JPS586149A - Semiconductor device and its manufacture - Google Patents

Semiconductor device and its manufacture

Info

Publication number
JPS586149A
JPS586149A JP10352981A JP10352981A JPS586149A JP S586149 A JPS586149 A JP S586149A JP 10352981 A JP10352981 A JP 10352981A JP 10352981 A JP10352981 A JP 10352981A JP S586149 A JPS586149 A JP S586149A
Authority
JP
Japan
Prior art keywords
insulating film
film
conductive film
semiconductor device
semiconductor substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10352981A
Other languages
Japanese (ja)
Other versions
JPS637463B2 (en
Inventor
Kunio Aomura
青村 國男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP10352981A priority Critical patent/JPS586149A/en
Publication of JPS586149A publication Critical patent/JPS586149A/en
Publication of JPS637463B2 publication Critical patent/JPS637463B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To form a layer insulating film without limiting its material to phosphorus glass and requiring treatment at a high temperature by forming both a boundary stepped section and a stepped section shaped by an opening section by flat surfaces with approximately equal predetermined angles of inclination. CONSTITUTION:Metallic wiring 23, 23' are formed to the upper surface of a thermal oxide film 22. A stepped layer insulated film 24 is shaped so as to coat the upper sections of the metallic wiring 23, 23' and another thermal oxide film 22. Metallic wiring 26 is molded onto the layer insulating film 24, and connected electrically to the metallic wiring 23 through the opening section 25 formed to the layer insulating film 24. In this case, the stepped sections 28, 28', 28'' of the surface of the layer insulating film 24 generated among the upper sections of the metallic wiring 23, 23' and the upper section of another thermal oxide film 22 and the stepped section 27 of the opening section 25 shaped to the layer insulating film 24 are formed by the approximately flat surfaces with the approximately predetermined angles of inclination.

Description

【発明の詳細な説明】 本発明は半導体装置とその製造方法に関し、41に多層
配線構造における層間絶縁膜O!1面の段部と、諌絶縁
膜に設けられ大開孔部周辺段部とが、ほぼ等しい緩やか
な傾斜角で構成されている半導体装置とその製造方法に
関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a semiconductor device and a method for manufacturing the same, and relates to an interlayer insulating film O! in a multilayer wiring structure. The present invention relates to a semiconductor device in which a stepped portion on one surface and a stepped portion around a large opening provided in a diagonal insulating film have approximately equal gentle inclination angles, and a method for manufacturing the same.

近年、半導体装置はますます高集積化、高密度化が進み
、それに伴って不純物拡散領域パターン、絶縁膜への開
孔パターン、導電膜パターン等の微細化とともに1導電
膜の多層化が行なわれるようになりている。しかじな゛
がら、導電膜のパターンO微細化と導電膜の多層化は従
来技術においては両立する技術ではなかった。即ち、従
来の導電膜の多層化に対しては、下層の導電膜0段部で
、上層の導電膜の断線を防止するため、下層の導電膜の
側面が該下層の導電膜の下地に対して垂直にならないよ
うに傾斜をもえせてその段部が急峻にならないように対
処して来た。しかしながら、この方法では導電膜を垂直
にパターニングすることかで幹ないため微細化の実現に
対しては不適当な方法である。セしてこれらの欠点を防
止する方法として従来使用されている方法に、下層と上
層の導電膜の間の層間絶縁膜として、リンガ2ス膜を使
用し、このりンガラス膜の形成後、toooc付近の高
温処理によりフローさせて段部を滑らかKする方法があ
る。しかしながら、この方法もリンガラス膜を使用しな
ければならないという仁と、10000付近の高温処理
をしなければならないということの制限があるため、使
用範囲が限定される。即ち、リンガラス膜の他にも層間
絶縁膜としては気相成長による酸化膜、アル電す膜、及
びプラズマ化学反応による酸化膜、窒化膜等がある。
In recent years, semiconductor devices have become increasingly highly integrated and densely packed, and along with this, impurity diffusion region patterns, hole patterns in insulating films, conductive film patterns, etc. have been miniaturized, and a single conductive film is multilayered. It looks like this. However, in the prior art, miniaturization of the pattern O of the conductive film and multilayering of the conductive film are not compatible. In other words, in order to prevent disconnection of the upper conductive film at the 0-stage part of the lower conductive film in the conventional multilayer conductive film, the side surface of the lower conductive film is connected to the base of the lower conductive film. We have tried to prevent the steps from becoming steep by increasing the slope so that they are not vertical. However, since this method involves vertical patterning of the conductive film, it is not suitable for realizing miniaturization. A method conventionally used to prevent these defects by using a ring glass film is to use a ring glass film as an interlayer insulating film between the lower and upper conductive films, and after forming the ring glass film, toooc There is a method of smoothing the stepped portion by causing it to flow through high-temperature treatment in the vicinity. However, this method also has limitations in that it requires the use of a phosphor glass film and in that it must be treated at a high temperature of around 10,000 ℃, so its range of use is limited. That is, in addition to the phosphor glass film, interlayer insulating films include oxide films produced by vapor phase growth, aluminum films, and oxide films and nitride films produced by plasma chemical reactions.

そして、これらの絶縁膜KFiリンガラス膜にはない有
効な特性をものものがある。例えば、熱的に安定である
とか、厚い膜厚が容AK得られるとか、導電膜との帯薄
性が良いとか、耐湿性に優れているとか等である。さら
KIJOOc付近の高温処理をしなければならないこと
によ)、不純物拡散領域の再拡散による回路素子041
性変化は避けられな−し、さらに下層導電膜として、ア
ルン膜等の金属膜は使用できない等O問題が発生する。
In addition, these insulating films have effective characteristics that are not found in KFi phosphorus glass films. For example, it is thermally stable, allows a thick film to be obtained, has good adhesion to the conductive film, and has excellent moisture resistance. In addition, due to the need for high temperature treatment near KIJOOc), circuit element 041 due to re-diffusion of the impurity diffusion region
Changes in properties are unavoidable, and further problems arise, such as the inability to use a metal film such as an Arun film as the lower conductive film.

同様の問題は下層導電膜と上層導電膜との電気的接続の
九めの層間絶縁膜に膜性る開孔部の段部でも発生する。
A similar problem occurs at the stepped portion of the opening in the ninth interlayer insulating film for electrical connection between the lower conductive film and the upper conductive film.

嬉1図は従来の半導体装置の一例の断面図である。複数
の回路素子(図中では省略)を含む半導体基板11を覆
い、選択的に設けられ九開孔部を有する熱酸化膜12の
上面に第1層目の金属配線13.13’が選択的に形成
され、該金属配線13゜1s′0上及びその他の熱酸化
膜12を覆って気相成長の酸化膜による層間絶縁膜14
が形成され、該層間絶縁膜14に選択的に設けられた開
孔部15を通じて第1層目の金属配線13と電気的に接
続し1層間絶縁膜14上に延在する第2層目の金属配線
16が形成されて−る。
Figure 1 is a sectional view of an example of a conventional semiconductor device. A first layer of metal wiring 13.13' is selectively formed on the upper surface of a thermal oxide film 12 that covers a semiconductor substrate 11 including a plurality of circuit elements (not shown) and has nine openings. An interlayer insulating film 14 made of an oxide film grown in a vapor phase is formed on the metal wiring 13°1s'0 and covering the other thermal oxide films 12.
is formed, and a second layer extending over the first interlayer insulating film 14 is electrically connected to the first layer metal wiring 13 through an opening 15 selectively provided in the interlayer insulating film 14. Metal wiring 16 is formed.

このような従来の半導体装置構造において、層間絶縁膜
14に設けられ九一孔部15の段部17にはテーパーが
つけられているが、第1層目の金属膜4913.13’
の上とその他の領域との間で生ずる段部III、 1B
’  1B’が急峻なため、この上に形成される第2層
目の金属配線16に膜厚の薄い部分が発生し、第2層目
の釡属配線16が断線し易くな勢、微細化への妨げとな
るという欠点があワた。
In such a conventional semiconductor device structure, the step portion 17 of the hole portion 15 provided in the interlayer insulating film 14 is tapered, but the first layer metal film 4913.13'
Step III, 1B that occurs between the top of and other areas
Because '1B' is steep, a thin part occurs in the second layer metal wiring 16 formed on this, and the second layer metal wiring 16 is likely to be disconnected. The drawback is that it becomes a hindrance.

本発明は上記欠点を除き、層間絶縁膜がりンガラスに限
定されず、高温処理を必要とせずに形成でき、しかも微
細化が可能な多層配線構造を有する半導体装置とその製
造方法を提供する4のである。
The present invention eliminates the above-mentioned drawbacks, provides a semiconductor device having a multilayer wiring structure in which the interlayer insulating film is not limited to phosphor glass, can be formed without requiring high-temperature treatment, and can be miniaturized, and a method for manufacturing the same. be.

本発明の半導体装置は、複数個の回路素子を含む半導体
基板と前記半導体基板を覆い、選択的に設けられた複数
個の開孔部を有する第10絶縁膜と、前記開孔部を通じ
て半導体基板と電気的に接続しかつ一記第10絶縁膜上
に延在して選択的に設けられた複数個の第1導電膜と前
記第10導電膜及びその他の領域を覆う第20絶縁膜と
、飾記第2の絶縁膜に選択的に設けられえ開孔部を通じ
て少なくとも第1の導電膜と電気的に接続しかつ前記第
2の絶縁膜上に延在して選択的に股′けられた複数個の
第2の導電膜を有する半導体装置において、第1の導電
膜上からその他の領域に至る境界段部の第2の絶縁膜の
表面の少なくと4一部と第2の絶縁膜に設けられ−kl
I!孔部で形成される段部の少なくとも一部とが共Kf
iば等しい一定の傾斜角を有する平ら1面で構成されて
いることを特徴とする。
The semiconductor device of the present invention includes: a semiconductor substrate including a plurality of circuit elements; a tenth insulating film covering the semiconductor substrate and having a plurality of selectively provided openings; a plurality of first conductive films electrically connected to and selectively provided extending over the tenth insulating film; and a twentieth insulating film covering the tenth conductive film and other regions; Decorative note selectively provided in the second insulating film, electrically connected to at least the first conductive film through the opening, and selectively extending over the second insulating film. In a semiconductor device having a plurality of second conductive films, at least four portions of the surface of the second insulating film at a boundary step extending from the top of the first conductive film to other regions and the second insulating film. -kl
I! At least a part of the step formed by the hole is Kf
It is characterized by being composed of one flat surface having a constant angle of inclination that is equal to the angle of inclination.

本発明の半導体装置の製造方法は、半導体基板を覆う第
1の絶縁膜に開孔部を設ける工程と、諌開孔部O少なく
とも一部を覆い、かつ第10絶縁膜上Kg在する第1の
導電膜を選択的に設ける工程と、該第1の導電膜上及び
その他の領域を覆う第20絶縁膜を被着させる工程と、
該第2の絶縁膜に少なくとも第1の導電膜に達する開孔
部を膜性る工1と%骸開孔部及びその他の第2の絶縁膜
上な覆う第30絶縁膜を被着させた後、高速イオンビー
ムにより少なくとも前記第3の絶縁膜の1部又は第3の
絶縁膜と少なくとも第2の絶縁膜のlIIを除去する工
程とを含んで構成される。
The method for manufacturing a semiconductor device of the present invention includes the steps of providing an opening in a first insulating film that covers a semiconductor substrate, and a first insulating film that covers at least a portion of the first insulating film and is located on a tenth insulating film. a step of selectively providing a conductive film; a step of depositing a twentieth insulating film covering the first conductive film and other regions;
A 30th insulating film was deposited on the second insulating film to cover at least the openings reaching the first conductive film and covering the remaining openings and the rest of the second insulating film. After that, the method includes a step of removing at least part of the third insulating film or III of the third insulating film and at least the second insulating film using a high-speed ion beam.

次に本発明の実施例について図面を用いて説明する。Next, embodiments of the present invention will be described using the drawings.

第2図は本発明O半導体装置の一実施例の断面図である
。複数個の@路素子(図中では省略)を含む半導体基板
21を覆−1選択的に設けられた開孔部を有する熱酸化
膜22D上面に第1層目の金属配線23.23’が選択
的に形成され、該第1層目の金属配線23,23’の上
及びその他0熱酸化膜22を覆りてプラズマ化学反応に
よる窒化膜で構成され九層間絶縁膜24窄形成され、該
層間絶縁膜24に選択的に設けられえ開孔部25を通じ
て、第1層目の金属配線23と電気的に接続し、層間絶
縁膜24上に延在する第2層目O金属配曽26が形成さ
れている。仁の実施例においては、第1層目の金属膜l
I23,23’上とその他0熱酸化膜22上との間で生
ずる眉間絶縁膜240表面の段部28゜28’ 、 2
g と層間絶縁膜24に設けられ九一孔部25の段部2
7は殆んど一定の傾斜角を有するはぼ平らな面で構成さ
れている丸め、ζ0上に形成される第2層目の金属配線
26の膜厚は段部、平坦部いずれの個所においても砥は
均一に形成でき。
FIG. 2 is a sectional view of an embodiment of the O semiconductor device of the present invention. A first layer of metal wiring 23, 23' is formed on the upper surface of a thermal oxide film 22D having selectively provided openings covering the semiconductor substrate 21 including a plurality of @-path elements (not shown). A nine-layer insulating film 24 made of a nitride film formed by a plasma chemical reaction is selectively formed on the first layer metal wirings 23, 23' and covering the other thermal oxide films 22. A second layer O metal wiring 26 is selectively provided in the interlayer insulating film 24 and is electrically connected to the first layer metal wiring 23 through the opening 25 and extends over the interlayer insulating film 24. is formed. In Jin's embodiment, the first layer of metal film l
A stepped portion 28°28', 2 on the surface of the glabella insulating film 240 that occurs between the tops of I23 and 23' and the other tops of the thermal oxide film 22.
g and the stepped portion 2 of the 91 hole portion 25 provided in the interlayer insulating film 24.
The film thickness of the second layer metal wiring 26 formed on ζ0 is approximately the same at either the stepped portion or the flat portion. The abrasive stone can also be formed uniformly.

微細化に適した構造を実現して−る。A structure suitable for miniaturization has been realized.

第3図(51)〜(C)は本発明の半導体装置の製造方
法の一実施例を説明する九めの主な製造工程での断面図
である。
FIGS. 3(51) to 3(C) are cross-sectional views at the ninth main manufacturing process for explaining one embodiment of the method for manufacturing a semiconductor device of the present invention.

まず、第3図(a)K示すように、複数個の1路素子(
図中ては省略)を含む半導体基板31を覆う熱酸化膜3
2に選択的に開孔部を設け、少なくとも一つは該開孔部
を覆う第1層目の金属配線33゜33′を選択的に形成
し、続いて第1層@0金属配線33 、33’及びその
他の熱酸化膜320表面を覆う第1のプラズマ化学反応
による窒化膜34を形成する。もし、第1層目の配線を
金属膜でなく、多結晶シリコン膜のような半導体薄膜で
形成しぇ場合には、半導体基板内Oll路素子の少なく
とも一部は、半導体薄膜を被着した後に不純物を添加し
、押込んで形成することも可能である。又、プラズマ化
学反応による窒化膜の膜厚は約1.0声が最適である。
First, as shown in FIG. 3(a)K, a plurality of one-way elements (
Thermal oxide film 3 covering the semiconductor substrate 31 including (omitted in the figure)
Apertures are selectively provided in 2, and at least one first layer metal wiring 33°33' is selectively formed to cover the aperture, and then the first layer @0 metal wiring 33, A nitride film 34 is formed by a first plasma chemical reaction to cover the surface of the thermal oxide film 33' and other thermal oxide films 320. If the first layer wiring is formed not with a metal film but with a semiconductor thin film such as a polycrystalline silicon film, at least a part of the Oll path elements in the semiconductor substrate may be formed after the semiconductor thin film is deposited. It is also possible to form by adding impurities and pressing them. Further, the optimal thickness of the nitride film formed by plasma chemical reaction is approximately 1.0 mm.

又、ζO段階では問題の段部38゜3B’、 38’ 
、 3B’は急峻である。
Also, at the ζO stage, the problem step portions 38°3B', 38'
, 3B' is steep.

次に1第3図(−に示すように、プラズマ化学反応によ
る窒化膜34に第1層目の金属膜933にに再び第20
グツズマ化学反応による窒化膜39を形成する。この時
のプラズマ化学反応によル窒化膜39の膜厚は約0.5
声醜が最適である。
Next, as shown in FIG.
A nitride film 39 is formed by a Gutsuma chemical reaction. Due to the plasma chemical reaction at this time, the film thickness of the nitride film 39 is approximately 0.5
An ugly voice is best.

次に、第3図−)に示すように1表面金体に高速イオン
ビームを歯てて前工@まで形成されえ窒化膜390膜厚
の一部をエツチングする。ζ0処理により工ψチング前
に急峻であ5面段部311.38’。
Next, as shown in FIG. 3-), a high-speed ion beam is applied to one surface of the metal body to etch part of the thickness of the nitride film 390 that has been formed up to the pre-etched surface. Due to ζ0 treatment, a steep 5-sided stepped portion 311.38' was created before ψ-etching.

3m’、3@”及び窒化膜に設叶もれた開孔部の段部3
7 、37’が〆緩やかな一定の傾斜角を有するはげ平
ら&mKなる。ζうして形成される絶縁膜を301で表
わす仁とにする。絶縁膜301は窒化膜34と39とか
ら成る場合もあるし、窒化膜39が除去されて窒化膜3
40みから成る場合もある。
3m', 3@'' and stepped portion 3 of the opening provided in the nitride film
7, 37' becomes a bald flat surface with a gentle and constant inclination angle. The insulating film thus formed has a thickness 301. The insulating film 301 may consist of nitride films 34 and 39, or the nitride film 39 may be removed and the nitride film 3
In some cases, it consists of 40 pieces.

この実施例のように膜34と39とが共に窒化膜である
場合両者の区別はつかなくなる。これは高速イオンビー
ムによシ適轟な物質をエツチングした場合、イオンビー
ムの入射方向に対する角度によシエッチング速度が変わ
るえめであ夛、通常の結縁膜においては、この角度が約
4s度のIiてエツチング速度が最大になる性質を利用
してiる。
When the films 34 and 39 are both nitride films as in this embodiment, it becomes difficult to distinguish between them. This is because when etching a suitable material with a high-speed ion beam, the etching rate changes depending on the angle with respect to the direction of incidence of the ion beam.For normal conjunctival membranes, this angle is about 4 seconds. This is done by taking advantage of the property that the etching speed is maximized with Ii.

即ち、半導体基板面に垂直にイオンビームを轟ててエツ
チングすると、半導体基板上にありた急峻な段は約45
度の傾斜角を有するは埋平ら1面にエ曹チングされるこ
とになる。さらにイオンビームO入射方向を半導体基板
表面に対して垂直方向からはずして斜めからあてると、
段部の傾斜角は481よ)小さくな〉、さらに緩やかI
llる。本実施例で社、イオンビームを垂直にあて、平
面部で約O,Sμmの膜厚をエツチングしている。それ
故工!チング終了後には自動的に前に設けた開孔部底1
fKは第1層目の金属配線330表面が露出される。
In other words, when etching is performed by emitting an ion beam perpendicular to the surface of the semiconductor substrate, the steep steps on the semiconductor substrate are approximately 45 mm deep.
A plate having an inclination angle of 100 degrees will be etched on one surface of the buried plane. Furthermore, if the incident direction of the ion beam O is removed from the perpendicular direction to the semiconductor substrate surface and is applied obliquely,
The inclination angle of the stepped part is 481) smaller, and even more gradual I
Ill. In this embodiment, the ion beam is applied vertically to etch a film with a thickness of about 0.S .mu.m on the flat surface. Therefore engineering! After the drilling is finished, the bottom of the previously prepared hole 1 is automatically removed.
At fK, the surface of the first layer metal wiring 330 is exposed.

次に、第3図(1りK示すように、第2層目の金属配線
36を前記プラズマ化学反応による窒化膜で段部38 
、38’ 、 311’、 38”及び開孔部37.3
7’は#!は等しい緩やかな傾斜角を有する平らな面に
なうている丸め、第2層目の金属配線の問題は起ζらな
−。
Next, as shown in FIG.
, 38', 311', 38'' and aperture 37.3
7' is #! If the surface is rounded to a flat surface with an equal gentle slope, problems with the second layer metal wiring will not occur.

上記実施例の説明において、半導体基板内の回路素子に
ついては省略したが、本発明はパイポーラ置トツンジス
タ、電界効果型トランジスタ、PN接合、ダイオード、
金属−半導体ダイオード等O能動素子及び抵抗、容量等
O受動素子及びこれらの組み合せ素子等すべて適用可能
である。又、第1、第2.第30絶縁膜に′)%/%で
は、熱酸化膜、熱窒化膜、気相成長による酸化膜、窒化
膜、アル2す膜、リンガラス膜、及びプラズマ化学反応
による酸化膜、窒化膜等、さらに、ヒれらを含む絶縁膜
であれば適用可能である。さらKtた、第1、第2の導
電膜については金属薄膜以外にも半導体薄膜、金属−半
導体合金薄膜、及びこれらを含む導電膜であれば適用可
能である。
In the description of the above embodiments, circuit elements within the semiconductor substrate have been omitted, but the present invention is applicable to bipolar transistors, field effect transistors, PN junctions, diodes,
Active elements such as metal-semiconductor diodes, passive elements such as resistors and capacitors, and combinations of these elements are all applicable. Also, the first, second. In the 30th insulating film, thermal oxide film, thermal nitride film, oxide film by vapor phase growth, nitride film, Al2 film, phosphorus glass film, oxide film by plasma chemical reaction, nitride film, etc. Furthermore, any insulating film containing fins can be applied. Furthermore, as for the first and second conductive films, in addition to metal thin films, semiconductor thin films, metal-semiconductor alloy thin films, and conductive films containing these can be applied.

以上詳細に説明したように、本発明によれば微細化が可
能な多層配線構造を有する半導体装置が得られるのでそ
の効果は大きい。
As described in detail above, according to the present invention, a semiconductor device having a multilayer interconnection structure that can be miniaturized can be obtained, so the effects are significant.

【図面の簡単な説明】[Brief explanation of drawings]

第illは従来の半導体装置O−儒OFr11ml、第
2図は本発明の半導体装置の一実施例owrrra図、
第3図(a)〜(@)は本発明の半導体装置の繕造方法
の一実施例を説明するための主X&製造工程でOWR面
図である。 11・・・・・・半導体基板、lト・・・・熱酸化膜、
13゜13′・・・・・・金属配線、14・・・・・・
層間絶縁膜、15・・・・・・開孔部、16・・・・・
・金属配線、11・・・・・・段部、18゜18’、1
8 ・・・・・・段部、21・・・・・・半導体f11
[、雪2、・・・・・熱酸化膜、23.23’・・・・
・・金属配線、24・・・・・・層間絶縁膜、25・・
・・・・開孔部、26・・・・・・金属配線、27・・
・・・・段部、zs、zs’、ts  ・・・・・・l
1部。 31・・・・・・半導体基板、3ト・・・・熱酸化@、
SS。 33′・・・・・・金属配線、34・・・・・・窒化膜
、3B・・・・・・一孔部、36・・・・・・金属配線
、37.17’・・・・・・段部、38.38’、38
’、38′′・・・・・・段部、3s・・・・・・窒イ
ヒ膜、301・・・・・・絶縁膜。 第2図
Fig. 2 is a diagram of a conventional semiconductor device O-OFr11ml, Fig. 2 is an owrrra diagram of an embodiment of the semiconductor device of the present invention,
FIGS. 3(a) to 3(@) are OWR views showing the main X&manufacturing process for explaining one embodiment of the method for repairing a semiconductor device of the present invention. 11... Semiconductor substrate, l... Thermal oxide film,
13゜13'...Metal wiring, 14...
Interlayer insulating film, 15...Opening part, 16...
・Metal wiring, 11...Stepped part, 18°18', 1
8...Step part, 21...Semiconductor f11
[, Snow 2, ... thermal oxide film, 23.23'...
...Metal wiring, 24...Interlayer insulating film, 25...
...Opening part, 26...Metal wiring, 27...
・・・・・・Double part, zs, zs', ts ・・・・・・l
Part 1. 31...Semiconductor substrate, 3t...Thermal oxidation @,
SS. 33'...Metal wiring, 34...Nitride film, 3B...One hole, 36...Metal wiring, 37.17'...・Stepped part, 38.38', 38
', 38''...Step part, 3s...Nitrogen film, 301...Insulating film. Figure 2

Claims (1)

【特許請求の範囲】 (11顎数個O回路素子を含む半導体基板と、前記半導
体基板を覆−1選択的に設けられた複数個OII孔部を
有する第10絶縁膜と、前記開孔部を通じて半導体基板
と電気的に接続し、かつ前記第10絶縁膜上に延在して
選択的に設けられ九豪数個O第1の導電膜と、前記第1
の導電膜及びその他の領域を覆う第2の絶縁膜と、前記
第2の絶縁膜に選択的に般社られえ開孔部を通じて少な
くとも第1t)導電膜と電気的に接続し、かつ前記第2
の絶縁膜上に延在して選択的に膜性られ大壷数個O第2
0導電膜を有する半導体装置において、館1の導電膜上
からその他の領域に至る境界段部の第20絶縁膜O1!
面の少なくとも一部と第2の絶縁膜に設けられた開孔部
で形成される段部の少なくとも一部とが共にはぼ等し4
一定の傾斜角を有する平らな面で構成されていることを
特徴とする半導体装置。 (2)半導体基板を覆う第10絶縁膜に開孔部を設ける
工程と、該開孔部O少なくとも一部を覆い、かつ第10
絶縁膜上に延在する第10導電膜を選択的に設ける工程
と、該第10導電膜上及びその他の領域を覆う第20絶
縁膜を被着させる工程と、鋏第2の絶縁膜に少なくとも
第10導電膜に達する開孔部を設ける工程と、該開孔部
及びその他の第2の絶縁膜上を覆う第soe縁膜を被着
させた後、高速イオンビームによ〉少なくとも前記第3
の絶縁膜の1部又は第30絶縁膜と少なくとも鮪2の絶
縁膜の1部を除去する工1とを含む仁とを特徴とする半
導体装置の製造方法。
[Scope of Claims] (11) A semiconductor substrate including several O circuit elements; a tenth insulating film covering the semiconductor substrate and having a plurality of selectively provided OII holes; a first conductive film electrically connected to the semiconductor substrate through the conductive film and selectively provided extending over the tenth insulating film;
a second insulating film covering the conductive film and other regions; 2
Several large pots are extended over the insulating film and selectively coated.
In a semiconductor device having a 0 conductive film, the 20th insulating film O1! is located at the boundary step extending from the conductive film in the first region to the other regions.
At least a portion of the surface and at least a portion of the step formed by the opening provided in the second insulating film are both uneven.
A semiconductor device comprising a flat surface having a constant angle of inclination. (2) providing an opening in a tenth insulating film covering the semiconductor substrate;
selectively providing a tenth conductive film extending over the insulating film; depositing a twentieth insulating film covering the tenth conductive film and other areas; After forming an opening that reaches the tenth conductive film and depositing a third soe film covering the opening and the rest of the second insulating film, a high-speed ion beam is applied to at least the third
1. A method for manufacturing a semiconductor device, comprising a step 1 of removing a part of the insulating film or a 30th insulating film, and a step 1 of removing at least a part of the insulating film of the tuna 2.
JP10352981A 1981-07-02 1981-07-02 Semiconductor device and its manufacture Granted JPS586149A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10352981A JPS586149A (en) 1981-07-02 1981-07-02 Semiconductor device and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10352981A JPS586149A (en) 1981-07-02 1981-07-02 Semiconductor device and its manufacture

Publications (2)

Publication Number Publication Date
JPS586149A true JPS586149A (en) 1983-01-13
JPS637463B2 JPS637463B2 (en) 1988-02-17

Family

ID=14356416

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10352981A Granted JPS586149A (en) 1981-07-02 1981-07-02 Semiconductor device and its manufacture

Country Status (1)

Country Link
JP (1) JPS586149A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01125882A (en) * 1987-08-21 1989-05-18 Nippon Denso Co Ltd Magnetism detector

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52156375A (en) * 1976-06-22 1977-12-26 Nippon Electric Co Method of producing multilayer circuit substrate

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52156375A (en) * 1976-06-22 1977-12-26 Nippon Electric Co Method of producing multilayer circuit substrate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01125882A (en) * 1987-08-21 1989-05-18 Nippon Denso Co Ltd Magnetism detector

Also Published As

Publication number Publication date
JPS637463B2 (en) 1988-02-17

Similar Documents

Publication Publication Date Title
JP3537447B2 (en) Integrated circuit and manufacturing method thereof
JP3904228B2 (en) Manufacturing method of three-dimensional circuit device
US3456335A (en) Contacting arrangement for solidstate components
KR20000023210A (en) Semiconductor device and method for manufacturing the same
JP2004508712A (en) Method for manufacturing semiconductor device having porous dielectric layer and air gap
JPS61112356A (en) Formation of through conductor for ic
KR100331906B1 (en) Method for manufacturing a semiconductor device
JP2001185551A (en) Structure of semiconductor device and manufacturing method thereof
JPS586149A (en) Semiconductor device and its manufacture
JP3534269B2 (en) Semiconductor device and manufacturing method thereof
KR0124144B1 (en) Semiconductor device including silicon ladder resin layer
JPS6161698B2 (en)
JPS5846644A (en) Semiconductor element
JPS60180143A (en) Semiconductor device
KR0171016B1 (en) Metal-wiring method of semiconductor device
JPS6149439A (en) Manufacture of semiconductor device
JPS6037150A (en) Manufacture of semiconductor device
JPH04127425A (en) Manufacture of semiconductor integrated circuit
JPH04279031A (en) Manufacture of semiconductor device
JPS62166547A (en) Formation of multilayer interconnection structure
JPH021926A (en) Manufacture of semiconductor device
JPS58154A (en) Semiconductor device
US20020056849A1 (en) Submount having transmission line and method for forming
JPS6143855B2 (en)
JPH02174250A (en) Semiconductor device