JPS6375576A - Fault detection system for integrated circuit - Google Patents

Fault detection system for integrated circuit

Info

Publication number
JPS6375576A
JPS6375576A JP61220666A JP22066686A JPS6375576A JP S6375576 A JPS6375576 A JP S6375576A JP 61220666 A JP61220666 A JP 61220666A JP 22066686 A JP22066686 A JP 22066686A JP S6375576 A JPS6375576 A JP S6375576A
Authority
JP
Japan
Prior art keywords
fault
value
integrated circuit
circuit
normal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61220666A
Other languages
Japanese (ja)
Other versions
JPH0752215B2 (en
Inventor
Shuichi Saruyama
猿山 秀一
Takuji Ogiwara
荻原 拓治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP61220666A priority Critical patent/JPH0752215B2/en
Publication of JPS6375576A publication Critical patent/JPS6375576A/en
Publication of JPH0752215B2 publication Critical patent/JPH0752215B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Tests Of Electronic Circuits (AREA)
  • Test And Diagnosis Of Digital Computers (AREA)

Abstract

PURPOSE:To improve a fault detection rate by detecting whether or not signal values of external output terminals of all fault circuits are different from the signal value of a normal circuit and deciding that fault circuits whose signal values are different from the signal value of the normal circuit can be detected as faults. CONSTITUTION:A characteristics initial value indicating 0 or 1 is assigned by a characteristic value assigning means 4 to output values of respective storage elements whose output signal values can not be determined under the influence of a fault. Then a fault detecting and deciding means 6 decides that the combination of the characteristic initial value assigned by the means 4 and an output value when an integrated circuit is normal and the combination of the characteristic initial value and an output value 1 when the integrated circuit is normal are detected at an external output terminal. Then either of the two combinations which are observed at the external output terminal is considered to be caused under the influence of the fault to detect the fault of the integrated circuit, so the high fault detection rate can be obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は集積回路の内部に決定される縮退故障の影響
を外部出力端子に伝搬させる入力パターン系列を集積回
路の外部入力端子に入力して集積回路の故障を検出する
集積回路の故障検出方式に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention provides a method for inputting an input pattern sequence to an external input terminal of an integrated circuit to propagate the influence of a stuck-at fault determined inside the integrated circuit to an external output terminal. The present invention relates to an integrated circuit failure detection method for detecting a failure in an integrated circuit.

〔従来の技術〕[Conventional technology]

半導体集積回路(LSI)の高密度化に伴い、LSIの
品質が良品であるかどうかを判定することば増々困難に
なってきている。LSIのテストは、外部入力端子に人
カバターンを与え、外部出力端子に現れるパターンが期
待値と一致するかどうかで判定することで行われる。
As the density of semiconductor integrated circuits (LSI) increases, it is becoming increasingly difficult to determine whether the LSI is of good quality. LSI testing is performed by applying a pattern to an external input terminal and determining whether the pattern appearing at the external output terminal matches an expected value.

LSIの故障のモデルとして、通常、縮退故障が用いら
れる。縮退故障とは、信号線の信号値がある値に固定さ
れてしまう故障のことで、信号値0に固定されてしまう
故障を0縮退故障、信号値1に固定されてしまう故障を
1縮退故障という。
A stuck-at fault is usually used as a model for LSI failures. A stuck-at fault is a fault in which the signal value of a signal line is fixed at a certain value.A fault in which the signal value is fixed at 0 is called a stuck-at-0 fault, and a fault in which the signal value is fixed at 1 is called a stuck-at-1 fault. That's what it means.

第10図はこのような縮退故障の1例を示す図で、NA
ND回路の信号線Fの信号値が0の信号値に固定された
場合を示している。
Figure 10 is a diagram showing an example of such a stuck-at fault.
This shows a case where the signal value of the signal line F of the ND circuit is fixed to a signal value of 0.

LSIのテストとして外部入力端子に与えられる人カバ
ターンは、LSI内部に仮定できる縮退故障をより多く
検出できるものが良く、その品質の尺度として故障検出
率が用いられる。故障検出率とは、LSI内部に仮定で
きる縮退故障の総数に対する外部出端子でその影響を観
測できる(すなわち故障が存在すると出カバターンが期
待値と異なる)縮退故障の数を百分率で表わしたもので
ある。
The human cover turn applied to the external input terminal as a test of the LSI should be able to detect as many stuck-at faults as possible inside the LSI, and the fault detection rate is used as a measure of its quality. Fault coverage is the number of stuck-at faults whose influence can be observed at the external output terminal (i.e., the output cover pattern differs from the expected value if a fault exists), expressed as a percentage of the total number of stuck-at faults that can be assumed inside the LSI. be.

故障検出率を求めるには、通常、故障シミュレータが使
われる。故障シミュレータとは、故障のない正常回路と
LSI内に仮定できるすべての故障に対する故障回路の
シミュレーションを行い、外部出力端子において正常回
路と異なる信号値となる故障回路の故障を検出できたと
判定していき、すべての人カバターンのシミュレーショ
ンが終了した時にその人カバターンでの故障検出率を求
める。
A fault simulator is usually used to determine the fault coverage rate. A fault simulator simulates a normal circuit with no faults and a faulty circuit for all possible faults in the LSI, and determines that it has detected a fault in the faulty circuit that causes a signal value different from that of the normal circuit at the external output terminal. Then, when the simulation of all human cover turns is completed, the failure detection rate for that person cover turn is determined.

論理シミュレータは、正常回路のみをシミュレーション
するのに対し、故障シミュレータは正常回路に加えて回
路内に仮定できる故障数分の故障回路をシミュレーショ
ンする必要があり膨大な計算量となる。従って、多数の
故障回路を効率良くシミュレーションする方法が考えら
れており、その代表的なものにパラレル法とコンカレン
ト法がある。これらの故障シミュレータはいずれも故障
回路の外部出力端子の信号値が正常回路の外部出力端子
の信号値と異なる場合、その故障が検出されたと判定す
る故障検出判定手段を備えている。
A logic simulator simulates only normal circuits, whereas a fault simulator needs to simulate not only normal circuits but also faulty circuits corresponding to the number of faults that can be assumed in the circuit, resulting in an enormous amount of calculation. Therefore, methods for efficiently simulating a large number of faulty circuits have been considered, and representative methods include parallel methods and concurrent methods. All of these fault simulators are equipped with fault detection and determination means that determines that a fault has been detected when the signal value at the external output terminal of a faulty circuit differs from the signal value at the external output terminal of a normal circuit.

第11図は従来の故障シミュレータが扱う信号値を示し
た表図である。第12図は第11図で示した信号値の正
常回路と故障回路との組合せを示す表図で、外部出力端
子において第12図中○印で示す正常回路と故障回路と
で信号値の異なる組合せの場合は故障検出判定手段によ
ってその故障が検出可能と判定し、第12図中×印で示
す正常回路と故障回路の信号値が一致する組合せ及びど
ちらかに不定値Xを含む組合せの場合は故障検出可能と
は判定しない。
FIG. 11 is a table showing signal values handled by a conventional fault simulator. Figure 12 is a table showing the combinations of the signal values shown in Figure 11 between the normal circuit and the faulty circuit, and the signal values are different between the normal circuit and the faulty circuit indicated by the circle in Figure 12 at the external output terminal. In the case of combinations, the failure detection and determination means determines that the failure can be detected, and in the case of combinations in which the signal values of the normal circuit and the faulty circuit match, as indicated by the x marks in FIG. is not determined to be fault detectable.

故障シミュレータは、ANDゲート、ΦRゲート、 N
oTゲート等の基本ゲート以外に記憶素子等の機能素子
を論理回路の構成素子として扱う。
The fault simulator uses AND gate, ΦR gate, N
In addition to basic gates such as oT gates, functional elements such as memory elements are treated as constituent elements of a logic circuit.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところで、従来の故障シミュレータでは第13図に示す
ように故障によっである記憶素子にクロックが入らなく
なる故障回路の場合、この記憶素子の出力はシミュレー
ション上では永久に不定値Xのままとなり、どのような
入力パターンに対してもこの故障は検出されなかった。
By the way, in conventional fault simulators, in the case of a faulty circuit in which the clock does not enter a memory element due to a fault, as shown in Figure 13, the output of this memory element remains at an undefined value X forever in the simulation, and no This failure was not detected even for such input patterns.

しかし、このような故障回路が実際に存在した場合、こ
の記憶素子の出力値は信号値0または信号値1のどちら
かになったままであり、故障は検出可能であり、従って
シミュレーション上での記憶素子のモデルが実際の回路
を適切に表現しておらず、上記のような故障を検出でき
ると判定できないという問題点があった。
However, if such a faulty circuit actually exists, the output value of this memory element will remain either signal value 0 or signal value 1, and the fault can be detected, so the memory in the simulation There was a problem in that the element model did not adequately represent the actual circuit, and it could not be determined that the above-mentioned failures could be detected.

この発明は上記のような問題点を解消するためになされ
たもので、記憶素子へのクロックが入らなくなる故障で
あっても、その故障の影響が外部出力端子で検出される
故障検出方式を得ることを目的としている。
This invention was made to solve the above-mentioned problems, and provides a failure detection method in which even if a failure causes a clock to not be input to a storage element, the effect of the failure is detected at an external output terminal. The purpose is to

〔問題点を解決するだめの手段〕[Failure to solve the problem]

このためこの発明は、故障の影響によって出力値が決定
できない各記憶素子の出力値に各々0または1を表わす
固有初期値割当手段4と、固有初期値割当手段4によっ
て割り当てた固有初期値と集積回路が正常であるとした
時の出力値Oとの組合せ及び上記固有初期値と集積回路
が正常であるとした時の出力値1との組合せが外部出力
端子で検出できたと判定する故障検出判定手段6とを備
え、外部出力端子で観測された上記2つの組合せのうち
いずれかを故障の影響として捉えて集積回路の故障を検
出することを特徴とするものである。
For this reason, the present invention provides a unique initial value allocating means 4 that expresses 0 or 1 to the output value of each storage element whose output value cannot be determined due to the influence of a failure, and a unique initial value assigned by the unique initial value allocating means 4 and an integrated value. Failure detection determination that determines that the combination of the output value O when the circuit is normal and the combination of the above specific initial value and the output value 1 when the integrated circuit is normal can be detected at the external output terminal. The device is characterized in that it detects a failure in the integrated circuit by detecting either of the above two combinations observed at the external output terminal as the influence of the failure.

〔作用〕[Effect]

この発明においては故障の影響によって出力信号値を決
定できない各記憶素子の出力の故障信号値にそれぞれ固
有初期値を割り当て、正常信号値0と固有初期値、及び
正常信号値1と固有初期値の両者の組合せが外部出力端
子まで伝搬した場合にその故障は検出されたと判定する
In this invention, a unique initial value is assigned to each failure signal value of the output of each storage element whose output signal value cannot be determined due to the influence of a failure, and a normal signal value 0 and a unique initial value, and a normal signal value 1 and a unique initial value are assigned. If the combination of both propagates to the external output terminal, it is determined that the failure has been detected.

〔発明の実施例〕[Embodiments of the invention]

以下、この発明の一実施例を図について説明する。第1
図は本発明の故障検出方式の一例を示す構成図で、図に
おいて、1は正常回路及びすべての故障回路に対し論理
回路を構成するすべての素子の信号線の信号値を不定値
Xに初期設定する初期値設定手段、2はすべての故障回
路に対して故障により値の定まる信号線の信号値を定め
ていく故障回路含意操作手段、3はすべての故障回路に
対して故障によりクロックが入らなくなる記憶素子を検
出する故障記憶素子検出手段、4は各故障回路に対して
故障記憶素子検出手段3によって検出された記憶素子i
の故障信号値に固有初期値Xiを割り当る固有初期値割
当手段、5は正常回路及びすべての故障回路のシミュレ
ーションを行う故障シミュレーション手段、6はすべて
の故障回路に対し外部出力端子の信号値が正常回路の信
号値と異なるかどうかを比較し正常回路の信号値と異な
る故障回路を故障検出可能と判定する故障検出判定手段
、7は故障検出判定手段6で検出可能となった故障数の
全故障数に対する割合を故障検出率として算出する故障
検出率算出手段である。
An embodiment of the present invention will be described below with reference to the drawings. 1st
The figure is a block diagram showing an example of the failure detection method of the present invention. In the figure, 1 initializes the signal values of the signal lines of all the elements constituting the logic circuit to an undefined value X for the normal circuit and all the faulty circuits. 2 is a faulty circuit implication operating means for determining the signal value of a signal line whose value is determined by a fault for all faulty circuits; 3 is a faulty circuit implication operating means for determining a signal value of a signal line whose value is determined by a fault for all faulty circuits; Faulty storage element detection means for detecting a missing memory element; 4 indicates a memory element i detected by the faulty storage element detection means 3 for each faulty circuit;
5 is a fault simulation means for simulating normal circuits and all faulty circuits; 6 is a fault simulation means for allocating signal values of external output terminals to all faulty circuits; Fault detection and determination means compares whether the signal value is different from the signal value of the normal circuit and determines that a faulty circuit that is different from the signal value of the normal circuit can be detected as a fault; This is a fault coverage calculation means that calculates a ratio to the number of faults as a fault coverage rate.

次に本発明の動作を第2図に従って説明する。Next, the operation of the present invention will be explained with reference to FIG.

第2図は本発明略こよる論理回路の故障検出方式の流れ
を示したものである。第2図において、初期値設定手段
1は正常回路及びすべての故障回路におけるすべての内
部信号値及び外部入力端子。
FIG. 2 shows the flow of a logic circuit fault detection method according to the present invention. In FIG. 2, initial value setting means 1 sets all internal signal values and external input terminals in normal circuits and all faulty circuits.

外部出力端子の信号値を不定値Xに初期設定し、またす
べての故障に未検出の印を付ける(ステップFl)。故
障回路含意操作手段2はすべての故障回路において故障
により信号値の定まる信号線の信号値を決定していく 
(ステップF2)。故障記憶素子検出手段3はすべての
故障回路において故障によりクロック入力端子にクロッ
クが入らず出力信号値を決定できなくなった記憶素子が
あるかどうかを判断し、あるならステップF4へ、ない
ならステップF5へ行く (ステップF3)。
The signal value of the external output terminal is initialized to an undefined value X, and all failures are marked as undetected (step Fl). The faulty circuit implication operating means 2 determines the signal values of signal lines whose signal values are determined by faults in all faulty circuits.
(Step F2). The faulty storage element detection means 3 determines whether there is a memory element in all the faulty circuits in which a clock cannot be input to the clock input terminal due to a fault and the output signal value cannot be determined. If there is, the process proceeds to step F4; if not, to step F5. Go to (Step F3).

固有初期値割当手段4は各故障回路において出力信号値
を決定できなくなった記憶素子iの出力故障信号値に固
有初期値Xiを割り当てる(ステップF4)。故障シミ
ュレーション手段5は1人カバターンについて正常回路
及びすべての故障回路のシミュレーションを行う (ス
テップF5)。故障検出判定手段6は外部出力端子にお
ける正常回路の信号値と各故障回路の信号値とを比較し
、信号値の異なる故障回路の故障に検出可能の印を付け
る(ステップF6)。まだ入力パターンがある場合はス
テップF5へ、もう入力パターンがない場合はステップ
F8へ行((ステップF7)。故障検出率算出手段7は
故障総数に対するステップF6で検出可能の印を付けら
れた故障数の割合を百分率で表わす故障検出率を算出す
る(ステップF8)。
The unique initial value allocating means 4 allocates a unique initial value Xi to the output failure signal value of the storage element i whose output signal value cannot be determined in each failed circuit (step F4). The fault simulation means 5 simulates a normal circuit and all faulty circuits for one-person cover turn (step F5). The fault detection and determination means 6 compares the signal value of the normal circuit and the signal value of each faulty circuit at the external output terminal, and marks the faults of the faulty circuits with different signal values as detectable (step F6). If there are still input patterns, go to step F5; if there are no more input patterns, go to step F8 ((step F7). A failure coverage rate expressed as a percentage is calculated (step F8).

第3図はこの発明を適用した論理回路の故障検出方式に
おいて扱う信号値を示している。Xi及びXiは本発明
において新たに導入された信号値であり、故障によって
出力信号値を決定できない一8= 記憶素子iの固有初期値を表わす。このXi及びXi 
は故障回路にしか現れない信号値であり、不定値の一種
ではあるが、この発明においてはその記憶素子iに固有
の信号値であるので信号値0及び1に準じた扱いをする
FIG. 3 shows signal values handled in the logic circuit fault detection method to which the present invention is applied. Xi and Xi are signal values newly introduced in the present invention, and represent the unique initial value of the storage element i whose output signal value cannot be determined due to a failure. This Xi and Xi
is a signal value that appears only in a faulty circuit and is a type of indefinite value, but in the present invention, it is a signal value unique to the storage element i, so it is treated in the same way as signal values 0 and 1.

第4図は第3図の信号値を扱う場合の2人力ANDゲー
トの真理値表を表わす表口、第5図は2人力5Rゲート
の真理値表を表わす表口、第6図はNOTゲートの真理
値表を表わす表口、第7図は記憶素子であるDラッチの
真理値表を表わす表口である。これらの真理値表は第2
図ステップF2の故障回路の含意操作及びステップF5
の正常回路及び故障回路のシミュレーションに適用され
る。
Figure 4 shows the truth table for the two-man AND gate when handling the signal values in Figure 3, Figure 5 shows the truth table for the two-man 5R gate, and Figure 6 shows the NOT gate. FIG. 7 is a front page showing the truth table of the D latch, which is a storage element. These truth tables are the second
Faulty circuit implication operation in step F2 and step F5
applied to the simulation of normal and faulty circuits.

第8図は第2図ステップF6において、正常回路の外部
出力端子における信号値と各故障回路の外部出力端子に
おける信号値を比較し、その故障を検出可能と判定する
かどうかの判定基準を示す表口であり、正常回路で信号
値1.故障回路で信号値0のような正常回路と故障回路
で信号値が異なる第8図中O印で示した組合せの場合は
、その時点でその故障は検出可能と判定される。また、
正常回路の信号値と故障回路の信号値が同じであるかま
たは正常回路と故障回路の信号値のどちらかが不定値X
である第8図中X印で示した組合せの場合は、その故障
は検出可能とは判定されない。
Figure 8 shows the criteria for determining whether or not the failure can be detected by comparing the signal value at the external output terminal of the normal circuit and the signal value at the external output terminal of each faulty circuit in step F6 of Figure 2. This is the front door, and the signal value is 1 in a normal circuit. In the case of a combination shown by O in FIG. 8 in which the signal value is different between a normal circuit and a faulty circuit, such as a signal value of 0 in a faulty circuit, it is determined that the fault is detectable at that point. Also,
Either the signal value of the normal circuit and the signal value of the faulty circuit are the same, or the signal value of either the normal circuit or the faulty circuit is an indefinite value
In the case of the combination indicated by the X mark in FIG. 8, the failure is not determined to be detectable.

第8図中Δ印で示した組合せは正常回路の信号値0.1
と故障回路の信号値Xi、Xiの組合せであり、これら
はそのままでは検出可能と判定できない。すなわち、0
/Xi(正常回路/故障回路)と1/Xi 、 O/X
iと1/Xi 、 0/Xiと0/Xi、1/Xi と
1/石の4つの組合せのうちいずれかの組合せの両方が
外部出力端子において観測されたときに初めてその故障
は検出可能と判定される。
The combination indicated by Δ in Figure 8 has a signal value of 0.1 in a normal circuit.
and the signal values Xi and Xi of the faulty circuit, and these cannot be determined to be detectable as they are. That is, 0
/Xi (normal circuit/faulty circuit) and 1/Xi, O/X
The fault can only be detected when any of the four combinations i and 1/Xi, 0/Xi and 0/Xi, and 1/Xi and 1/Xi are observed at the external output terminal. It will be judged.

以上のことを第9図に示す回路例に従って説明する。第
9図(a)は2つの2人力ANDゲートと1つのDラッ
チから成る回路例で、以下、正常回路とANDゲートG
2の出力にO縮退故障のある故障回路について考える。
The above will be explained according to the circuit example shown in FIG. Figure 9(a) is an example of a circuit consisting of two two-manual AND gates and one D latch.
Consider a faulty circuit with an O stuck-at fault at the output of 2.

第9図(b)は5人カバターンを与えた時第2図の各ス
テップの終了時点で回路内の各信号線の信号値と故障検
出の判定の変化を示した左図である。まず、ステップF
1において、回路内のすべての信号線の信号値が不定値
Xに初期化され、また故障には未検出の印か付けられる
。次に、ステップF2では故障に対する含念操作が行わ
れ、ANDゲートG2の出力が故障回路において信号値
0になる。ステップF3においては故障によりクロック
入力端子にクロックが入らなくなる記憶素子Dラッチ1
を検出し、ステップF4においてこのDラッチ1の故障
回路の信号値に固有初期値X+が割り当てられる。入力
パターンは5バタ〜ンあるので、ステップF5〜F6が
5回繰返される。2回目のステップF6において外部出
力端子01で正常回路の信号値0/故障回路の信号値X
rと観測されたが、まだ1/X1または0/X+は観測
されていないので検出可能とは判定できず、0/X1が
観測されたことを記憶しておく。4回目のステップF6
においては外部出力端子01で1/X1が観測され、過
去に0/X1がI I− 観測されているので、この時点で初めてこの故障が検出
可能と判定される。
FIG. 9(b) is a left diagram showing changes in the signal values of each signal line in the circuit and the determination of failure detection at the end of each step in FIG. 2 when a five-person cover turn is given. First, step F
1, the signal values of all signal lines in the circuit are initialized to an undefined value X, and faults are marked as undetected. Next, in step F2, a contemplative operation regarding the fault is performed, and the output of the AND gate G2 becomes a signal value 0 in the faulty circuit. In step F3, the memory element D latch 1 does not receive a clock to its clock input terminal due to a failure.
is detected, and a unique initial value X+ is assigned to the signal value of the faulty circuit of this D latch 1 in step F4. Since there are five input patterns, steps F5 and F6 are repeated five times. In the second step F6, the signal value of the normal circuit is 0/the signal value of the faulty circuit is X at the external output terminal 01.
r was observed, but since 1/X1 or 0/X+ has not been observed yet, it cannot be determined that it is detectable, and it is remembered that 0/X1 was observed. 4th step F6
Since 1/X1 is observed at the external output terminal 01 and 0/X1 has been observed as I I- in the past, it is determined that this failure is detectable for the first time at this point.

実際の論理回路において第9図(a)に示ず縮退故障が
存在した場合、Xlは信号値0または1のどちらかであ
り、信号値0であ、った時は4番目のパターンで、信号
値1であった時は2番目のパターンで検出することがで
きる。従来の方法ではこのような故障に対して検出可能
と判定できながったのに対し、本発明による固有初期値
を用いることにより、このような故障に対しても検出可
能と判定できるようになった。
If a stuck-at fault exists in an actual logic circuit, not shown in FIG. When the signal value is 1, it can be detected using the second pattern. While conventional methods could not determine that such faults are detectable, by using the unique initial values of the present invention, it is now possible to determine that such faults are detectable. became.

なお、上記実施例では本発明をDラッチに適用した場合
について説明したが、これをDラッチ以外の記憶素子に
も適用できることは明らかである。
Note that although the above embodiment describes the case where the present invention is applied to a D latch, it is clear that the present invention can also be applied to memory elements other than D latches.

また、上記実施例ではソフトウェアによる実施例を示し
たが、この方式をハードウェア装置を用いて実施するこ
とも可能である。
Further, although the above embodiments are implemented using software, it is also possible to implement this system using a hardware device.

〔発明の効果〕〔Effect of the invention〕

以上説明したようにこの発明は、故障の影響によって出
力値が決定できない各記憶素子の出力値に各々Oまたは
】を表わす固有初期値を割り当てる固有初期値割当手段
と、固有初期値割当手段によって割り当てた固有初期値
と集積回路が正常であるとした時の出力値0との組合せ
及び上記固有初期値と集積回路が正常であるとした時の
出力値1との組合せが外部出力端子で検出されたことを
判定する故障検出判定手段とを備え、外部出力端子で観
測された上記2つの組合せのうちいずれかを故障の影響
として捉えて集積回路の故障を検出するように構成した
ので、従来よりも高い故障検出率を確保できる効果があ
る。
As explained above, the present invention provides unique initial value assignment means that assigns a unique initial value representing O or ] to the output value of each storage element whose output value cannot be determined due to the influence of a failure; The combination of the specific initial value and the output value 0 when the integrated circuit is assumed to be normal, and the combination of the above specific initial value and the output value 1 when the integrated circuit is assumed to be normal are detected at the external output terminal. The present invention is configured to detect a failure in the integrated circuit by detecting either of the above two combinations observed at the external output terminal as the influence of the failure. This also has the effect of ensuring a high failure detection rate.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す構成図、第2図は本発
明の動作の流れを示す図1.第3図は本発明において扱
う信号値の左図、第4図は2人力ANDゲートの真理値
表を表わす左図、第5図は2人力ORゲー1−の真理値
表を表わ1)゛左図、2第15図はNOTゲートの真理
値表を表わす左図、第′1図はDラッチの真理値表を表
ね1表1ツ1、第8図は本発明において故障を検出可能
と判定す、bかどうかの判定基準を表わす左図、第9図
は本発明を適用した回路例を示す図、第10図は縮退故
障の例を示した図、第11図は従来の故障シミュレータ
が扱う信号値の左図、第12図は従来方式において故障
を検出可能と判定するかどうかの判定基準を表わす左図
、第13図は従来においてDラソヂの出力が故障により
決定できないことを示すための図である。 1・・・初期値設定手段、2・・・故障回路含意操作手
段、3・・・故障記憶素子検出手段、4・・・固有初期
値割当手段、5・・・故障シミュレーション手段、6・
・・故障検出判定手段、7・・・故障検出率算出手段。 代理人  大  岩  増  雄(ばか2名)第υ図 A”7つ□ 第12図 X、故飾4食出可宵巨と判定1ノJい 第13図
FIG. 1 is a configuration diagram showing an embodiment of the present invention, and FIG. 2 is a diagram showing the flow of operation of the present invention. Figure 3 is the left diagram of signal values handled in the present invention, Figure 4 is the left diagram showing the truth table of the two-man-powered AND gate, and Figure 5 is the truth table of the two-man-powered OR game 1).゛The left diagram, 2 Figure 15 is the left diagram showing the truth table of the NOT gate, Figure 1 is the truth table of the D latch. The left diagram shows the criteria for determining whether it is possible or not, Figure 9 is a diagram showing an example of a circuit to which the present invention is applied, Figure 10 is a diagram showing an example of a stuck-at fault, and Figure 11 is a diagram of a conventional circuit. The left diagram shows the signal values handled by the fault simulator, Figure 12 shows the criteria for determining whether a fault can be detected in the conventional method, and Figure 13 shows the fact that the output of the D Lasoge cannot be determined due to a fault in the conventional method. FIG. DESCRIPTION OF SYMBOLS 1... Initial value setting means, 2... Fault circuit implication operation means, 3... Fault storage element detection means, 4... Unique initial value assignment means, 5... Fault simulation means, 6.
. . . Failure detection determination means; 7. . . Failure detection rate calculation means. Agent Masuo Oiwa (2 idiots) Fig. υA" 7 □ Fig. 12

Claims (1)

【特許請求の範囲】 集積回路の内部に仮定される縮退故障の影響を集積回路
の外部端子に伝搬させる入力パターン系列を上記集積回
路の外部入力端子に入力して集積回路の故障を検出する
集積回路の故障検出方式において、 故障の影響によって出力値が決定できない各記憶素子の
出力値に各々0または1を表わす固有初期値を割り当て
る固有初期値割当手段と、固有初期値割当手段によって
割り当てた固有初期値と集積回路が正常であるとした時
の出力値0との組合せ及び上記固有初期値と集積回路が
正常であるとした時の出力値1との組合せが外部出力端
子で検出されたことを判定する故障検出判定手段とを備
え、外部出力端子で観測された上記2つの組合せのうち
いずれかを故障の影響として捉えて集積回路の故障を検
出することを特徴とする集積回路の故障検出方式。
[Claims] An integrated circuit that detects a failure in an integrated circuit by inputting to an external input terminal of the integrated circuit an input pattern sequence that propagates the influence of a stuck-at fault assumed inside the integrated circuit to an external terminal of the integrated circuit. In a circuit failure detection method, a unique initial value assigning means assigns a unique initial value representing 0 or 1 to the output value of each storage element whose output value cannot be determined due to the influence of the failure, and a unique initial value assigned by the unique initial value assigning means. A combination of the initial value and an output value of 0 when the integrated circuit is assumed to be normal, and a combination of the above specific initial value and an output value of 1 when the integrated circuit is assumed to be normal are detected at the external output terminal. failure detection determination means for determining the failure detection of an integrated circuit, and detects a failure of the integrated circuit by detecting one of the above two combinations observed at an external output terminal as an influence of the failure. method.
JP61220666A 1986-09-18 1986-09-18 Integrated circuit failure detection device Expired - Fee Related JPH0752215B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61220666A JPH0752215B2 (en) 1986-09-18 1986-09-18 Integrated circuit failure detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61220666A JPH0752215B2 (en) 1986-09-18 1986-09-18 Integrated circuit failure detection device

Publications (2)

Publication Number Publication Date
JPS6375576A true JPS6375576A (en) 1988-04-05
JPH0752215B2 JPH0752215B2 (en) 1995-06-05

Family

ID=16754547

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61220666A Expired - Fee Related JPH0752215B2 (en) 1986-09-18 1986-09-18 Integrated circuit failure detection device

Country Status (1)

Country Link
JP (1) JPH0752215B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5596586A (en) * 1994-07-14 1997-01-21 Mitsubishi Denki Kabushiki Kaisha Failure simulation method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5596586A (en) * 1994-07-14 1997-01-21 Mitsubishi Denki Kabushiki Kaisha Failure simulation method

Also Published As

Publication number Publication date
JPH0752215B2 (en) 1995-06-05

Similar Documents

Publication Publication Date Title
Millman et al. Diagnosing CMOS bridging faults with stuck-at fault dictionaries
US7661050B2 (en) Method and system for formal verification of partial good self test fencing structures
US5291495A (en) Method for designing a scan path for a logic circuit and testing of the same
US4176780A (en) Method and apparatus for testing printed circuit boards
Wadsack Fault coverage in digital integrated circuits
US4045736A (en) Method for composing electrical test patterns for testing ac parameters in integrated circuits
US5410548A (en) Test pattern fault equivalence
US6944837B2 (en) System and method for evaluating an integrated circuit design
Mahlstedt et al. Simulation of non-classical faults on the gate level-the fault simulator COMSIM
JPS6375576A (en) Fault detection system for integrated circuit
Alt et al. Simulation of non-classical faults on the gate level-fault modeling
JP2773148B2 (en) Circuit design method for testability
Gharaybeh et al. Parallel concurrent path-delay fault simulation using single-input change patterns
JPH01156680A (en) Fault diagnosing method for logic circuit
JPH0611543A (en) Method and device for generating inspection sequence
JPH0798365A (en) Fault detection factor calculating method for test pattern and device thereof
JP2658857B2 (en) Equivalent fault extraction method and device
JPH0718912B2 (en) Integrated circuit failure detection method
JPS63231279A (en) Estimating method for fault point of logic circuit
Dahlgren Switch-level modeling of feedback faults using global oscillation control
JPH04241040A (en) Fault simulation method
JPH0778756B2 (en) Failure simulation method
Syed Fault simulation of stuck at faults and bridging faults for an 8-bit carry lookahead adder
Willing et al. Establishing ASIC fault-coverage guidelines for high-reliability systems
Wakimura et al. An evaluation of random input test for the verification of circuit realizations

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees