JPS6376429A - Optical equipment for illumination - Google Patents

Optical equipment for illumination

Info

Publication number
JPS6376429A
JPS6376429A JP61219836A JP21983686A JPS6376429A JP S6376429 A JPS6376429 A JP S6376429A JP 61219836 A JP61219836 A JP 61219836A JP 21983686 A JP21983686 A JP 21983686A JP S6376429 A JPS6376429 A JP S6376429A
Authority
JP
Japan
Prior art keywords
light
electrodes
mercury lamp
converging
mirror
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61219836A
Other languages
Japanese (ja)
Inventor
Makoto Uehara
誠 上原
Koichi Matsumoto
宏一 松本
Takehiro Kira
健裕 吉良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Ushio Denki KK
Ushio Inc
Original Assignee
Nikon Corp
Ushio Denki KK
Ushio Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp, Ushio Denki KK, Ushio Inc filed Critical Nikon Corp
Priority to JP61219836A priority Critical patent/JPS6376429A/en
Publication of JPS6376429A publication Critical patent/JPS6376429A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Light Sources And Details Of Projection-Printing Devices (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

PURPOSE:To enable efficient converging and obtaining a simple structure equipment wherein the height of the total equipment is not made too high has little limitation for the design of an illuminating optical system by providing a very high voltage mercury lamp to make a greater area end electrode upward and a converging mirror to make an aperture upward. CONSTITUTION:A pair of electrodes 1A and 1B which have a different area end is provided face to face and a very high voltage mercury lamp 1 which can emit light by the discharge between the electrodes 1A and 1B and a converging mirror 2 for converging the light from the very high voltage mercury lamp 1 are provided. In such an illuminating system, the greater area end electrode 1A of the above-mentioned pair of the electrodes 1A and 1B is provided above the smaller area end electrode 1B and the above mentioned converging mirror 2 is provided to make the aperture-facing upward. This enables efficient converging and realizing optical equipment for illumination which can supply high intensity and uniform illuminating light and has a simple and small size structure wherein the height of the total equipment is not made too high and the limitation for the design of the illuminating optical system is little.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、照明光学装置、特に半導体素子製造のための
りソゲラフイエ程等において用いられる露光装置用の照
明光学装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an illumination optical device, and particularly to an illumination optical device for an exposure device used in a photolithography process for manufacturing semiconductor devices.

〔従来の技術〕[Conventional technology]

一般に半導体製造において用いられる露光装置は、所定
のパターンが形成されたレチクルまたはマスクと呼ばれ
る原板を均一に照明し、この原板のパターンをレジスト
が塗布されたウェハ上に転写するm能を育しており、そ
のための照明光学装置としては高輝度であってレジスト
の感光特性に合致した波長特性を持つ光を供給すること
が重要である。このため、このような露光装置用の照明
光学装置においては、照明光源として超高圧水銀灯が採
用されており、現在のところこれに代わる光源は実用化
されてはいない、この超高圧水銀灯は、電極間に生ずる
放電によって比較的短波長領域の光を高輝度で発生する
ものであり、最近の一層の高集積化に対応したパターン
の微細化の要求に応じて、より短波長でより高輝度の発
光が可能となるように開発が進められており、例えば特
開昭60−57930号公報に見られる如き電極形状の
工夫もなされている。
Exposure equipment generally used in semiconductor manufacturing has the ability to uniformly illuminate an original plate called a reticle or mask on which a predetermined pattern is formed, and to transfer the pattern of this original plate onto a wafer coated with resist. Therefore, it is important for an illumination optical device for this purpose to supply light with high brightness and wavelength characteristics that match the photosensitive characteristics of the resist. For this reason, ultra-high-pressure mercury lamps are used as the illumination light source in illumination optical devices for such exposure equipment.Currently, no alternative light source has been put into practical use. The electric discharge that occurs during the process generates relatively short wavelength light with high brightness, and in response to the recent demand for finer patterns in response to higher integration, shorter wavelength and higher brightness light is generated. Development is progressing to make it possible to emit light, and improvements have been made to the shape of the electrodes as seen, for example, in Japanese Patent Application Laid-Open No. 60-57930.

他方、このような超高圧水銀灯を光源とする照明光学系
を用いた照明装置としては、従来第4図に示す如き構成
が提案されている。
On the other hand, as an illumination device using an illumination optical system using such an ultra-high pressure mercury lamp as a light source, a configuration as shown in FIG. 4 has been proposed.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところが、例えば前記特開昭60−57930号公報に
見られる如き電極形状にて発光放電管を構成する場合に
は、従来一般に考えられているように、光源から発する
光の分布状態が等方向にはならず、このため集光用の楕
円鏡の配置によっては、必ずしも効率良い集光が出来な
くなり、せっかくの高輝度化の改良も意味をなさない恐
れが生じていることが判明した。
However, when a light-emitting discharge tube is constructed with an electrode shape such as that shown in the above-mentioned Japanese Patent Application Laid-Open No. 60-57930, the distribution state of the light emitted from the light source is uniformly distributed, as is generally thought. For this reason, it has been found that depending on the arrangement of the elliptical mirror for condensing light, efficient condensation may not always be possible, and there is a risk that even efforts to improve brightness will be meaningless.

そして、第4図の如き照明装置においては、ある程度小
型な構成が可能ではあるものの、照明光学系中のミラー
による光路の折り曲げ個所が多く複雑な構成となり、そ
のため照明光学系の設計及びこの照明光学系を搭載する
装置全体の設計に大きな制約を受けるという問題があっ
た。
Although it is possible to make the illumination device as shown in Fig. 4 compact to some extent, the illumination optical system has many bends in the optical path due to mirrors, resulting in a complicated configuration. There was a problem in that the design of the entire device in which the system was mounted was subject to significant restrictions.

そこで、本発明の目的は、超高圧水銀灯を光源とする照
明光学装置において、放電管の電極形状に起因する配光
特性に対して適切に集光鏡を組み合わせて配置すること
によって効率よい集光を可能とすると共に、装置全体の
構成の高さが過度に高くならず小型な構成であって、し
かも照明光学系の設計に制約の少ない藺草な構成からな
る照明光学装置を提供することにある。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide an illumination optical device using an ultra-high-pressure mercury lamp as a light source, which can efficiently collect light by appropriately arranging condensing mirrors in accordance with the light distribution characteristics caused by the electrode shape of the discharge tube. An object of the present invention is to provide an illumination optical device which has a compact configuration that does not make the overall height of the device excessively high, and which has a simple configuration with few restrictions on the design of the illumination optical system. .

〔問題点を解決するための手段〕[Means for solving problems]

本発明による露光装置用照明光学装置は、第1図の概略
構成図に示す如く、一対の電極間での放電によって発光
を得る超高圧水銀灯1を光源とする照明装置において、
放電が行われる電極として、先端部の面積が互いに異な
る一対の電極LA、 IBを対向して配置したものを用
い、しかも先端部の面積の大きな方の電極(陽極)が上
側になるように配置することを前提とするものである。
The illumination optical device for an exposure apparatus according to the present invention, as shown in the schematic diagram of FIG.
A pair of electrodes LA and IB with different tip areas are used as the electrodes where discharge occurs, which are arranged facing each other, and the electrode (anode) with the larger tip area is placed on the upper side. This is based on the premise that

そして、楕円鏡のごとき集光鏡2を、その間口2aが上
側になるように配置したものである。
A condensing mirror 2 such as an elliptical mirror is arranged so that its opening 2a is on the upper side.

〔作用〕[Effect]

このように先端部の面積が互いに異なる一対の電極を対
向して配置したものを用いることによって、具体的には
、陰極の先端部をコーン状に形成し陽極の先端部を平坦
なテーバ状に形成することによって、従来の超高圧水銀
灯に比べて発光領域を1点に近づけることができるため
高い輝度を得ることができる。そして、このような電極
の形状においては、従来の一逓的電極形状である場合と
は発光光の配光特性が異なる。具体的には、第3A図に
示す従来のごとく一対の電極1a、lbが共にコーン状
で先端部が尖った形状である場合には、一対の電極間か
らほぼ等方向に、即ち強度分布lが両電極を結ぶ軸線に
対してほぼ垂直な面内に中心をもつ配光特性となる。と
ころが、先端部に平坦面Sを有してテーパ状に形成され
た電極IA (陽極)と、先端部がコーン状に形成され
た電極IB(陰極)とを有する場合には、第3B図のご
とく、先端部の面積の小さい電極IBの方に偏った配光
特性となる。1!IIち、強度分布Iが、両電極を結ぶ
軸線に対する垂直面Vから先端部の面積の小さい電極I
Bの方にθだけ傾いた方向に光量重心としての中心強度
を持つ配光特性となる。
In this way, by using a pair of electrodes arranged opposite each other with different tip areas, it is possible to form the cathode tip into a cone shape and the anode tip into a flat tapered shape. By forming this, the light-emitting area can be brought closer to one point than in conventional ultra-high pressure mercury lamps, so high brightness can be obtained. In addition, in such an electrode shape, the light distribution characteristics of the emitted light are different from those in the case of a conventional monolithic electrode shape. Specifically, when the pair of electrodes 1a and lb are both cone-shaped and have a pointed tip as in the conventional case shown in FIG. 3A, the intensity distribution l has a light distribution characteristic centered in a plane almost perpendicular to the axis connecting both electrodes. However, in the case of having an electrode IA (anode) formed in a tapered shape with a flat surface S at the tip and an electrode IB (cathode) whose tip is formed in a cone shape, the As a result, the light distribution characteristics are biased toward the electrode IB, which has a smaller tip area. 1! II, the intensity distribution I is from the perpendicular plane V to the axis connecting both electrodes to the electrode I whose tip area is small.
The light distribution characteristic has a center intensity as the center of gravity of the light amount in a direction tilted by θ toward B.

そこで、本発明においては、まず超高圧水銀灯からの光
束を集光するための楕円鏡の如き集光鏡を、その開口が
上に向くように配置することによって、照明光学系の構
成を高さにおいてより低い構成とし、しかもミラーによ
る折り曲げが少なく簡単な構成とした。そして、このよ
うな照明光学系の全体的構成の下で、開口が上向き(鉛
直上方)の集光鏡2に対して、超高圧水i艮灯をその一
対の電極のうち先端部の面積がより大きい方の電極IA
 (陽極)が上側(鉛直上方)になるように配置するこ
とによりて、上記の如き配光特性の偏倚に対しても十分
に集光することができ、高輝度光源としての超高圧水銀
灯からの光束を効率良く集光することを可能としたもの
である。第1図の構成においては、発光管1としての超
高圧水銀灯の両電極LA、IBのほぼ中間が楕円鏡2の
第1焦点上に位置するように配置されており、発光光は
楕円鏡2での反射の後、楕円鏡2の第2焦点F2上また
はその近傍に集光され、この第2焦点上に前側焦点をほ
ぼ合致して配置されたコリメータレンズ4によって平行
光束に変換される。
Therefore, in the present invention, first, the structure of the illumination optical system is increased by arranging a condensing mirror such as an elliptical mirror for condensing the light flux from the ultra-high pressure mercury lamp so that its aperture faces upward. It has a lower structure, and has a simpler structure with fewer bends due to mirrors. Under such an overall configuration of the illumination optical system, an ultra-high pressure water lamp is connected to the condenser mirror 2 whose aperture faces upward (vertically upward), and the area of the tip of the pair of electrodes is Larger electrode IA
By arranging the anode (anode) on the upper side (vertically upward), it is possible to sufficiently concentrate light even against the deviation of the light distribution characteristics as described above, and it is possible to sufficiently concentrate light even with the deviation of the light distribution characteristics as described above. This makes it possible to efficiently condense luminous flux. In the configuration shown in FIG. 1, the ultra-high-pressure mercury lamp serving as the arc tube 1 is arranged so that approximately the middle of both electrodes LA and IB is located on the first focal point of the elliptical mirror 2, and the emitted light is directed to the elliptical mirror 2. After reflection, the light is focused on or near the second focal point F2 of the elliptical mirror 2, and is converted into a parallel beam by the collimator lens 4, which is disposed with its front focal point substantially aligned with the second focal point.

第5図は、比較のために上向きの楕円鏡に対して電極L
A、 1Bの位置を逆にした場合の光束の集光状態を例
示したものである。第1図と第5図との比較から、第5
図の状態では楕円鏡2によって発光光が十分に集光でき
ないことが明らかである。
For comparison, Figure 5 shows the electrode L for an upward oriented elliptical mirror.
This is an example of the convergence state of the light beam when the positions of A and 1B are reversed. From the comparison between Figure 1 and Figure 5,
It is clear that in the state shown in the figure, the emitted light cannot be sufficiently focused by the elliptical mirror 2.

第1図と同程度の集光効率を得るためには、楕円鏡2を
さらに深(することが必要となり小型な装置とするには
不利である。また、第1図の構成において、配光特性上
で最大強度の光線Pがコリメータレンズ4によって光軸
Axに平行となったときの光軸からの距離H1は、第5
図の構成における最大強度の光vAPが同じくコリメー
タレンズ4によって光軸Axに平行となったときの光軸
からの距離H2よりも小さくなっている。このことは、
光軸に近い位置に光束の中心強度があることとなり、光
学系を小型に構成するのに有利であるばかりではなく、
収差補正上も有利となる。
In order to obtain the same level of light collection efficiency as shown in Fig. 1, it is necessary to make the elliptical mirror 2 deeper, which is disadvantageous for making a compact device. The distance H1 from the optical axis when the light beam P with the maximum intensity is made parallel to the optical axis Ax by the collimator lens 4 is the fifth
In the configuration shown in the figure, the maximum intensity light vAP is also smaller than the distance H2 from the optical axis when it is parallel to the optical axis Ax by the collimator lens 4. This means that
The central intensity of the light beam is located close to the optical axis, which is not only advantageous for configuring a compact optical system, but also
This is also advantageous in terms of aberration correction.

〔実施例〕〔Example〕

以下に、上記の如き本発明による照明光学装置を実際の
露光装置に搭載した実施例について説明する。第2図に
示した本発明による実施例は、本発明による照明光学装
置を縮小投影型露光装置の照明装置として用いた例であ
る。
An embodiment in which the illumination optical device according to the present invention as described above is mounted on an actual exposure apparatus will be described below. The embodiment according to the present invention shown in FIG. 2 is an example in which the illumination optical device according to the present invention is used as an illumination device for a reduction projection type exposure apparatus.

先端部の面積が大きい電極IA (陽極)と先端部の面
積が小さい電極ta <論題)との一対の電極が対向し
て配置された超高圧水銀灯1は、先端部の面積が大きい
電極IAを上側として配置され、この超高工数を灯1か
ら発する光束は、開口2aを上向きに配置された楕円鏡
2によって集光される。即ち、超高圧水銀灯1によって
発光される光は、先端部の面積がより大きい方の電極I
A側に開口2aを向けて配置された楕円鏡2によって集
光される。
The ultra-high pressure mercury lamp 1 has a pair of electrodes arranged facing each other, an electrode IA (anode) with a large area at the tip and an electrode ta (thesis) with a small area at the tip. The light flux emitted from the lamp 1, which is placed on the upper side and requires a very high number of man-hours, is focused by the elliptical mirror 2, which is placed with the aperture 2a facing upward. That is, the light emitted by the ultra-high pressure mercury lamp 1 is transmitted to the electrode I whose tip area is larger.
The light is collected by an elliptical mirror 2 arranged with its aperture 2a facing the A side.

そして、ダイクロイックミラー3でレジストの感光特性
に合った所望短波長域の光が反射され、コリメーターレ
ンズ4によって平行光束に変換され、フライアイ・イン
テグレータ5に入射する。第1リレーレンズ7によって
フライアイ・インテグレータ5の入射面が視野絞りとし
てのレチクルブラインド8に共役に構成され、第2リレ
ーレンズ9、ミラー11、メインコンデンサーレンズ1
2によってレチクル面13が、レチクルブラインド8と
共役に構成され、縮小投影レンズ14を介してウェハ面
16とも共役に構成されている。また、フライアイ・イ
ンテグレータ5の射出面には照明条件を設定するための
絞り部材6が配置されており、この位置にフライアイ・
インテグレータ5により実質的な面光源が形成される。
Light in a desired short wavelength range matching the photosensitive characteristics of the resist is reflected by the dichroic mirror 3, converted into a parallel beam by the collimator lens 4, and enters the fly-eye integrator 5. The first relay lens 7 configures the entrance surface of the fly-eye integrator 5 to be conjugate to the reticle blind 8 as a field stop, and the second relay lens 9, mirror 11, and main condenser lens 1
2, the reticle surface 13 is configured to be conjugate with the reticle blind 8, and also configured to be conjugate with the wafer surface 16 via the reduction projection lens 14. Further, a diaphragm member 6 for setting illumination conditions is arranged on the exit surface of the fly's eye integrator 5, and the fly's eye integrator 5 is located at this position.
The integrator 5 forms a substantial surface light source.

そして、第1リレーレンズ7及び第2リレーレンズ9に
よって、第2リレーレンズ9とミラー11との間の位置
10に光源像が形成され、さらにメインコンデンサーレ
ンズ12によって、縮小投影レンズ14の入射瞳15上
に光源像が形成される。さらに、投影レンズ14による
レチクル面13上のパターン像をウェハ面16上に鮮明
に投影されるように焦点調節するために、光軸方向及び
光軸に垂直な面内でウェハを移動可能に載置するステー
ジ17と防振台18により、縮小投影型露光装置が構成
されている。
A light source image is formed at a position 10 between the second relay lens 9 and the mirror 11 by the first relay lens 7 and the second relay lens 9, and the entrance pupil of the reduction projection lens 14 is formed by the main condenser lens 12. A light source image is formed on 15. Further, in order to adjust the focus so that the pattern image on the reticle surface 13 by the projection lens 14 is clearly projected onto the wafer surface 16, the wafer is mounted movably in the optical axis direction and in a plane perpendicular to the optical axis. The stage 17 and the vibration isolating table 18 constitute a reduction projection type exposure apparatus.

このような縮小投影型露光装置において、本発明による
照明光学装置を用いているので、照明光学系としての高
さが過度に高くならず簡単で小型に構成できると共に、
先端部の面積が互いに異なる一対の電極が対向して配置
された超高圧水銀灯1によって得られる高輝度光を、第
り図にて説明したとおり、損失なしに効率良く集光する
ことができる。しかも、中心強度が光軸に近いために照
明光学系全体をより小型に構成しつつ照明光学系の収差
補正上においても有利な構成となる。
In such a reduction projection type exposure apparatus, since the illumination optical device according to the present invention is used, the height of the illumination optical system does not become excessively high, and it can be configured easily and compactly.
As explained in FIG. 2, the high-intensity light obtained by the ultra-high pressure mercury lamp 1, in which a pair of electrodes with different tip areas are disposed facing each other, can be efficiently focused without loss. Moreover, since the center intensity is close to the optical axis, the entire illumination optical system can be made smaller, and the configuration is advantageous in terms of aberration correction of the illumination optical system.

この実施例においては、超高圧水銀灯1を従来とは逆転
して配置するために、水銀灯内での水銀の気化条件を十
分満足するような工夫が必要となるが、第3B図と同様
のt極溝造によって高輝度の発光を得ることが可能であ
る。
In this embodiment, since the ultra-high pressure mercury lamp 1 is arranged in the opposite direction from the conventional one, it is necessary to take measures to sufficiently satisfy the vaporization conditions for mercury in the mercury lamp. It is possible to obtain high-intensity light emission by the polar groove structure.

〔発明の効果〕〔Effect of the invention〕

以上の如く、本発明によれば、超高圧水銀灯を光源とす
る照明光学装置において、電極形状に起因する配光特性
に対して適切な集光鏡を配置することによって、効率よ
い集光を可能とし高強度でしかも均一な照明光を供給し
得る優れた照明光学装置を達成することができると共に
、装置全体の構成の高さが過度に高くならず小型な構成
であって、しかも照明光学系の設計に制約が少なく簡単
で小型な構成からなる照明光学装置を実現することがで
きる、そして、集光鏡は楕円鏡に限らず例えば放物面鏡
を用い発光放電管からの光を直接平行光束に変換する構
成とすることも可能である。
As described above, according to the present invention, in an illumination optical device using an ultra-high pressure mercury lamp as a light source, efficient light collection is possible by arranging a collection mirror appropriate for the light distribution characteristics caused by the electrode shape. As a result, it is possible to achieve an excellent illumination optical device that can supply high-intensity and uniform illumination light, and the overall height of the device is not excessively high, the structure is compact, and the illumination optical system is It is possible to realize an illumination optical device with a simple and compact configuration with few restrictions on the design, and the condenser mirror is not limited to an elliptical mirror, but for example a parabolic mirror can be used to directly collimate the light from the light emitting discharge tube. It is also possible to adopt a configuration in which the light is converted into a luminous flux.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による照明光学装置の主要部の構成と光
路を示す図、第2図は本発明による照明光学装置を縮小
投影型露光装置に搭載した実施例の概略構成図、第3A
図及び第3B図は一対の電極の形状によって配光特性が
異なることを示す模式図で、第3A図は一対の電極が共
に尖った形状である場合、第3B図は一方の電極が平坦
面を有するテーバ状に形成された場合を示し、第4図は
従来の縮小投影型露光装置の概略構成図、第5図は本発
明との比較のために楕円鏡に対して超高圧水銀灯の電極
の位置関係を逆にした場合の構成と光路を示す図である
。 〔主要部分の符号の説明〕 1:超高圧水銀灯 1^;先端部の面積がより大きい電極 LB:先端部の面積がより小さい電照 2:楕円鏡などの集光鏡 2a:楕円鏡などの集光鏡の開口 第1図 第2図 第4図
FIG. 1 is a diagram showing the configuration and optical path of the main parts of the illumination optical device according to the present invention, FIG. 2 is a schematic configuration diagram of an embodiment in which the illumination optical device according to the present invention is mounted on a reduction projection type exposure apparatus, and FIG.
3B and 3B are schematic diagrams showing that the light distribution characteristics differ depending on the shape of the pair of electrodes. In FIG. 3A, the pair of electrodes both have a sharp shape, and in FIG. Fig. 4 is a schematic diagram of a conventional reduction projection type exposure apparatus, and Fig. 5 shows a case in which an elliptical mirror is formed with an electrode of an ultra-high pressure mercury lamp for comparison with the present invention. FIG. 3 is a diagram showing a configuration and an optical path when the positional relationship is reversed. [Explanation of symbols of main parts] 1: Ultra-high-pressure mercury lamp 1^; Electrode LB with a larger tip area: Illumination light with a smaller tip area 2: Condensing mirror 2a such as an elliptical mirror: 2a such as an elliptical mirror Aperture of condenser mirror Fig. 1 Fig. 2 Fig. 4

Claims (1)

【特許請求の範囲】[Claims] 先端部の面積が互いに異なる一対の電極が対向して配置
され該電極間での放電によって発光を得る超高圧水銀灯
と、該超高圧水銀灯からの光を集めるための集光鏡を有
する照明光学系において、前記一対の電極のうちの先端
部の面積が大きい方の電極を先端部の面積の小さい電極
より上方に設置し、前記集光鏡はその開口を上方に向け
て配置したことを特徴とする照明光学装置。
An illumination optical system comprising an ultra-high pressure mercury lamp in which a pair of electrodes having different tip areas are arranged facing each other and emit light by discharge between the electrodes, and a condenser mirror for collecting light from the ultra-high pressure mercury lamp. , the electrode of the pair of electrodes having a larger tip area is placed above the electrode having a smaller tip area, and the condenser mirror is placed with its aperture facing upward. illumination optical device.
JP61219836A 1986-09-19 1986-09-19 Optical equipment for illumination Pending JPS6376429A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61219836A JPS6376429A (en) 1986-09-19 1986-09-19 Optical equipment for illumination

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61219836A JPS6376429A (en) 1986-09-19 1986-09-19 Optical equipment for illumination

Publications (1)

Publication Number Publication Date
JPS6376429A true JPS6376429A (en) 1988-04-06

Family

ID=16741810

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61219836A Pending JPS6376429A (en) 1986-09-19 1986-09-19 Optical equipment for illumination

Country Status (1)

Country Link
JP (1) JPS6376429A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002031894A (en) * 2000-07-18 2002-01-31 Topcon Corp Illumination optical system for exposure device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57200011A (en) * 1981-06-03 1982-12-08 Hitachi Ltd Reflection type imaging optical device
JPS60241054A (en) * 1984-05-15 1985-11-29 Oak Seisakusho:Kk Light exposing device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57200011A (en) * 1981-06-03 1982-12-08 Hitachi Ltd Reflection type imaging optical device
JPS60241054A (en) * 1984-05-15 1985-11-29 Oak Seisakusho:Kk Light exposing device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002031894A (en) * 2000-07-18 2002-01-31 Topcon Corp Illumination optical system for exposure device
JP4563557B2 (en) * 2000-07-18 2010-10-13 株式会社トプコン Illumination optical system of exposure equipment

Similar Documents

Publication Publication Date Title
KR101139051B1 (en) Focusing optical system, light source unit, illumination optical apparatus, and exposure apparatus
TWI447513B (en) Porjector light source apparatus
JPH086175A (en) Illumination system
JPH06216008A (en) Illumination optical device
JPH032284B2 (en)
JP2001135560A (en) Illuminating optical device, exposure, and method of manufacturing micro-device
JP2012507757A (en) High-intensity image projector using segmented mirrors
JPH0545605A (en) Lighting optical device
TW201506548A (en) Light source device and exposure device
JPS6376429A (en) Optical equipment for illumination
JP3814444B2 (en) Illumination apparatus and projection exposure apparatus using the same
JP2002049096A (en) Light condensing optical system and projection type display device using the same
JP3879142B2 (en) Exposure equipment
JPH06204123A (en) Illuminator and projection aligner using the same
KR20030008312A (en) Projection engine
JPS6380243A (en) Illuminating optical device for exposing device
JPH02285628A (en) Lighting optical system
JP4497507B2 (en) Illumination optical system and projection display device using the same
JPH01271718A (en) Lighting optical device
JPH0651401A (en) Light source device for projector
JP2002025898A (en) Illuminating optical device, and aligner provided with the illuminating optical device
JPS63293547A (en) Optical device for illumination
KR0180856B1 (en) Illumination system using non- curvature light collection lense
JPH08162402A (en) Illuminating optical system
JPS61202433A (en) Optical device for illuminating arcuate region