JPS637285B2 - - Google Patents

Info

Publication number
JPS637285B2
JPS637285B2 JP56047211A JP4721181A JPS637285B2 JP S637285 B2 JPS637285 B2 JP S637285B2 JP 56047211 A JP56047211 A JP 56047211A JP 4721181 A JP4721181 A JP 4721181A JP S637285 B2 JPS637285 B2 JP S637285B2
Authority
JP
Japan
Prior art keywords
temperature
flow rate
measurement point
flow
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56047211A
Other languages
Japanese (ja)
Other versions
JPS57164219A (en
Inventor
Juichiro Inoe
Teruo Fukahori
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP56047211A priority Critical patent/JPS57164219A/en
Publication of JPS57164219A publication Critical patent/JPS57164219A/en
Publication of JPS637285B2 publication Critical patent/JPS637285B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N1/00Regulating fuel supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2221/00Pretreatment or prehandling
    • F23N2221/06Preheating gaseous fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2225/00Measuring
    • F23N2225/08Measuring temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2235/00Valves, nozzles or pumps
    • F23N2235/12Fuel valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/18Systems for controlling combustion using detectors sensitive to rate of flow of air or fuel

Description

【発明の詳細な説明】 本発明は燃焼制御装置に係り、特に燃焼用の空
気・燃料の流量補償に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a combustion control device, and more particularly to flow rate compensation of air and fuel for combustion.

燃焼制御装置として熱効率の向上を図るため、
第1図に示されるよう炉内の排熱の一部を熱交換
器11を介して燃焼用空気・燃料に与え、高温状
態となつた燃焼用空気・燃料をバーナ部12に供
給し、そのバーナで混合し、燃焼するようにした
ものがある。特に熱効率向上のため、熱交換器1
1で高温状態となつた燃焼用流体を温度降下する
ことなくバーナ部12に供給するように工夫され
ているが、流量調節計13の入力となる流量測定
点に至る間で温度降下が見受けられ、しかも、測
温点と流測点は予熱温度制御用と測温体と兼用す
るため一般に異なつており、測温点の温度および
流量検出信号を入力して温度補償回路14で求め
た温度補償された流量信号を流量調節計13のプ
ロセス入力側に与えているのが常である。
In order to improve thermal efficiency as a combustion control device,
As shown in FIG. 1, a part of the exhaust heat in the furnace is given to combustion air and fuel through a heat exchanger 11, and the combustion air and fuel in a high temperature state are supplied to the burner section 12. Some are mixed in a burner and combusted. In particular, to improve thermal efficiency, heat exchanger 1
Although the combustion fluid, which has reached a high temperature in step 1, is devised to be supplied to the burner section 12 without a drop in temperature, a drop in temperature is observed as it reaches the flow rate measurement point that is the input to the flow rate controller 13. Moreover, the temperature measurement point and the flow measurement point are generally different because they are used for preheating temperature control and as a temperature measurement element, and the temperature compensation circuit 14 obtains temperature compensation by inputting the temperature and flow rate detection signal of the temperature measurement point. The resulting flow rate signal is usually applied to the process input side of the flow rate controller 13.

なお、15は測温点に設置された温度検出器、
16は測流点に設置され、差圧より流量を検出す
る流量検出器、17は操作弁である。
In addition, 15 is a temperature detector installed at the temperature measurement point,
16 is a flow rate detector installed at a flow measuring point and detects the flow rate based on differential pressure; 17 is an operating valve.

ところで炉の負荷の変化範囲が広くなつたため
バーナ部12に供給される燃料・空気流量の流速
が前に比して大幅に変わる。測温点と測流点との
間に距離Lがあるため測流点の流体の温度と温度
補償回路14で求めた温度とに差が生じ、燃焼制
御装置にあつては、流量測定値に誤差が生じる。
By the way, since the range of change in the furnace load has become wider, the flow rate of the fuel/air flow rate supplied to the burner section 12 changes significantly compared to before. Since there is a distance L between the temperature measurement point and the flow measurement point, a difference occurs between the temperature of the fluid at the flow measurement point and the temperature determined by the temperature compensation circuit 14, and in the case of a combustion control device, the flow rate measurement value An error will occur.

燃料流量と空気流量とから定まる空燃比を所定
値に維持管理する制御にあつては、誤差があると
その値が維持できなくなり、問題となつていた。
In controlling the air-fuel ratio, which is determined from the fuel flow rate and the air flow rate, to maintain it at a predetermined value, if there is an error, the value cannot be maintained, which has been a problem.

本願発明の目的は、上記欠点を除去するために
なされたもので、測温点から測流点に至る流体の
速度を考慮に入れて、広範囲の炉の負荷変動に対
しても空燃比を所定値に維持する燃焼制御装置を
提供することにある。
The purpose of the present invention was to eliminate the above-mentioned drawbacks, and takes into account the velocity of the fluid from the temperature measurement point to the flow measurement point, and maintains a predetermined air-fuel ratio even over a wide range of furnace load fluctuations. An object of the present invention is to provide a combustion control device that maintains a combustion control value at a certain value.

その目的を達成するための概要は、測温点の温
度、測流点の流量および測温点から測流点に至る
距離を変数として流速に相応した温度信号を算出
し、その流速補正された温度信号で流量信号を補
正し、温度補償された流量信号を調節計のプロセ
スの入力側に与える構成にして、流測点の温度を
正確に測定して流量測定誤差をなくし、広範囲の
炉の負荷変動に対しても空燃比を所定値に維持す
るようにする。
The outline of how to achieve this purpose is to calculate a temperature signal corresponding to the flow velocity using the temperature at the temperature measurement point, the flow rate at the current measurement point, and the distance from the temperature measurement point to the current measurement point as variables, and calculate the temperature signal that corresponds to the flow velocity. By correcting the flow rate signal with the temperature signal and applying the temperature-compensated flow signal to the process input side of the controller, the temperature at the flow measurement point is accurately measured, eliminating flow measurement errors, and making it possible to use a wide range of furnaces. The air-fuel ratio is maintained at a predetermined value even in response to load fluctuations.

以下本願の一実施例を図面を参照しながら説明
する。燃焼用燃料系と燃焼用空気系との構成とが
同じのため燃焼用燃料系のみ説明し、燃焼用空気
系は説明を省略する。
An embodiment of the present application will be described below with reference to the drawings. Since the combustion fuel system and the combustion air system have the same configuration, only the combustion fuel system will be explained, and the explanation of the combustion air system will be omitted.

第2図において、炉の排ガス21および燃焼用
燃料22が熱交換器23で熱交換され、高温とな
つた燃料は、分岐ヘツタ24に導いてから、ここ
で各ゾーンごとに均一に分配され、各々に分配さ
れた高温状態の燃料は、差圧から流量を測定する
流量計25、操作弁26を順々に流れて、前記炉
のバーナ27に供給される。各バーナ27に流れ
る燃料流量の制御系は、分岐ヘツター24内の燃
料の温度を測定する温度検出器28、前記流量計
25の出力・温度検出器28の出力および測温点
から測流点に至る距離Lを入力し、 tc=t−f(L−V) 但し tc=補正後の流体温度 t=補正前の流体温度 f(L・V)=測温点と測流点間の距離(L)と流体の
流速(V)との関数 の計算式を演算して、流速の補償された温度信号
を算出する温度補正回路29、温度補正回路で算
出された温度信号および前記流量計25の出力を
入力し、温度信号により流量信号に温度補償を施
して、温度補正された流量信号を出力する流量補
正回路30、この流量補正回路30の出力をプロ
セス入力し、予じめ定めたセツトポイントの流量
値との差をとり、その差を零とするための調節量
を調節演算式をといて求め、その結果を操作弁2
6に出力する流量調節計31とから構成され、こ
のような制御系が各ゾーンごとに設けられ、各ゾ
ーンの燃料流量の制御が行なわれている。
In FIG. 2, the furnace exhaust gas 21 and combustion fuel 22 are heat exchanged in a heat exchanger 23, and the heated fuel is led to a branch header 24, where it is uniformly distributed to each zone. The high-temperature fuel distributed to each fuel flows in sequence through a flow meter 25 that measures the flow rate based on the differential pressure, and an operation valve 26, and is supplied to the burner 27 of the furnace. The control system for the flow rate of fuel flowing into each burner 27 includes a temperature detector 28 that measures the temperature of the fuel in the branch header 24, the output of the flowmeter 25, the output of the temperature detector 28, and the temperature measurement point to the flow measurement point. Enter the distance L to reach, t c = t - f (L - V), where t c = fluid temperature after correction t = fluid temperature before correction f (L・V) = distance between temperature measurement point and current measurement point A temperature correction circuit 29 that calculates a temperature signal whose flow rate is compensated by calculating a calculation formula of a function of distance (L) and fluid flow rate (V), a temperature signal calculated by the temperature correction circuit, and the flow meter. A flow rate correction circuit 30 inputs the output of 25, performs temperature compensation on the flow rate signal using a temperature signal, and outputs a temperature-compensated flow rate signal. Calculate the difference from the flow rate value at the set point, calculate the adjustment amount to make the difference zero, and calculate the adjustment amount using the adjustment calculation formula.
6, such a control system is provided for each zone, and the fuel flow rate of each zone is controlled.

かような構成の作動を説明する。 The operation of such a configuration will be explained.

測温点から測流点に至る距離L、燃料流量およ
び温度降下の関係を示すと第3図の通りのデータ
となる。測温点と測流点との間の温度差は流速に
逆比例し距離に比例して増大し、一般に距離が一
定の値であるから流速に逆比例することとなる。
流速に逆比例して温度差値に変化が生じれば、測
温点の温度が一定に保たれていても流速により測
流点の流体温度に変動あることを意味している。
したがつて従来装置では、温度補償したとしても
測温点から測流点に至る間の配管系の熱損失を考
慮に入れていないため流量値に誤差が生じ、燃焼
の最適条件の空燃比を正しい範囲内に保ちえな
い。
The relationship between the distance L from the temperature measurement point to the flow measurement point, the fuel flow rate, and the temperature drop is shown in FIG. 3. The temperature difference between the temperature measuring point and the current measuring point is inversely proportional to the flow velocity and increases in proportion to the distance, and since the distance is generally a constant value, it is inversely proportional to the flow velocity.
If the temperature difference value changes in inverse proportion to the flow velocity, it means that even if the temperature at the temperature measurement point is kept constant, the fluid temperature at the flow measurement point varies depending on the flow velocity.
Therefore, even with temperature compensation, conventional equipment does not take into account the heat loss in the piping system from the temperature measurement point to the flow measurement point, resulting in an error in the flow rate value and making it difficult to determine the air-fuel ratio for the optimal combustion condition. I can't keep it within the correct range.

本願においては、測温点の温度検出信号、測温
点から測流点に至る距離係数および流量検出信号
を入力する温度補正回路29が tc=t−f(L−V) の計算式をといて、測温点のデータから測流点の
温度を算出して、その算出された温度で測流点の
流量の温度補償を行ない、それを流量調節計13
のプロセス入力として与える。その補正演算式に
は、L.Vの項が含まれているため、流速が大幅に
変動するようなことがあつても、測温点の温度を
もとにして測流点の流体の正しい温度値が求め得
られる。測流点の正確な温度が測定されるとなる
ため正確な流量が測り得る。
In the present application, the temperature correction circuit 29 which inputs the temperature detection signal of the temperature measurement point, the distance coefficient from the temperature measurement point to the current measurement point, and the flow rate detection signal calculates the calculation formula t c =tf(L-V). Then, the temperature at the current measuring point is calculated from the data at the temperature measuring point, the flow rate at the current measuring point is temperature compensated using the calculated temperature, and the temperature is compensated for by the flow rate controller 13.
given as process input. The correction formula includes the LV term, so even if the flow velocity fluctuates significantly, the correct temperature value of the fluid at the current measurement point can be determined based on the temperature at the temperature measurement point. can be obtained. Since the accurate temperature at the current measurement point can be measured, accurate flow rate can be measured.

したがつて、燃焼制御装置の最適燃焼条件の空
燃比が所定値に保たれ、特に炉の負荷の変化範囲
が広くなつて、燃料・空気が大幅に変化するよう
な燃焼制御装置においても空燃比は所定値内に維
持可能になる。
Therefore, the air-fuel ratio under the optimal combustion conditions of the combustion control device is maintained at a predetermined value, and even in cases where the range of changes in the furnace load is widened and the fuel and air changes significantly, the air-fuel ratio is maintained at a predetermined value. can be maintained within a predetermined value.

なお本願の一実施例の説明において、熱交換
器、分岐ヘツタを用いた燃焼制御装置のことにつ
いて記述したが、これに限定されるものでなく、
熱交換器・分岐ヘツタが無く、単に高低温流体の
流量測定においても適用できることはもちろんの
ことである。また測温点と測流点の流体流れ方向
に対する前後関係が変つても同様な効果を奏する
ことはもちろんのことである。
In the description of one embodiment of the present application, a combustion control device using a heat exchanger and a branch header has been described, but the present invention is not limited to this.
Needless to say, there is no heat exchanger or branch header, and it can be applied to simply measuring the flow rate of high-temperature fluid. Furthermore, it goes without saying that the same effect can be achieved even if the front and back relationship between the temperature measuring point and the current measuring point with respect to the fluid flow direction changes.

以上本願は、分岐ヘツタで分岐して各ゾーンに
燃焼用空気・燃料を供給するその分岐ヘツタの流
体の温度をもとにして各ゾーンに流れる流体の流
量測定点の温度を流速に関係して正しい値を算出
し、正確な温度で測流点の流量の温度補償を施す
ようにして正しい流量値を求めるように構成した
ため、負荷が大幅に変化するような燃焼制御装置
の燃料量または空気量測定すれば、その装置の空
燃比の値を所定値に値ち得ることが可能となる。
当然、空気過剰現象や燃料過剰現象をなくして公
害発生を極力少なくし得る効果を奏する。
As described above, the present application calculates the temperature of the flow rate measurement point of the fluid flowing to each zone in relation to the flow velocity based on the temperature of the fluid of the branch header that branches at the branch header and supplies combustion air and fuel to each zone. Since the configuration is configured to calculate the correct value and calculate the correct flow rate value by temperature-compensating the flow rate at the flow measurement point using the accurate temperature, the fuel amount or air amount of the combustion control device where the load changes significantly If measured, it becomes possible to set the air-fuel ratio of the device to a predetermined value.
Naturally, this has the effect of eliminating the excess air phenomenon and excess fuel phenomenon, thereby minimizing the occurrence of pollution.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の燃焼制御装置の構成をブロツク
にして示す図、第2図は本願の燃焼制御装置の構
成をブロツクにして示す図、第3図は本願の第2
図の作用を説明するための図である。 25……流量計、28……温度検出器、29…
…温度補正回路、30……流量補正回路、31…
…流量調節計。
FIG. 1 is a block diagram showing the configuration of a conventional combustion control device, FIG. 2 is a block diagram showing the configuration of the combustion control device of the present application, and FIG. 3 is a block diagram of the configuration of the combustion control device of the present application.
It is a figure for explaining the effect|action of a figure. 25...flow meter, 28...temperature detector, 29...
...Temperature correction circuit, 30...Flow rate correction circuit, 31...
...Flow rate controller.

Claims (1)

【特許請求の範囲】[Claims] 1 燃焼用気体の温度を検出する温度検出器と、
前記燃焼用気体の流量を測定する流量検出器と、
温度検出信号、流量信号および測温点から流量測
定点に至る距離をもとに測流点における燃焼用気
体の温度を算出する温度算出回路と、前記温度算
出回路の温度および流量検出信号から温度補正さ
れた流量信号を出力する流量演算回路と、前記流
量演算回路の流量信号を目標値になるように測流
点の流量を調節する調節計とを備えてなる燃焼制
御装置。
1. A temperature detector that detects the temperature of combustion gas;
a flow rate detector that measures the flow rate of the combustion gas;
A temperature calculation circuit that calculates the temperature of the combustion gas at the flow measurement point based on the temperature detection signal, the flow rate signal, and the distance from the temperature measurement point to the flow measurement point; A combustion control device comprising: a flow rate calculation circuit that outputs a corrected flow rate signal; and a controller that adjusts a flow rate at a flow measurement point so that the flow rate signal of the flow rate calculation circuit becomes a target value.
JP56047211A 1981-04-01 1981-04-01 Combustion controller Granted JPS57164219A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56047211A JPS57164219A (en) 1981-04-01 1981-04-01 Combustion controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56047211A JPS57164219A (en) 1981-04-01 1981-04-01 Combustion controller

Publications (2)

Publication Number Publication Date
JPS57164219A JPS57164219A (en) 1982-10-08
JPS637285B2 true JPS637285B2 (en) 1988-02-16

Family

ID=12768816

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56047211A Granted JPS57164219A (en) 1981-04-01 1981-04-01 Combustion controller

Country Status (1)

Country Link
JP (1) JPS57164219A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0663643B2 (en) * 1985-10-11 1994-08-22 株式会社横井機械工作所 Combustion system air-fuel ratio control system

Also Published As

Publication number Publication date
JPS57164219A (en) 1982-10-08

Similar Documents

Publication Publication Date Title
EP0498809B2 (en) combustion control
KR101375678B1 (en) Pressure-type flow rate control device
JP2631481B2 (en) Mass flow meter and its measurement method
WO2010045172A1 (en) Mass flow controller and method of operating the same
US20070116083A1 (en) Fluid-measuring device and fluid-measuring method
CA2599516A1 (en) A boiler and combustion control method
JPS6034004B2 (en) Monitoring device for fuel supply amount and water supply amount in once-through boiler
JPS637285B2 (en)
JPH0148472B2 (en)
JPS62226016A (en) Differential pressure type flow rate measuring device
JPH0697090B2 (en) Quality control method in calorie control device
US3783684A (en) Fuel gas flow-meter corrector equipment for gases having variable characteristics
JPS60259823A (en) Optimum burning control of induction type radiant tube burner furnace
KR0125883Y1 (en) Flowmeter control device
JPH1047654A (en) Air ratio automatic correcting system for combustion equipment
JPH08338284A (en) Method and device for controlling operation of gas engine
JPS58190618A (en) Combustion device
JPS621217B2 (en)
JP3152407B2 (en) Water heater
JPS62132120A (en) Mass flowmeter
JPH109919A (en) Mass flowmeter
SU840586A2 (en) Method of controlling burning process in ship boiler fire box
JPH08178262A (en) Air/fuel ratio controller of combustor
JPH0123071Y2 (en)
JPS6365207A (en) Boiler steam temperature controller