JPS62226016A - Differential pressure type flow rate measuring device - Google Patents
Differential pressure type flow rate measuring deviceInfo
- Publication number
- JPS62226016A JPS62226016A JP6863786A JP6863786A JPS62226016A JP S62226016 A JPS62226016 A JP S62226016A JP 6863786 A JP6863786 A JP 6863786A JP 6863786 A JP6863786 A JP 6863786A JP S62226016 A JPS62226016 A JP S62226016A
- Authority
- JP
- Japan
- Prior art keywords
- air
- differential pressure
- temperature
- flow rate
- outflow
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000012530 fluid Substances 0.000 claims abstract description 14
- 239000000446 fuel Substances 0.000 abstract description 24
- 238000002485 combustion reaction Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 239000000779 smoke Substances 0.000 description 2
- 240000001548 Camellia japonica Species 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 235000018597 common camellia Nutrition 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000000034 method Methods 0.000 description 1
Landscapes
- Measuring Volume Flow (AREA)
Abstract
Description
【発明の詳細な説明】
[発明の目的]
(産業上の利用分野)
本発明は、ボイラの空燃比制御等に使用される差圧式の
流量測定装置に関するものである。DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a differential pressure type flow measuring device used for controlling the air-fuel ratio of a boiler.
(従来の技術)
ボイラの燃焼装置等では可燃ガスやバーナから吹き込ま
れた燃料を空気とよく混合接触させて燃焼を十分に行な
わせる必要がある。このため、空気の流山を例えば、差
圧式流山測定装置で測定し、この空気流量から適確な空
燃比に基づく燃焼を行なうようにしている。(Prior Art) In boiler combustion devices and the like, it is necessary to mix and contact combustible gas and fuel blown from a burner with air to ensure sufficient combustion. For this reason, the flow rate of the air is measured using, for example, a differential pressure type flow rate measuring device, and combustion is performed based on an appropriate air-fuel ratio based on the air flow rate.
また、一般にボイラにおいては、燃焼効率を向上さぼる
ために空気を予熱するエアヒータ(AI−1)が使用さ
れており、差圧式流用測定装置はプラントの関係上この
エアヒータを流れる空気の流入側と流出側の差圧を利用
して空気流■を測定している。Additionally, in general, boilers use an air heater (AI-1) that preheats the air in order to improve combustion efficiency, and the differential pressure flow measurement device measures the inflow and outflow sides of the air flowing through this air heater due to the nature of the plant. The airflow ■ is measured using the differential pressure between the sides.
従来よりボイラの空燃比制御等に使用される差圧式流山
測定装置とし□ては第3図に示すものが知られている。2. Description of the Related Art Conventionally, as a differential pressure type flow mountain measuring device used for boiler air-fuel ratio control, etc., the one shown in FIG. 3 has been known.
同図において、1は空気ダクトであり、この空気ダクト
・1の所定箇所にはエアヒータ3が介挿され、空気ダク
ト1を流れる空気が予熱されている。In the figure, 1 is an air duct, and an air heater 3 is inserted at a predetermined location of this air duct 1, so that the air flowing through the air duct 1 is preheated.
予熱された空気は図示しない燃焼装置へ供給され燃料と
混合される。The preheated air is supplied to a combustion device (not shown) and mixed with fuel.
」二記エアヒータ3内にはΔリフイス絞り部5 /Jt
形成され、その流入側、流出側の圧力P+ 、P2がg
3圧管7,9により差圧伝jス器11に導かれ、この差
圧伝送器11によって、流入側圧力P1と流出側圧力P
2との差圧P+−P2が求められている。求められ;こ
差圧PI P2は温度補正部13に供給される。” 2. Inside the air heater 3 is a ∆ rewiring constriction portion 5 /Jt.
The pressures P+ and P2 on the inflow and outflow sides are g
It is led to a differential pressure transmitter 11 by the three pressure pipes 7 and 9, and by this differential pressure transmitter 11, the inflow side pressure P1 and the outflow side pressure P
The differential pressure between P+ and P2 is determined. The calculated differential pressure PI P2 is supplied to the temperature correction section 13.
温度補正部13には固定温度(例えば、20℃)に対す
る空気密度Tが予め設定されており、べJレヌーイの定
理から導かれる次の(1)式を使用して温度補正がされ
ている。The air density T for a fixed temperature (for example, 20° C.) is set in advance in the temperature correction unit 13, and temperature correction is performed using the following equation (1) derived from the Be J. Renoulli theorem.
ここでQは空気左足、1<は係数1gは重力加速度であ
る。Here, Q is the left foot of air, and 1< is the coefficient 1g is the acceleration of gravity.
そして、」二連のように温度補正部13で温度補正がさ
れた後、開平演算部15で開平処理がさ11て空気流f
f1Qが求められる。求められた空気流伍Qは、図示し
ない燃料装置に出力される。燃料装置では供給された空
気流flQから燃料供給量を調印して空燃比が適確な値
となるように制御している。Then, after the temperature is corrected in the temperature correction unit 13 as shown in the double series, the square root calculation unit 15 performs a square root process 11 and the air flow f
f1Q is found. The determined air flow rate Q is output to a fuel system (not shown). The fuel system signs the fuel supply amount from the supplied airflow flQ and controls the air-fuel ratio to an appropriate value.
しかしながら、上記従来の差圧式流量測定装置にあって
は、エアヒータ3の流入側と流出側とで温度差による空
気密度に著しい差があるにもかかわらず、流入側と流出
側の差圧PI P2がら空気ダクト1を流れる空気流
ωQを一義的tこ算出しているので、正確な欲望測定が
できない。However, in the conventional differential pressure type flow measuring device described above, although there is a significant difference in air density due to the temperature difference between the inflow side and the outflow side of the air heater 3, the differential pressure between the inflow side and the outflow side PI P2 Since the air flow ωQ flowing through the air duct 1 is calculated uniquely, accurate desire measurement cannot be performed.
(発明が解決しようとする問題点)
上述のように、温度差のある場所に適用される従来の差
圧式流量測定装置にあっては、温度差に基づく補正がさ
れておらず、正確な空気流椿測定ができない。このため
、例えば、求められた空気流ff1Qにより空燃比制御
をする場合、実際の空燃比が目標値と大ぎく異なってし
まい、空気不足による黒煙の発生や空気過剰による余分
な熱の発生等の不具合が生じていた。(Problems to be Solved by the Invention) As mentioned above, in the conventional differential pressure type flow measuring device applied to a place where there is a temperature difference, there is no correction based on the temperature difference, and it is difficult to accurately measure the air flow rate. Unable to measure camellia. For this reason, for example, when controlling the air-fuel ratio using the determined air flow ff1Q, the actual air-fuel ratio may differ greatly from the target value, resulting in the generation of black smoke due to lack of air, generation of excess heat due to excess air, etc. A problem had occurred.
本発明は上記事情に基づいたもので、その目的は、温度
差のある場所に適用しても正確に流体の流量を測定する
ことができる差圧式流量測定装置を(2供することにあ
る。The present invention is based on the above-mentioned circumstances, and its object is to provide a differential pressure flow rate measuring device that can accurately measure the flow rate of fluid even when applied to locations with temperature differences.
C発明の構成1
(問題点を解決するための手段)
上記問題点を解決するために本発明は、流体の流路内に
設けられた絞り機構の流入側と流出側との差圧を測定す
る差圧測定手段と、これら流入側及び/又は流出側の各
流体温度を検出する温度検出手段と、検出された各流体
温度に基づいて測定された差圧を補正する差圧補正手段
とを有する構成とした。Configuration 1 of the invention C (Means for solving the problems) In order to solve the above problems, the present invention measures the differential pressure between the inflow side and the outflow side of a throttling mechanism provided in a fluid flow path. temperature detection means for detecting the temperature of each fluid on the inflow side and/or the outflow side; and differential pressure correction means for correcting the measured differential pressure based on the detected fluid temperature. The configuration is as follows.
く (乍用 〉
流体内に設けられた絞り線溝の流入側における流体圧力
と流出側における流体圧力との差圧が差圧測定手段によ
って測定される。(Use) The differential pressure between the fluid pressure on the inflow side and the fluid pressure on the outflow side of the throttle line groove provided in the fluid is measured by the differential pressure measuring means.
また、絞りn構の流入側及び/又は流出側の各流体温度
が温度検出手段によって検出される。Further, the temperature of each fluid on the inflow side and/or the outflow side of the n orifices is detected by the temperature detection means.
そして、差圧補正手段では、検出された流体温度に基づ
いて測定された差圧の補正がされ、正しい流量が求めら
れる。Then, the differential pressure correction means corrects the measured differential pressure based on the detected fluid temperature, and determines the correct flow rate.
(実施例) 以下、図面に基づいて本発明の一実施例を説明する。(Example) Hereinafter, one embodiment of the present invention will be described based on the drawings.
第1図は本発明に係る差圧式流量測定装置Nの構成を示
しており、本実施例は、前記従来例と同様にボイラに本
発明を適用したものである。なお、前記第3図に示した
従来例と同一構成部分には同一符号を付し、ここでは、
本発明の¥を徴部分についてのみ説明する。FIG. 1 shows the configuration of a differential pressure type flow rate measuring device N according to the present invention, and in this embodiment, the present invention is applied to a boiler similarly to the conventional example. Note that the same components as those of the conventional example shown in FIG. 3 are given the same reference numerals, and here,
Only the ¥ character part of the present invention will be explained.
同図に示すように、本実施例では前記従来の差圧式流M
測定装置に加えて、エアヒータ3の流入側と流出側とに
温度ヒンサ17と19とが設けられ、空気ダクト1を流
れる流入側空気と流出側空気の各温度T+ 、T2が検
出されている。As shown in the figure, in this embodiment, the conventional differential pressure type flow M
In addition to the measuring device, temperature hinges 17 and 19 are provided on the inlet and outlet sides of the air heater 3 to detect the temperatures T+ and T2 of the inlet and outlet air flowing through the air duct 1, respectively.
検出された各温度T+ 、T2は温度補正部13に供給
される。また、この温度補正部13には、差圧伝送器1
1で測定されたエアヒータ3の流入側と流出側との差圧
P+−P2が供給されている。The detected temperatures T+ and T2 are supplied to the temperature correction section 13. In addition, this temperature correction section 13 includes a differential pressure transmitter 1
The differential pressure P+-P2 between the inflow side and the outflow side of the air heater 3 measured in step 1 is supplied.
この温度補正部13では、ベルヌーイの定理から導かれ
る以下の(2)式を利用して各温度T1.T2により流
入側空気密度γ1、流出側空気密度γ2を補正している
。The temperature correction unit 13 uses the following equation (2) derived from Bernoulli's theorem to calculate each temperature T1. The inflow side air density γ1 and the outflow side air density γ2 are corrected by T2.
される。CVは速度係数、CCは収縮係数、mはオリフ
ィス絞り部5の断面1aと空気ダクト1の内面積Δとの
面積比a/△である。be done. CV is a velocity coefficient, CC is a contraction coefficient, and m is an area ratio a/Δ between the cross section 1a of the orifice constriction portion 5 and the inner area Δ of the air duct 1.
上述のように温度補正部13により温度補正された後、
開平演算部15で開平演算が実行され、空気流ff1Q
が演算される。After the temperature is corrected by the temperature correction unit 13 as described above,
A square root calculation is performed in the square root calculation unit 15, and the air flow ff1Q
is calculated.
従って、エアヒータ3の流入側の温度T1とエアヒータ
3により熱印られた流出側の温度T2とを考慮して空気
密度γ1、γ2を補正しているので、このようにして求
められた空気流ff1Qは正確な信号として図示しない
燃料装置に供給される。Therefore, since the air densities γ1 and γ2 are corrected in consideration of the temperature T1 on the inflow side of the air heater 3 and the temperature T2 on the outflow side heated by the air heater 3, the air flow ff1Q determined in this way is corrected. is supplied as a precise signal to a fuel system (not shown).
燃料装置ではこの空気流量信号から燃料供給口を調部し
て空燃比制御を行っている。このため、この空燃比は目
標値に一致した適確な値となり、空気不足にJ:る黒煙
の発生や空気過剰にJ、る余分な熱の発生等の不具合を
防止できる。In the fuel system, the fuel supply port is adjusted based on this air flow rate signal to control the air-fuel ratio. Therefore, this air-fuel ratio becomes an appropriate value that matches the target value, and problems such as the generation of black smoke caused by insufficient air and the generation of excess heat caused by excess air can be prevented.
第2図は本発明に係る差圧式流量測定装置の他の実施1
91を示している。FIG. 2 shows another embodiment 1 of the differential pressure type flow rate measuring device according to the present invention.
91 is shown.
この実施例では、前記第1図に示した実施例に対して、
エアヒータ3の流出側にのみ温度センサ19を設(プた
ものである。In this embodiment, in contrast to the embodiment shown in FIG.
A temperature sensor 19 is installed only on the outflow side of the air heater 3.
この場合、流入側空気密度γ1は定数とみなしており、
次の(3)式が適用される。In this case, the inflow side air density γ1 is assumed to be a constant,
The following equation (3) is applied.
ここでf(T2)=(γ−/1’、 −1) P。Here f(T2)=(γ-/1', -1)P.
上記(3)式からも理解できるように、本実施例はエア
ヒータの流入側圧力P1と温度T1 とが共にほとんど
変化しない場合に適用され、第1図に示した前記実施例
と同様の効果を呈する。As can be understood from the above equation (3), this embodiment is applied when the inflow side pressure P1 and temperature T1 of the air heater hardly change, and has the same effect as the embodiment shown in FIG. present.
なお、前記各実施例では、エアヒータからの流入側と流
出側双方に温度センサ17.19を設けた場合(第1図
)、流出側にのみ温度センサ19を設けた場合(第2図
)について説明したが、流入側にのみ温度センサ17を
設ける構成であってもよい。この場合は、流出側圧力P
2と温度T2とがほとんど変化しない場合に適用される
。In each of the above embodiments, the temperature sensors 17 and 19 are provided on both the inflow side and the outflow side from the air heater (Fig. 1), and the case where the temperature sensor 19 is provided only on the outflow side (Fig. 2). Although described above, the temperature sensor 17 may be provided only on the inflow side. In this case, the outlet pressure P
This is applied when there is almost no change between temperature T2 and temperature T2.
[発明の効果]
以上、説明したように本発明によれば、流路内に設けら
れた絞り機構の流入側及び/又は流出側の各流体温度に
より、流入側と流出側との差圧を補正するようにしたの
で、流路内を流れる流体流量を正確に算出することがで
きる。このため、本発明を空燃比制御等における空気流
聞測定に適用した場合、(qられた空燃比は目標値に一
致することとなり、空気不足や空気過剰等の不具合が解
消でき、無公害で信頼性の高い空燃比制御が実現できる
。[Effects of the Invention] As described above, according to the present invention, the differential pressure between the inflow side and the outflow side can be reduced by the temperature of each fluid on the inflow side and/or the outflow side of the throttling mechanism provided in the flow path. Since the correction is performed, the flow rate of the fluid flowing in the flow path can be accurately calculated. Therefore, when the present invention is applied to air flow measurement in air-fuel ratio control, etc., the air-fuel ratio (q) will match the target value, problems such as insufficient air or excess air can be resolved, and the result will be non-polluting. Highly reliable air-fuel ratio control can be achieved.
【図面の簡単な説明】
第1図は本発明に係る差圧式流m測定装置の一実施例の
構成図、第2図は同他の実施例の構成図、第3図は従来
の差圧式流m測定装置の構成図である。
1・・・空気ダクト 3・・・エアヒータ5・
・・オリフィス絞り部 11・・・差圧伝送器13・・
・温度補正部 15・・・開平演算部17.19
・・・温度センサ
代理人 弁理士 則 近 憲 佑
代理人 弁理士 三 俣 弘 文
第1図
Q
第2図
第8図[BRIEF DESCRIPTION OF THE DRAWINGS] Fig. 1 is a block diagram of one embodiment of the differential pressure type flow m measuring device according to the present invention, Fig. 2 is a block diagram of another embodiment, and Fig. 3 is a conventional differential pressure type flow m measuring device. It is a block diagram of a flow m measuring device. 1... Air duct 3... Air heater 5.
... Orifice constriction section 11 ... Differential pressure transmitter 13 ...
・Temperature correction section 15...square root calculation section 17.19
...Temperature sensor agent Patent attorney Kensuke Chika Agent Patent attorney Hiroshi Mitsumata Figure 1 Q Figure 2 Figure 8
Claims (1)
る流体の差圧を測定する差圧測定手段と、 前記絞り機構の流入側及び/又は流出側の流体温度を検
出する温度検出手段と、 前記検出された流入側及び/又は流出側の流体温度に基
づいて前記測定された差圧を補正する差圧補正手段とを
有することを特徴とする差圧式流量測定装置。[Scope of Claims] Differential pressure measuring means for measuring the differential pressure of a fluid between the inflow side and the outflow side of a throttle mechanism provided in the middle of a flow path; A differential pressure type flow rate measuring device comprising: a temperature detecting means for detecting; and a differential pressure correcting means for correcting the measured differential pressure based on the detected fluid temperature on the inflow side and/or the outflow side. .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6863786A JPS62226016A (en) | 1986-03-28 | 1986-03-28 | Differential pressure type flow rate measuring device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6863786A JPS62226016A (en) | 1986-03-28 | 1986-03-28 | Differential pressure type flow rate measuring device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS62226016A true JPS62226016A (en) | 1987-10-05 |
Family
ID=13379446
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6863786A Pending JPS62226016A (en) | 1986-03-28 | 1986-03-28 | Differential pressure type flow rate measuring device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62226016A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0324422A (en) * | 1989-06-21 | 1991-02-01 | Toshiba Eng Co Ltd | Air-flow-rate controlling apparatus |
KR20030063554A (en) * | 2002-01-22 | 2003-07-31 | 안경대 | Differential pressure flowmeter |
JP2006519997A (en) * | 2003-03-12 | 2006-08-31 | ローズマウント インコーポレイテッド | Flow device with multi-sensor |
JP2007522479A (en) * | 2004-02-16 | 2007-08-09 | サントル、ナショナール、ド、ラ、ルシェルシュ、シアンティフィク、(セーエヌエルエス) | Unsteady flow meter |
KR100828005B1 (en) | 2007-09-17 | 2008-05-08 | 이승희 | Device for detecting volume of flowing air |
JP2015017786A (en) * | 2013-07-12 | 2015-01-29 | リンナイ株式会社 | Hot air heater |
-
1986
- 1986-03-28 JP JP6863786A patent/JPS62226016A/en active Pending
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0324422A (en) * | 1989-06-21 | 1991-02-01 | Toshiba Eng Co Ltd | Air-flow-rate controlling apparatus |
KR20030063554A (en) * | 2002-01-22 | 2003-07-31 | 안경대 | Differential pressure flowmeter |
JP2006519997A (en) * | 2003-03-12 | 2006-08-31 | ローズマウント インコーポレイテッド | Flow device with multi-sensor |
JP2007522479A (en) * | 2004-02-16 | 2007-08-09 | サントル、ナショナール、ド、ラ、ルシェルシュ、シアンティフィク、(セーエヌエルエス) | Unsteady flow meter |
KR101212968B1 (en) * | 2004-02-16 | 2013-01-10 | 유니베르시테 드 포이티르 | A system and a process for the measurement of unsteady flow |
KR100828005B1 (en) | 2007-09-17 | 2008-05-08 | 이승희 | Device for detecting volume of flowing air |
JP2015017786A (en) * | 2013-07-12 | 2015-01-29 | リンナイ株式会社 | Hot air heater |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0498809B2 (en) | combustion control | |
JP7168775B2 (en) | Device for adjusting the mixing ratio of gas mixtures | |
US10502418B2 (en) | Device and method for mixing combustible gas and combustion air, hot water installation provided therewith, corresponding thermal mass flow sensor and method for measuring a mass flow rate of a gas flow | |
TW200811403A (en) | Boiler and method for controlling the combustion for boiler | |
JPS62226016A (en) | Differential pressure type flow rate measuring device | |
JP2002267159A (en) | Air-fuel ratio control method and device | |
JPH08312908A (en) | Dryness controller for steam | |
US4756688A (en) | Apparatus and method for the flow control of flue gas to combustion air in a regenerative heating system | |
JP3777041B2 (en) | Combustion equipment | |
GB2237665A (en) | Boiler control | |
JP2534418B2 (en) | Calorimeter | |
AU644382B2 (en) | Microbridge-based combustion control | |
JP3152407B2 (en) | Water heater | |
JP3534865B2 (en) | Air-fuel ratio control device for combustor | |
JPS5956040A (en) | Tap controlled type hot-water supplying apparatus | |
JP3063514B2 (en) | Flow measurement method using pressure sensor | |
JPS637285B2 (en) | ||
JP2710541B2 (en) | Combustion control device | |
JPS6365207A (en) | Boiler steam temperature controller | |
JPS5664226A (en) | Air fuel ratio controller for exhaust gas denitrification heating furnace | |
JPH0346339Y2 (en) | ||
JPH03175208A (en) | Automatic air/fuel ratio correction device | |
JP2001153303A (en) | Boiler penthouse seal device | |
JPS6287726A (en) | Air-fuel ratio control system in burning device | |
JPS58190618A (en) | Combustion device |