JPS637463B2 - - Google Patents

Info

Publication number
JPS637463B2
JPS637463B2 JP56103529A JP10352981A JPS637463B2 JP S637463 B2 JPS637463 B2 JP S637463B2 JP 56103529 A JP56103529 A JP 56103529A JP 10352981 A JP10352981 A JP 10352981A JP S637463 B2 JPS637463 B2 JP S637463B2
Authority
JP
Japan
Prior art keywords
film
insulating film
films
opening
metal wiring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56103529A
Other languages
Japanese (ja)
Other versions
JPS586149A (en
Inventor
Kunio Aomura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP10352981A priority Critical patent/JPS586149A/en
Publication of JPS586149A publication Critical patent/JPS586149A/en
Publication of JPS637463B2 publication Critical patent/JPS637463B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Electrodes Of Semiconductors (AREA)
  • Drying Of Semiconductors (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Description

【発明の詳細な説明】 本発明は半導体装置の製造方法に関し、特に多
層配線構造を有する半導体装置の製造方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a semiconductor device, and particularly to a method for manufacturing a semiconductor device having a multilayer wiring structure.

近年、半導体装置はますます高集積化、高密度
化が進み、それに伴つて不純物拡散領域パター
ン、絶縁膜への開孔パターン、導電膜パターン等
の微細化とともに、導電膜の多層化が行なわれる
ようになつている。しかしながら、導電膜のパタ
ーンの微細化と導電膜の多層化は従来技術におい
ては両立する技術ではなかつた。即ち、従来の導
電膜の多層化に対しては、下層の導電膜の段部
で、上層の導電膜の断線を防止するため、下層の
導電膜の側面が該下層の導電膜の下地に対して垂
直にならないように傾斜をもたせてその段部が急
岐にならないように対処して来た。しかしなが
ら、この方法では導電膜を垂直にパターニングす
ることができないため微細化の実現に対しては不
適当な方法である。そしてこれらの欠点を防止す
る方法として従来使用されている方法に、下層と
上層の導電膜の間の層間絶縁膜として、リンガラ
ス膜を使用し、このリンガラス膜の形成後、1000
℃付近の高温処理によりフローさせて段部を滑ら
かにする方法がある。しかしながら、この方法も
リンガラス膜を使用しなければならないというこ
と、1000℃付近の高温処理をしなければならない
ということの制限があるため、使用範囲が限定さ
れる。即ち、リンガラス膜の他にも層間絶縁膜と
しては気相成長による酸化膜、アルミナ膜、及び
プラズマ化学反応による酸化膜、窒化膜等があ
る。そして、これらの絶縁膜にはリンガラス膜に
はない有効な特性をものものがある。例えば、熱
的に安定であるとか、厚い膜厚が容易に得られる
とか、導電膜との密着性が良いとか、耐湿性に優
れているとか等である。さらに1000℃付近の高温
処理をしなければならないことにより、不純物拡
散領域の再拡散による回路素子の特性変化は避け
られないし、さらに下層導電膜として、アルミ膜
等の金属膜は使用できない等の問題が発生する。
In recent years, semiconductor devices have become increasingly highly integrated and densely packed, leading to miniaturization of impurity diffusion region patterns, hole patterns in insulating films, conductive film patterns, etc., as well as multilayer conductive films. It's becoming like that. However, in the prior art, miniaturization of the pattern of the conductive film and multilayering of the conductive film are not compatible. In other words, in order to prevent disconnection of the upper conductive film at the stepped portion of the lower conductive film, the side surface of the lower conductive film is connected to the base of the lower conductive film. In order to prevent the step from becoming vertical, we created an incline to prevent the step from becoming a sharp junction. However, this method does not allow vertical patterning of the conductive film, so it is not suitable for realizing miniaturization. A method conventionally used to prevent these defects is to use a phosphor glass film as an interlayer insulating film between the lower and upper conductive films, and after forming this phosphor glass film,
There is a method of smoothing the steps by causing the material to flow through high-temperature treatment around ℃. However, this method also has limitations in that it requires the use of a phosphorus glass film and that it must be treated at a high temperature of around 1000°C, which limits its range of use. That is, in addition to the phosphorus glass film, interlayer insulating films include oxide films and alumina films produced by vapor phase growth, and oxide films and nitride films produced by plasma chemical reactions. These insulating films have effective properties that phosphorous glass films do not have. For example, it is thermally stable, a thick film can be easily obtained, it has good adhesion to a conductive film, and it has excellent moisture resistance. Furthermore, since high-temperature treatment at around 1000°C is required, changes in circuit element characteristics due to re-diffusion in the impurity diffusion region are unavoidable, and metal films such as aluminum films cannot be used as the lower conductive film. occurs.

同様の問題は下層導電膜と上層導電膜との電気
的接続のための層間絶縁膜に設ける開孔部の段部
でも発生する。
A similar problem also occurs at the stepped portion of the opening provided in the interlayer insulating film for electrical connection between the lower conductive film and the upper conductive film.

第1図は従来の半導体装置の一例の断面図であ
る。複数の回路素子(図中では省略)を含む半導
体基板11を覆い、選択的に設けられた開孔部を
有する熱酸化膜12の上面に第1層目の金属配線
13,13′が選択的に形成され、該金属配線1
3,13′の上及びその他の熱酸化膜12を覆つ
て気相成長の酸化膜による層間絶縁膜14が形成
され、該層間絶縁膜14に選択的に設けられた開
孔部15を通じて第1層目の金属配線13と電気
的に接続し、層間絶縁膜14上に延在する第2層
目の金属配線16が形成されている。
FIG. 1 is a sectional view of an example of a conventional semiconductor device. A first layer of metal wiring 13, 13' is selectively formed on the upper surface of a thermal oxide film 12 which covers a semiconductor substrate 11 including a plurality of circuit elements (not shown) and has selectively provided openings. The metal wiring 1 is formed in
3 and 13' and covering the other thermal oxide films 12, an interlayer insulating film 14 made of a vapor-grown oxide film is formed, and a first A second layer metal interconnect 16 is formed that is electrically connected to the second layer metal interconnect 13 and extends over the interlayer insulating film 14 .

このような従来の半導体装置構造において、層
間絶縁膜14に設けられた開孔部15の段部17
にはテーパーがつけられているが、第1層目の金
属配線13,13′の上とその他の領域との間で
生ずる段部18,18′,18″が急峻なため、こ
の上に形成される第2層目の金属配線16に膜厚
の薄い部分が発生し、第2層目の金属配線16が
断線し易くなり、微細化への妨げとなるという欠
点があつた。
In such a conventional semiconductor device structure, the stepped portion 17 of the opening 15 provided in the interlayer insulating film 14
are tapered, but because the stepped portions 18, 18', 18'' that occur between the tops of the first layer metal wiring 13, 13' and other areas are steep, This has the disadvantage that thin portions occur in the second layer metal wiring 16, which makes the second layer metal wiring 16 more likely to break, which hinders miniaturization.

本発明の目的は、層間絶縁膜がリンガラスに限
定されず、高温処理を必要とせずに配線接続部の
段部に傾斜をもたせることができ、断線をなく
し、しかも微細化が可能な多層配線構造を有する
半導体装置の製造方法を提供することにある。
An object of the present invention is to provide a multilayer interconnection in which the interlayer insulating film is not limited to phosphor glass, which allows the stepped portions of interconnection connections to be sloped without requiring high-temperature treatment, eliminates disconnection, and allows miniaturization. An object of the present invention is to provide a method for manufacturing a semiconductor device having a structure.

本発明の半導体装置の製造方法は、半導体基板
を覆う第1の絶縁膜に開孔部を設ける工程と、該
開孔部の少なくとも一部を覆い、かつ第1の絶縁
膜上に延在する第1の導電膜を選択的に設ける工
程と、該第1の導電膜上及びその他の領域を覆う
第2の絶縁膜を被着させる工程と、該第2の絶縁
膜に少なくとも第1の導電膜に達する開孔部を設
ける工程と、該開孔部及びその他の第2の絶縁膜
上を覆う第3の絶縁膜を被着させた後、高速イオ
ンビームにより少なくとも前記第3の絶縁膜の一
部又は第3の絶縁膜と少なくとも第2の絶縁膜の
1部を除去する工程とを含んで構成される。
The method for manufacturing a semiconductor device of the present invention includes the steps of providing an opening in a first insulating film that covers a semiconductor substrate, and forming a hole that covers at least a portion of the opening and extends over the first insulating film. a step of selectively providing a first conductive film; a step of depositing a second insulating film covering the first conductive film and other regions; After the step of providing an opening that reaches the film and depositing a third insulating film that covers the opening and the rest of the second insulating film, at least the third insulating film is irradiated with a high-speed ion beam. The method includes a step of removing part or the third insulating film and at least a part of the second insulating film.

次に本発明の実施例について図面を用いて説明
する。
Next, embodiments of the present invention will be described with reference to the drawings.

第2図a〜eは本発明の一実施例を説明するた
めの工程順に示した半導体チツプの断面図であ
る。
FIGS. 2a to 2e are cross-sectional views of a semiconductor chip shown in the order of steps for explaining one embodiment of the present invention.

まず、第2図aに示すように、複数個の回路素
子(図中では省略)を含む半導体基板31を覆う
熱酸化膜32に選択的に開孔部を設け、少なくと
も一つは該開孔部を覆う第1層目の金属配線3
3,33′を選択的に形成し、続いて第1層目の
金属配線33,33′及びその他の熱酸化膜32
の表面を覆う第1のプラズマ化学反応による窒化
膜34を形成する。もし、第1層目の配線を金属
膜でなく、多結晶シリコン膜のような半導体薄膜
で形成した場合には、半導体基板内の回路素子の
少なくとも一部は、半導体薄膜を被着した後に不
純物を添加し、押込んで形成することも可能であ
る。又、プラズマ化学反応による窒化膜の膜厚は
約1.0μmが最適である。又、この段階では問題の
段部38,38′,38″,38は急峻である。
First, as shown in FIG. 2a, openings are selectively provided in the thermal oxide film 32 covering the semiconductor substrate 31 including a plurality of circuit elements (not shown in the figure), and at least one of the openings is The first layer of metal wiring 3 covering the
3, 33' are selectively formed, and then the first layer metal wiring 33, 33' and other thermal oxide films 32 are formed.
A nitride film 34 is formed by a first plasma chemical reaction to cover the surface of the substrate. If the first layer wiring is formed with a semiconductor thin film such as a polycrystalline silicon film instead of a metal film, at least some of the circuit elements in the semiconductor substrate may be contaminated with impurities after the semiconductor thin film is deposited. It is also possible to form by adding and pressing. Further, the optimal thickness of the nitride film formed by plasma chemical reaction is approximately 1.0 μm. Further, at this stage, the stepped portions 38, 38', 38'', and 38 in question are steep.

次に、第2図bに示すように、プラズマ化学反
応による窒化膜34に第1層目の金属配線33に
達する開孔部35を設ける。
Next, as shown in FIG. 2b, an opening 35 is formed in the nitride film 34 formed by a plasma chemical reaction to reach the first layer metal wiring 33. Then, as shown in FIG.

次に、第2図cに示すように、全面にほぼ均一
に再び第2のプラズマ化学反応による窒化膜39
を形成する。この時のプラズマ化学反応による窒
化膜39の膜厚は約0.5μmが最適である。
Next, as shown in FIG.
form. The optimal thickness of the nitride film 39 formed by the plasma chemical reaction at this time is approximately 0.5 μm.

次に、第2図dに示すように、表面全体に高速
イオンビームを当てて前工程まで形成された窒化
膜39の膜厚の一部をエツチングする。この処理
によりエツチング前に急峻であつた段部38,3
8′,38″,38及び窒化膜に設けられた開孔
部の段部37,37′が緩やかな一定の傾斜角を
有するほぼ平らな面になる。こうして形成される
絶縁膜を301で表わすことにする。絶縁膜30
1は窒化膜34と39とから成る場合もあるし、
窒化膜39が除去されて窒化膜34のみから成る
場合もある。この実施例のように膜34と39と
が共に窒化膜である場合両者の区別はつかなくな
る。これは高速イオンビームにより適当な物質を
エツチングした場合、イオンビームの入射方向に
対する角度によりエツチング速度が変わるためで
あり、通常の絶縁膜においては、この角度が約45
度の面でエツチング速度が最大になる性質を利用
している。即ち、半導体基板面に垂直にイオンビ
ームを当ててエツチングすると、半導体基板上に
あつた急峻な段は約45度の傾斜角を有するほぼ平
らな面にエツチングされることになる。さらにイ
オンビームの入射方向を半導体基板表面に対して
垂直方向からはずして斜めからあてると、段部の
傾斜角は45度より小さくなり、さらに緩やかにな
る。本実施例では、イオンビームを垂直にあて、
平面部で約0.5μmの膜厚をエツチングしている。
それ故エツチング終了後には自動的に前に設けた
開孔部底面には第1層目の金属配線33の表面が
露出される。
Next, as shown in FIG. 2d, a high-speed ion beam is applied to the entire surface to etch a portion of the thickness of the nitride film 39 that has been formed up to the previous step. This process removes the steep steps 38, 3 before etching.
8', 38'', 38 and the step portions 37, 37' of the openings provided in the nitride film become substantially flat surfaces with a gentle and constant inclination angle.The insulating film thus formed is denoted by 301. Insulating film 30
1 may consist of nitride films 34 and 39,
In some cases, the nitride film 39 is removed and only the nitride film 34 is formed. When the films 34 and 39 are both nitride films as in this embodiment, it becomes difficult to distinguish between them. This is because when a suitable material is etched with a high-speed ion beam, the etching rate changes depending on the angle relative to the direction of incidence of the ion beam.For normal insulating films, this angle is approximately 45
It takes advantage of the property that the etching speed is maximized in terms of depth. That is, when etching is performed by applying an ion beam perpendicularly to the surface of the semiconductor substrate, the steep steps on the semiconductor substrate are etched into a substantially flat surface having an inclination angle of about 45 degrees. Furthermore, if the direction of incidence of the ion beam is deviated from the direction perpendicular to the surface of the semiconductor substrate and it is applied obliquely, the angle of inclination of the stepped portion becomes smaller than 45 degrees and becomes even gentler. In this example, the ion beam is applied vertically,
A film thickness of approximately 0.5 μm is etched on the flat surface.
Therefore, after the etching is completed, the surface of the first layer metal wiring 33 is automatically exposed at the bottom of the previously provided opening.

次に第2図eに示すように、第2層目の金属配
線36を前記プラズマ化学反応による窒化膜で構
成された間絶縁膜301上及び開孔部35を覆つ
て形成する。第3図dの所で述べた如く、段部3
8,38′,38″,38及び開孔部37,3
7′はほぼ等しい緩やかな傾斜角を有する平らな
面になつているため、第2層目の金属配線の問題
は起こらない。
Next, as shown in FIG. 2e, a second layer of metal wiring 36 is formed to cover the opening 35 and the interlayer insulating film 301 made of the nitride film produced by the plasma chemical reaction. As mentioned in Fig. 3d, the step 3
8, 38', 38'', 38 and openings 37, 3
Since the surface 7' is a flat surface having approximately the same gentle inclination angle, the problem of the second layer metal wiring does not occur.

上記実施例の説明において、半導体基板内の回
路素子については省略したが、本発明はバイポー
ラ型トランジスタ、電界効果型トランジスタ、
PN接合ダイオード、金属−半導体ダイオード等
の能動素子及び抵抗、容量等の受動素子及びこれ
らの組み合せ素子等すべて適用可能である。又、
第1、第2、第3の絶縁膜については、熱酸化
膜、熱窒化膜、気相成長による酸化膜、窒化膜、
アルミナ膜、リンガラス膜、及びプラズマ化学反
応による酸化膜、窒化膜等、さらに、これらを含
む絶縁膜であれば適用可能である。さらにまた、
第1、第2の導電膜については金属薄膜以外にも
半導体薄膜、金属−半導体合金薄膜、及びこれら
を含む導電膜であれば適用可能である。
In the description of the above embodiments, circuit elements within the semiconductor substrate have been omitted, but the present invention is applicable to bipolar transistors, field effect transistors,
Active elements such as PN junction diodes and metal-semiconductor diodes, passive elements such as resistors and capacitors, and combinations of these elements are all applicable. or,
Regarding the first, second and third insulating films, thermal oxide film, thermal nitride film, oxide film by vapor phase growth, nitride film,
Any insulating film including an alumina film, a phosphorus glass film, an oxide film formed by a plasma chemical reaction, a nitride film, or the like can be applied. Furthermore,
In addition to metal thin films, the first and second conductive films may be semiconductor thin films, metal-semiconductor alloy thin films, or conductive films containing these.

以上説明したように、本発明によれば、層間絶
縁膜がリンガラスに限定されず、高温処理を必要
とせずに配線接続部の段部に傾斜をもたせること
ができ、断線をなくした半導体装置を製造するこ
とができる。
As explained above, according to the present invention, the interlayer insulating film is not limited to phosphorus glass, and the stepped portion of the wiring connection portion can be sloped without requiring high-temperature treatment, and the semiconductor device eliminates disconnection. can be manufactured.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の半導体装置の一例の断面図、第
2図a〜eは本発明の一実施例を説明するための
工程順に示した半導体チツプの断面図である。 11……半導体基板、12……熱酸化膜、1
3,13′……金属配線、14……層間絶縁膜、
15……開孔部、16……金属配線、17……段
部、18,18′,18″……段部、31……半導
体基板、32……熱酸化膜、33,33′……金
属配線、34……窒化膜、35……開孔部、36
……金属配線、37,37′……段部、38,3
8′,38″,38……段部、39……窒化膜、
301……絶縁膜。
FIG. 1 is a sectional view of an example of a conventional semiconductor device, and FIGS. 2 a to 2e are sectional views of a semiconductor chip shown in order of steps for explaining an embodiment of the present invention. 11...Semiconductor substrate, 12...Thermal oxide film, 1
3, 13'...Metal wiring, 14...Interlayer insulating film,
15...Opening part, 16...Metal wiring, 17...Step part, 18, 18', 18''...Step part, 31...Semiconductor substrate, 32...Thermal oxide film, 33, 33'... Metal wiring, 34...Nitride film, 35...Opening part, 36
...Metal wiring, 37,37'...Step part, 38,3
8', 38'', 38... step part, 39... nitride film,
301...Insulating film.

Claims (1)

【特許請求の範囲】[Claims] 1 半導体基板を覆う第1の絶縁膜に開孔部を設
ける工程と、該開孔部の少なくとも一部を覆いか
つ第1の絶縁膜上に延在する第1の導電膜を選択
的に設ける工程と、該第1の導電膜上及びその他
の領域を覆う第2の絶縁膜を被着させる工程と、
該第2の絶縁膜に少なくとも前記第1の導電膜に
達する開孔部を設ける工程と、該開孔部及びその
他の第2の絶縁膜上を覆う第3の絶縁膜を被着さ
せた後、高速イオンビームにより少なくとも前記
第3の絶縁膜の一部又は第3の絶縁膜と少なくと
も第2の絶縁膜の一部を除去する工程とを含むこ
とを特徴とする半導体装置の製造方法。
1. Providing an opening in a first insulating film covering a semiconductor substrate, and selectively providing a first conductive film covering at least a portion of the opening and extending over the first insulating film. a step of depositing a second insulating film covering the first conductive film and other areas;
A step of providing an opening in the second insulating film that reaches at least the first conductive film, and depositing a third insulating film that covers the opening and the rest of the second insulating film. A method for manufacturing a semiconductor device, comprising the step of removing at least a portion of the third insulating film or the third insulating film and at least a portion of the second insulating film using a high-speed ion beam.
JP10352981A 1981-07-02 1981-07-02 Semiconductor device and its manufacture Granted JPS586149A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10352981A JPS586149A (en) 1981-07-02 1981-07-02 Semiconductor device and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10352981A JPS586149A (en) 1981-07-02 1981-07-02 Semiconductor device and its manufacture

Publications (2)

Publication Number Publication Date
JPS586149A JPS586149A (en) 1983-01-13
JPS637463B2 true JPS637463B2 (en) 1988-02-17

Family

ID=14356416

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10352981A Granted JPS586149A (en) 1981-07-02 1981-07-02 Semiconductor device and its manufacture

Country Status (1)

Country Link
JP (1) JPS586149A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2586434B2 (en) * 1987-08-21 1997-02-26 株式会社デンソー Magnetic detector

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52156375A (en) * 1976-06-22 1977-12-26 Nippon Electric Co Method of producing multilayer circuit substrate

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52156375A (en) * 1976-06-22 1977-12-26 Nippon Electric Co Method of producing multilayer circuit substrate

Also Published As

Publication number Publication date
JPS586149A (en) 1983-01-13

Similar Documents

Publication Publication Date Title
US6639303B2 (en) Integrated circuits and methods for their fabrication
US4977105A (en) Method for manufacturing interconnection structure in semiconductor device
US3456335A (en) Contacting arrangement for solidstate components
KR20000023210A (en) Semiconductor device and method for manufacturing the same
JPS61112356A (en) Formation of through conductor for ic
JP2001185551A (en) Structure of semiconductor device and manufacturing method thereof
JPS637463B2 (en)
JPS6161698B2 (en)
JPS5886746A (en) Semiconductor device
JPS6160580B2 (en)
JPS61196555A (en) Formation for multilayer interconnection
JPS62179723A (en) Manufacture of semiconductor device
JPH0611044B2 (en) Method for manufacturing semiconductor device
JPS6151917A (en) Manufacture of semiconductor device
JPS60180143A (en) Semiconductor device
JP3447896B2 (en) Method of forming SOG coating film and method of forming wiring structure using the same
JPH01230269A (en) Semiconductor integrated circuit device
JPS6149439A (en) Manufacture of semiconductor device
JPS63169042A (en) Manufacture of semiconductor device
JPS6143855B2 (en)
JPS62137852A (en) Manufacture of semiconductor device
JPS62166547A (en) Formation of multilayer interconnection structure
JPS5831557A (en) Semiconductor device
JPH05144765A (en) Manufacture of semiconductor device
JPH01241845A (en) Manufacture of semiconductor device