JPS637441B2 - - Google Patents
Info
- Publication number
- JPS637441B2 JPS637441B2 JP56058930A JP5893081A JPS637441B2 JP S637441 B2 JPS637441 B2 JP S637441B2 JP 56058930 A JP56058930 A JP 56058930A JP 5893081 A JP5893081 A JP 5893081A JP S637441 B2 JPS637441 B2 JP S637441B2
- Authority
- JP
- Japan
- Prior art keywords
- silicon
- thin film
- resistor
- electrode
- nickel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 229910052710 silicon Inorganic materials 0.000 claims description 16
- 239000010703 silicon Substances 0.000 claims description 16
- 239000010409 thin film Substances 0.000 claims description 16
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 7
- 229910052782 aluminium Inorganic materials 0.000 claims description 7
- 229910021332 silicide Inorganic materials 0.000 claims description 7
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical compound [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 claims description 7
- 229910018487 Ni—Cr Inorganic materials 0.000 claims description 6
- VNNRSPGTAMTISX-UHFFFAOYSA-N chromium nickel Chemical compound [Cr].[Ni] VNNRSPGTAMTISX-UHFFFAOYSA-N 0.000 claims description 6
- 229910000623 nickel–chromium alloy Inorganic materials 0.000 claims description 6
- 239000000758 substrate Substances 0.000 claims description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- DYRBFMPPJATHRF-UHFFFAOYSA-N chromium silicon Chemical compound [Si].[Cr] DYRBFMPPJATHRF-UHFFFAOYSA-N 0.000 description 3
- 229910052573 porcelain Inorganic materials 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 239000010408 film Substances 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 229910052814 silicon oxide Inorganic materials 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- 238000007738 vacuum evaporation Methods 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 239000000788 chromium alloy Substances 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 229910052839 forsterite Inorganic materials 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- HCWCAKKEBCNQJP-UHFFFAOYSA-N magnesium orthosilicate Chemical compound [Mg+2].[Mg+2].[O-][Si]([O-])([O-])[O-] HCWCAKKEBCNQJP-UHFFFAOYSA-N 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- LIZIAPBBPRPPLV-UHFFFAOYSA-N niobium silicon Chemical compound [Si].[Nb] LIZIAPBBPRPPLV-UHFFFAOYSA-N 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000002210 silicon-based material Substances 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- MZLGASXMSKOWSE-UHFFFAOYSA-N tantalum nitride Chemical compound [Ta]#N MZLGASXMSKOWSE-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Non-Adjustable Resistors (AREA)
- Non-Insulated Conductors (AREA)
Description
【発明の詳細な説明】
本発明は、薄膜抵抗器に関するものであり、安
定性が良好で、高抵抗を容易に実現することので
きる抵抗器を提供しようとするものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a thin film resistor, and an object thereof is to provide a resistor that has good stability and can easily realize high resistance.
近年、電子工業の飛躍的な発展にともない、回
路素子に対する電気的特性上の要求も次第に厳し
いものになつて来ている。薄膜回路や個別抵抗器
においても同様であり、抵抗材料として安定度の
高い窒化タンタルやニツケル−クロム合金が開発
され、実用化されている。しかしながら、これら
の抵抗材料は、いずれも固有抵抗が低いものであ
り、これで高抵抗薄膜抵抗器を実現しようとする
と、抵抗器が大型化することを避けることができ
ない。 In recent years, with the dramatic development of the electronics industry, the requirements for electrical characteristics of circuit elements have become increasingly strict. The same applies to thin film circuits and individual resistors, and highly stable tantalum nitride and nickel-chromium alloys have been developed and put into practical use as resistance materials. However, all of these resistance materials have low specific resistance, and if a high-resistance thin-film resistor is to be realized using these materials, the size of the resistor cannot be avoided.
一方、高抵抗材料として、クロム−シリコンや
ニオブ−シリコンなどの金属−シリコンが開発さ
れている。これらは1KΩ/□以上の高抵抗を容
易に実現でき、上述の問題点を解決することがで
きるものである。しかしながら、金属−シリコン
を使用した抵抗器は、精密級薄膜抵抗器として使
用するには安定性に問題のあるものである。その
原因を解析したところ、薄膜抵抗体を構成する金
属−シリコン中のシリコンが拡散しやすく、電極
をアルミニウムで構成した場合、アルミニウムと
シリコンとの固溶体が形成されて、電極と抵抗体
との接触抵抗が高くなり、かつ、アルミニウム中
にシリコンが連続的に拡散して行くので、両者の
接触界面部が不安定となるためであることを見出
した。 On the other hand, metal-silicon materials such as chromium-silicon and niobium-silicon have been developed as high-resistance materials. These can easily realize a high resistance of 1KΩ/□ or more, and can solve the above-mentioned problems. However, metal-silicon resistors have stability problems for use as precision thin film resistors. Analysis of the cause revealed that silicon in the metal-silicon that makes up the thin film resistor easily diffuses, and when the electrode is made of aluminum, a solid solution of aluminum and silicon is formed, causing contact between the electrode and the resistor. It has been found that this is because the resistance increases and silicon continuously diffuses into the aluminum, making the contact interface between the two unstable.
本発明は、この解析結果にもとずき、金属−シ
リコン薄膜抵抗体に接する電極を、アルミニウム
とニツケル−クロム合金とで構成し、かつ電極と
抵抗体との間にニツケル−クロムシリサイド層を
設けることによつて上述の問題点を解決したもの
である。 Based on the results of this analysis, the present invention consists of an electrode in contact with a metal-silicon thin film resistor made of aluminum and a nickel-chromium alloy, and a nickel-chromium silicide layer between the electrode and the resistor. By providing this, the above-mentioned problems are solved.
以下に、本発明の一実施例について、図面を用
いて説明する。 An embodiment of the present invention will be described below with reference to the drawings.
図において、1は絶縁基板であり、その上に金
属−シリコン系薄膜抵抗体2が設けられている。
この抵抗体2は、たとえばクロム−シリコンまた
はこれにニツケルや鉄を添加した合金を絶縁基板
1上に真空蒸着法またはスパツタリング法で着膜
させ、所定の形状にエツチングしたものである。
3は電極で、まずニツケル−クロム合金を、次に
アルミニウムをその上に順次真空蒸着法またはス
パツタリング法で膜厚合計1μm程度(ニツケル
−クロム合金の膜厚は500Å以下)に着膜させた
後、所定の形状にエツチングして形成したもので
ある。4はニツケル−クロムシリサイド層であ
り、金属−シリコン系薄膜抵抗体2上に電極3を
形成した後、真空中またはアルゴンガスや窒素ガ
スなどの不活性雰囲気またはグリーンガスなどの
還元性雰囲気中において300〜600℃の温度で1時
間前後処理することによつて生成させたものであ
る。熱処理の際の雰囲気中に酸素が含まれている
と酸化シリコンなどの酸化物が同時に生成され、
その結果、ニツケル−クロムシリサイド層が不均
一かつ不完全なものとなり、安定性に悪影響を与
えてしまうので注意を要する。このニツケル−ク
ロムシリサイド層4は安定であり、上述の熱処理
条件で容易に得られるものである。 In the figure, 1 is an insulating substrate, on which a metal-silicon thin film resistor 2 is provided.
The resistor 2 is made by depositing, for example, chromium-silicon or an alloy of chromium-silicon with nickel or iron on the insulating substrate 1 by vacuum evaporation or sputtering, and etching it into a predetermined shape.
3 is an electrode. First, nickel-chromium alloy is deposited on it, and then aluminum is sequentially deposited thereon to a total film thickness of about 1 μm (the film thickness of nickel-chromium alloy is 500 Å or less) by vacuum evaporation or sputtering. , which is formed by etching into a predetermined shape. 4 is a nickel-chromium silicide layer, and after forming an electrode 3 on the metal-silicon thin film resistor 2, it is placed in a vacuum, an inert atmosphere such as argon gas or nitrogen gas, or a reducing atmosphere such as green gas. It was produced by treating at a temperature of 300 to 600°C for about 1 hour. If oxygen is included in the atmosphere during heat treatment, oxides such as silicon oxide are generated at the same time.
As a result, the nickel-chromium silicide layer becomes non-uniform and incomplete, which adversely affects stability, so care must be taken. This nickel-chromium silicide layer 4 is stable and easily obtained under the heat treatment conditions described above.
アルミニウムと、ニツケル−クロム合金を電極
に利用する利点は抵抗体と電極との接触部分のみ
において、シリサイド合金層を形成させることが
できることである。その結果、抵抗体中のシリコ
ンが連続的に電極へ拡散するのが防止され、抵抗
器が安定化される。そして、金属−シリコン系薄
膜抵抗体の面積抵抗が大きいために、抵抗器を小
型化でき、かつ上述のように抵抗体と電極との接
触が安定化されていることもあつて、高密度抵抗
回路網を構成する上で特に本発明は有利となる。 An advantage of using aluminum and a nickel-chromium alloy for the electrode is that a silicide alloy layer can be formed only in the contact area between the resistor and the electrode. As a result, silicon in the resistor is prevented from continuously diffusing into the electrodes, and the resistor is stabilized. Since the sheet resistance of the metal-silicon thin film resistor is large, the resistor can be made smaller, and as mentioned above, the contact between the resistor and the electrode is stabilized, so high-density resistors can be used. The present invention is particularly advantageous when configuring a circuit network.
以上のように、本発明によれば、金属−シリコ
ン系薄膜抵抗体と電極との接触が安定化されるの
で、特性の安定した抵抗器を得ることができる。
なお絶縁基板1としては、酸化シリコン絶縁層を
設けたシリコン板、アルミナ磁器、フオルステラ
イト磁器、グレーズドアルミナ磁器やガラスが適
当である。 As described above, according to the present invention, since the contact between the metal-silicon thin film resistor and the electrode is stabilized, a resistor with stable characteristics can be obtained.
Note that suitable materials for the insulating substrate 1 include a silicon plate provided with a silicon oxide insulating layer, alumina porcelain, forsterite porcelain, glazed alumina porcelain, and glass.
図は本発明の一実施例における薄膜抵抗器の断
面図である。
1……絶縁基体、2……金属−シリコン系薄膜
抵抗体、3……電極、4……ニツケル−クロムシ
リサイド層。
The figure is a sectional view of a thin film resistor in one embodiment of the present invention. DESCRIPTION OF SYMBOLS 1... Insulating base, 2... Metal-silicon thin film resistor, 3... Electrode, 4... Nickel-chromium silicide layer.
Claims (1)
およびこの金属−シリコン系薄膜抵抗体に接する
電極を有し、前記電極がアルミニウムとニツケル
−クロム合金とで構成されており、かつ前記電極
と前記金属−シリコン系薄膜抵抗体との界面にニ
ツケル−クロムシリサイド層を有することを特徴
とする薄膜抵抗器。1. A metal-silicon thin film resistor and an electrode in contact with the metal-silicon thin film resistor are provided on an insulating substrate, and the electrode is made of aluminum and a nickel-chromium alloy, and the electrode and the A thin film resistor characterized by having a nickel-chromium silicide layer at the interface with a metal-silicon thin film resistor.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56058930A JPS57173902A (en) | 1981-04-17 | 1981-04-17 | Thin film resistor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56058930A JPS57173902A (en) | 1981-04-17 | 1981-04-17 | Thin film resistor |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS57173902A JPS57173902A (en) | 1982-10-26 |
JPS637441B2 true JPS637441B2 (en) | 1988-02-17 |
Family
ID=13098547
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP56058930A Granted JPS57173902A (en) | 1981-04-17 | 1981-04-17 | Thin film resistor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS57173902A (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016027692A1 (en) * | 2014-08-18 | 2016-02-25 | 株式会社村田製作所 | Electronic component and method for producing same |
-
1981
- 1981-04-17 JP JP56058930A patent/JPS57173902A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS57173902A (en) | 1982-10-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4434544A (en) | Multilayer circuit and process for manufacturing the same | |
US3296574A (en) | Film resistors with multilayer terminals | |
JPS62119901A (en) | Thin film resistor and manufacture of the same | |
US4719442A (en) | Platinum resistance thermometer | |
US5059941A (en) | Electrode structure for a thick film resistor | |
JPS637441B2 (en) | ||
JPS5618463A (en) | Manufacture of semiconductor device | |
US5023589A (en) | Gold diffusion thin film resistors and process | |
US3594225A (en) | Thin-film resistors | |
JPS6165465A (en) | Manufacture of film resistor in thick film multilayer substrate | |
JPH06151124A (en) | Manufacture of thin-film resistor | |
JPH0636675A (en) | Fuse resistor and manufacture thereof | |
JPS6041251A (en) | Manufacture of hybrid integrated circuit | |
JPH0620803A (en) | Thin film resistor and manufacture thereof | |
JP2989831B2 (en) | Method for manufacturing semiconductor device | |
JPS6041252A (en) | Manufacture of hybrid integrated circuit | |
JPH0346961B2 (en) | ||
JPS6236622B2 (en) | ||
JPH0669426A (en) | Semiconductor device | |
JPS62265751A (en) | Hybrid integrated circuit device | |
Riddle | Evaporated Cermet Materials. | |
JPH05234714A (en) | Contact type thin film thermistor and manufacture thereof | |
JPH0774001A (en) | Electronic component including resistance element | |
JPS6362301A (en) | Thin film integrated circuit | |
JPH04271106A (en) | Capacitor, capacitor network, and resistor capacitor network |