is non-uniform in the radial direction as shown in Figure 5(a). be. Since the plasma flow spreads along the lines of magnetic force, it becomes non-uniform in the radial direction.For example, when forming a thin film by plasma CVD, the film thickness distribution becomes non-uniform as shown in Figure 5 (b). It is difficult to obtain uniformity. Furthermore, since the lines of magnetic force diverged, there was a large loss of plasma at the side walls of the reaction section, etc., resulting in poor plasma processing efficiency.

本発明は、上記のような問題点を解消するためになされ
たもので、大口径の基板にプラズマ処理が均一でかつ高
速に行なえるプラズマ処理装置を得ることを目的とする
The present invention has been made to solve the above-mentioned problems, and an object of the present invention is to provide a plasma processing apparatus that can uniformly and rapidly perform plasma processing on a large-diameter substrate.

〔課題を解決するための手段〕[Means to solve the problem]

本発明に係るプラズマ処理装置は、プラズマ発生部の周
囲に第1ソレノイドコイルを配置すると共にプラズマ反
応部の周囲にその各中心軸が互いに一致しない複数個の
第2ソレノイドコイルを配置し、複数個の第2ソレノイ
ドコイルに位相の異なる電流を順次流すようにしたもの
である。
In the plasma processing apparatus according to the present invention, a first solenoid coil is arranged around a plasma generation section, and a plurality of second solenoid coils whose central axes do not coincide with each other are arranged around a plasma reaction section. Currents with different phases are sequentially passed through the second solenoid coil.

〔作用〕[Effect]

本発明におけるプラズマ処理装置においては、複数個の
第2ソレノイドコイルに位相の異なる電流を順次流すこ
とにより、軸方向の磁場が運動する磁場を形成でき、プ
ラズマ流は運動磁場と共に直線運動または回転運動して
プラズマを広い領域に引き出すことができる。また、プ
ラズマ発生部の周囲に配置された第1ソレノイドコイル
と複数個の第2ソレノイドコイルとによって形成される
ミラー磁場により、プラズマは閉じ込められ、高密度々
プラズマが得られる。従って、プラズマ反応部では、広
い領域に均一でかつ高速にプラズマ処理が行なえる。
In the plasma processing apparatus according to the present invention, a magnetic field in which the axial magnetic field moves can be formed by sequentially flowing currents with different phases through the plurality of second solenoid coils, and the plasma flow can undergo linear motion or rotational motion together with the moving magnetic field. plasma can be drawn out over a wide area. In addition, plasma is confined by a mirror magnetic field formed by a first solenoid coil and a plurality of second solenoid coils arranged around the plasma generating section, and a high-density plasma is obtained. Therefore, in the plasma reaction section, plasma processing can be performed uniformly over a wide area and at high speed.

〔実施例〕〔Example〕

以下、本発明の一実施例を図について説明する。 Hereinafter, one embodiment of the present invention will be described with reference to the drawings.

第1図は、本発明の一実施例によるプラズマ処理装置を
示す断面構成図であり、前述の図と同一部分には同一符
号を付しである。同図において、14a、14b、14
c、14d(総称するときは14)はプラズマ反応部8
の周囲にその各中心軸が互いに一致しないように配置さ
れた複数個の第2ソレノイドコイルである。15は複数
個の第2ンレノイドコイル14に位相の異なる電流を順
次流す電源である。
FIG. 1 is a cross-sectional configuration diagram showing a plasma processing apparatus according to an embodiment of the present invention, and the same parts as in the previous figures are given the same reference numerals. In the same figure, 14a, 14b, 14
c, 14d (generally referred to as 14) are plasma reaction parts 8
A plurality of second solenoid coils are arranged around the second solenoid coil so that their central axes do not coincide with each other. Reference numeral 15 denotes a power source that sequentially causes currents with different phases to flow through the plurality of second inlenoid coils 14.

次に動作について説明する。Next, the operation will be explained.

従来と同様にプラズマ発生部1で発生したプラズマは、
プラズマ反応部8に引き出されるが、プラズマ反応部8
では、プラズマ流13は第2ソレノイドコイル14a、
14b、14C,14dで形成される磁場の影響を受け
、第1図に示したようにプラズマ流13の中心は第1ソ
レノイドコイルTの中心軸から逸脱する。第2ソレノイ
ドコイル14a。
As in the past, the plasma generated in the plasma generation section 1 is
Although it is drawn out to the plasma reaction section 8, the plasma reaction section 8
In this case, the plasma flow 13 is caused by the second solenoid coil 14a,
Under the influence of the magnetic field formed by 14b, 14C, and 14d, the center of the plasma flow 13 deviates from the central axis of the first solenoid coil T, as shown in FIG. Second solenoid coil 14a.

14b 、 14c 、 14dにより形成される磁場
は回転するので、プラズマ流13も磁場の回転と共に2
軸を中心に回転を行なう。従ってプラズマ流13はプラ
ズマ反応部8で広い範囲にわたって引き出されることに
なる。また、第1ソレノイドコイル7ち第2ソレノイド
コイル14a、14b、14c、14dとにより弱いミ
ージー形磁場が形成されるため、プラズマ反応部8で発
散しようとするプラズマ流は絞られ、プラズマ反応部側
壁等でのプラズマの損失が少なくなる。さらにプラズマ
の閉じ込めにより高密度・なプラズマが得られる。
Since the magnetic field formed by 14b, 14c, and 14d rotates, the plasma flow 13 also rotates as the magnetic field rotates.
Rotate around the axis. Therefore, the plasma flow 13 is drawn out over a wide range in the plasma reaction section 8. In addition, since a weak Measy-shaped magnetic field is formed by the first solenoid coil 7 and the second solenoid coils 14a, 14b, 14c, and 14d, the plasma flow that is about to diverge in the plasma reaction section 8 is constricted, and the plasma reaction section side wall Plasma loss is reduced. Furthermore, high-density plasma can be obtained by confining the plasma.

従って、プラズマ反応部8では広い領域に均一でかつ高
速にプラズマ処理が行なえる。例えばガス供給管9に導
入するガスを5ia4とすると、電子サイクロトロン共
鳴によりSr 、 StH、5iHs 。
Therefore, in the plasma reaction section 8, plasma processing can be performed uniformly and at high speed over a wide area. For example, if the gas introduced into the gas supply pipe 9 is 5ia4, Sr, StH, and 5iHs are generated by electron cyclotron resonance.

・   + 5IH8などのイオンおよび81,5IHX などのラ
ジカルがプラズマ発生部1で生じ、プラズマ反応部8に
引き出される。とのとき、回転磁場によりプラズマ流1
3は回転し、プラズマは閉じ込められるので、プラズマ
反応部8では大口径な基板3の上に均一な膜厚分布をも
ったアモルファスシリコン膜が高速で形成される。
- Ions such as +5IH8 and radicals such as 81,5IHX are generated in the plasma generation section 1 and drawn out to the plasma reaction section 8. When , the rotating magnetic field causes plasma flow 1
3 rotates and the plasma is confined, so that an amorphous silicon film with a uniform thickness distribution is formed on the large-diameter substrate 3 at high speed in the plasma reaction section 8.

第1図実施例によるプラズマ処理装置は、プラズマエツ
チング、プラズマCVD、プラズマ酸化をはじめとする
各稲麦面処理に応用でき、広範囲に均一な処理を高速で
行なうことができる。
The plasma processing apparatus according to the embodiment shown in FIG. 1 can be applied to various rice and wheat surface treatments such as plasma etching, plasma CVD, and plasma oxidation, and can perform uniform treatment over a wide range at high speed.

なお、上記実施例では回転磁場を発生させるのに4個の
第2ソレノイドコイ+14a、14b、14c。
In the above embodiment, four second solenoid coils +14a, 14b, and 14c are used to generate the rotating magnetic field.

14dに第3図に示した電流iを流した例を示したが、
第2ンレノイドコイルの個数は複数であればよく、(た
だし、2個の場合は軸方向の磁場は直線運動をし、3個
以上の時、回転運動をする)電流波形も第3図に示した
台形の電流波形以外に交流半波や三角波、パルス波の電
流波形を複数個の第2ソレノイドコイルに順次流しても
同様の効果を奏する。
14d shows an example in which the current i shown in FIG. 3 is passed,
The number of second renoid coils may be more than one (however, if there are two, the axial magnetic field will move linearly, and if there are three or more, it will move rotationally). The current waveform is also shown in Figure 3. In addition to the trapezoidal current waveform, a similar effect can be obtained by sequentially flowing an AC half wave, triangular wave, or pulse wave current waveform through the plurality of second solenoid coils.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明によれば、プラズマ発生部の周囲に
第1ソレノイドコイルを配置すると共にプラズマ反応部
の周囲にその各中心軸が互いに一致しない複数個の第2
ソレノイドコイルを配置し複数個の第2ソレノイドコイ
ルに位相の異なる電流を順次流すようにしたので、プラ
ズマ流を直線又は回転運動させることができかつプラズ
マを閉じ込めることができるので、大口径の基板にも均
一なプラズマ処理を高速に行なえる効果がある0
As described above, according to the present invention, a first solenoid coil is disposed around a plasma generating section, and a plurality of second solenoid coils whose central axes do not coincide with each other are arranged around a plasma reaction section.
By arranging solenoid coils and sequentially passing currents with different phases through a plurality of second solenoid coils, it is possible to cause the plasma flow to move linearly or rotationally, and to confine the plasma. It also has the effect of allowing uniform plasma processing to be performed at high speed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例によるプラズマ処理装置を示
す断面構成図、第2図は本発明の一実施例に係る第2ソ
レノイドコイルの配置を示す平面構成図、第3図は本発
明の一実施例に係る第2ソレノイドコイルに流す電流を
示す波形図、第4図は従来のプラズマ処理装置を示す断
面構成図、第5図は従来のプラズマ処理装置における磁
束密度分布図と膜厚分布図である。 1・・・・プラズマ発生部、2・・・・ステージ、3・
・Φ・基板、4・・・・導波管、5・・・・マグネトロ
ン、6・・・・駆動電源、7・・・・第1ソレノイドコ
イル、8・・・・プラズマ反応部、9・・・・ガス供給
管、10・・・・排気管、11・・・・プラズマ発生用
ガラス管、12・・・・直流電源、13・・・・プラズ
マ流、14a、14b、14c、14a @ 1161
1第2ソレノイドコイル、15・・・・電源。
FIG. 1 is a cross-sectional configuration diagram showing a plasma processing apparatus according to an embodiment of the present invention, FIG. 2 is a plan configuration diagram showing the arrangement of a second solenoid coil according to an embodiment of the present invention, and FIG. 3 is a diagram showing the arrangement of a second solenoid coil according to an embodiment of the present invention. A waveform diagram showing the current flowing through the second solenoid coil according to one embodiment, FIG. 4 is a cross-sectional configuration diagram showing a conventional plasma processing device, and FIG. 5 is a magnetic flux density distribution diagram and film thickness in the conventional plasma processing device. It is a distribution map. 1...Plasma generation section, 2...Stage, 3...
・Φ Substrate, 4... Waveguide, 5... Magnetron, 6... Drive power supply, 7... First solenoid coil, 8... Plasma reaction section, 9... ... Gas supply pipe, 10 ... Exhaust pipe, 11 ... Glass tube for plasma generation, 12 ... DC power supply, 13 ... Plasma flow, 14a, 14b, 14c, 14a @ 1161
1 2nd solenoid coil, 15...power supply.

Claims (1)

【特許請求の範囲】[Claims]  サイクロトロン共鳴を用いてプラズマを発生させ、基
板をプラズマ処理するプラズマ処理装置において、前記
プラズマを発生させるプラズマ発生部の周囲に第1ソレ
ノイドコイルを配置し、前記プラズマが反応するプラズ
マ反応部の周囲にその各中心軸が互いに一致しない複数
個の第2ソレノイドコイルを配置し、該複数個の第2ソ
レノイドコイルに位相の異なる電流を順次流すようにし
たことを特徴とするプラズマ処理装置。
In a plasma processing apparatus that generates plasma using cyclotron resonance and plasma-processes a substrate, a first solenoid coil is disposed around a plasma generation section that generates the plasma, and a first solenoid coil is arranged around a plasma reaction section where the plasma reacts. A plasma processing apparatus characterized in that a plurality of second solenoid coils are arranged whose central axes do not coincide with each other, and currents having different phases are sequentially passed through the plurality of second solenoid coils.
JP13615488A 1988-06-01 1988-06-01 Plasma processing apparatus Pending JPH01304724A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13615488A JPH01304724A (en) 1988-06-01 1988-06-01 Plasma processing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13615488A JPH01304724A (en) 1988-06-01 1988-06-01 Plasma processing apparatus

Publications (1)

Publication Number Publication Date
JPH01304724A true JPH01304724A (en) 1989-12-08

Family

ID=15168577

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13615488A Pending JPH01304724A (en) 1988-06-01 1988-06-01 Plasma processing apparatus

Country Status (1)

Country Link
JP (1) JPH01304724A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992015714A1 (en) * 1991-02-27 1992-09-17 Avny Industries Corporation Spólka Z O.O. Methods and chemo-thermal reactor apparatus for extracting mineral values from particulate materials
WO1992015715A1 (en) * 1991-02-27 1992-09-17 Avny Industries Corporation Spólka Z O.O. Methods and apparatus for extracting mineral values from particulate materials
JPH0547710A (en) * 1991-08-08 1993-02-26 Nec Corp Ecr plasma etching device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992015714A1 (en) * 1991-02-27 1992-09-17 Avny Industries Corporation Spólka Z O.O. Methods and chemo-thermal reactor apparatus for extracting mineral values from particulate materials
WO1992015715A1 (en) * 1991-02-27 1992-09-17 Avny Industries Corporation Spólka Z O.O. Methods and apparatus for extracting mineral values from particulate materials
JPH0547710A (en) * 1991-08-08 1993-02-26 Nec Corp Ecr plasma etching device

Similar Documents

Publication Publication Date Title
US4947085A (en) Plasma processor
JPH0343774B2 (en)
US20040168771A1 (en) Plasma reactor coil magnet
US5345145A (en) Method and apparatus for generating highly dense uniform plasma in a high frequency electric field
JP2618001B2 (en) Plasma reactor
JPH01304724A (en) Plasma processing apparatus
JPH05335277A (en) Plasma treatment device
JPH0917598A (en) Ecr plasma working device and ecr plasma generating method
JPS6377120A (en) Plasma processor
JPS6365624A (en) Plasma processor
JPS63244615A (en) Plasma treatment system
JPS6377121A (en) Plasma processor
JPS6377119A (en) Plasma processor
JP2812477B2 (en) Semiconductor processing equipment
JPS6365623A (en) Plasma processor
JPS63240022A (en) Plasma processor
JPH0626195B2 (en) Plasma processing device
JPH0645095A (en) Method for generating plasma and device therefor
JPH0783014B2 (en) Plasma processing device
JPH01194420A (en) Plasma processor
JPS63244614A (en) Plasma treatment system
JPS63207131A (en) Plasma processor
JPH03229859A (en) Plasma treating device
JPS63275117A (en) Plasma treating equipment
JPS63250126A (en) Plasma treatment apparatus