JPS637237B2 - - Google Patents

Info

Publication number
JPS637237B2
JPS637237B2 JP54130489A JP13048979A JPS637237B2 JP S637237 B2 JPS637237 B2 JP S637237B2 JP 54130489 A JP54130489 A JP 54130489A JP 13048979 A JP13048979 A JP 13048979A JP S637237 B2 JPS637237 B2 JP S637237B2
Authority
JP
Japan
Prior art keywords
fire retardant
synthetic resin
fire
resin foam
foam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54130489A
Other languages
Japanese (ja)
Other versions
JPS5655478A (en
Inventor
Hideki Takiguchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP13048979A priority Critical patent/JPS5655478A/en
Publication of JPS5655478A publication Critical patent/JPS5655478A/en
Publication of JPS637237B2 publication Critical patent/JPS637237B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は高温下において結晶水を放出すると共
に、次第に発泡膨張して無機質発泡層を形成する
防火剤に関する。さらに説明すると複合構造の建
築用パネル等において芯材、断熱材として用いる
合成樹脂発泡体の耐火性をその物性を損ねること
なしに、かつ耐候性にすぐれた防火剤を分布、敷
設等することにより、パネル自体の耐火性を改善
した防火剤に係る。 最近、建材において断熱性が大幅に要求され、
これにマツチした材料として合成樹脂発泡体が存
在する。しかも、この種断熱材は主に芯材兼断熱
材および接着剤等として機能するものが多々使用
されている。また建材としては複合構造、例えば
外装材として加工性、不燃性、耐薬品性、耐候性
に富む金属板と前記芯材等を一体化したパネルが
市販されている。そして、この種パネルにおいて
は、断熱性のほかに耐火性が火災時の有毒ガス発
生等の関係で法的規制が強化されつつある。その
ため従来は、例えば実公昭46−20443号、特公昭
48−3235号、特開昭48−95017号、特公昭53−
30736号に示すように可燃な芯材を難燃化(添加
型)する方法が提案され、それなりの難燃効果を
発揮している。しかしながら、添加型による難燃
化法においては、合成樹脂発泡体原料と難燃化用
の添加物とが樹脂の反応発泡時にその一成分と反
応して発泡組織を荒らして断熱性および有効発泡
(原料の使用量の有効的活用)の低下を招く不都
合があつた。しかも軟燃化用の添加した物質の水
分等が低下するため、万一の火災時に所期の無機
質発泡層の形成が期待できず、総合的には難燃性
の劣化、低下する欠点があつた。さらに硼砂、メ
タ硼酸ソーダは水に可溶で、かつ融点が62℃、54
℃程度であるためそれほど耐候性に強くなく、溶
融、変質するおそれがあつた。しかも強アルカリ
性(PH9)と温度と水分によつては、耐アルカ
リ性のある合成樹脂発泡体でも簡単に破壊されて
しまう欠点があつた。換言すれば、外壁において
は金属板の裏面温度が盛夏では、約70〜80℃に上
昇するためめ硼砂等が直接接触している部分で水
分が蒸発し、溶融するため上記のような過酷な状
態にさらされ、合成樹脂発泡体が破壊されること
になる。そして、このような欠点を改善しようと
して、前記した硼砂等を無機質多孔粒、例えばパ
ーライト粒の内部空隙に含浸充填したり、難燃剤
の外周を塗料その他樹脂でコーテイングした難燃
剤を合成樹脂発泡体組織中に添加混合し、分散せ
しめて耐火性を向上せしめた芯材も存在する。し
かしこの場合、コーテイング技術の関係でピンホ
ールなく完全に粒状の難燃剤を被覆することが困
難であり、終局的には前記した従来法より、わず
かに合成樹脂発泡体の破壊等を時間的に延長した
だけの効果しか期待できなかつた。また、合成樹
脂発泡組織中に散在した際は、前記のような破壊
が芯材全体に拡散するばかりでなく、難燃剤が均
一に分散されにくいため、高温にさらされた際に
合成樹脂発泡体が破壊される等の不都合もあつ
た。 本発明は、このような欠点を除去するために硼
酸塩、珪酸塩等の一種または二種以上と吸着物粉
末とを不通気性のフイルム状の壁膜物質を介して
線状、あるいはテープ状、ペレツト状に封入し、
耐候性を大幅に改善すると共に、合成樹脂発泡体
中への混入を容易にし、万一の火災の際に所期の
耐火性を発揮しうる防火剤を提供する。 以下に図面を用いて本発明に係る防火剤の一実
施例について詳細に説明する。第1図は本発明に
係る防火剤Aの代表的な一例を示す斜視図で、1
は硼酸塩、珪酸塩、第2リン酸ソーダ等の発泡性
無機物で、高温にさらされた際に結晶水を放出す
ると共に次第に発泡膨脹し無機質発泡層を形成す
るものである。具体例としては、硼砂、メタ硼酸
ソーダ、(4〜8)硼酸ソーダ等であり、珪酸塩
としては珪酸ソーダ、メタ珪酸ソーダ、オルト珪
酸ソーダ等であり、リン酸ソーダとしては、第2
リン酸ソーダ、ピロリン酸ソーダ等であり、これ
らの一種もしくは二種以上を塊状あるいは小片状
に成形したもの、あるいは終局的に小片状に形成
されうるもの等である。2は吸着物粉末であり、
発泡性無機物1が70〜80℃で溶融した際に、その
水蒸気を吸着して後記する空隙内の圧力の大幅な
上昇を阻止することにより、フイルム状の壁膜物
質3の破壊を阻止するものである。上記吸着物粉
末2としては、活性炭、シリカゲル等の粉末であ
る。3は壁膜物質で、不通気性のフイルムからな
り、発泡性無機物1、吸着物粉末2を被覆し、保
護するものであり、ポリエチレン、塩化ビニル、
ポリアミド、ABS樹脂、ポリエステル樹脂、フ
ツソ樹脂、ポリカーボネートナイロン等である。
さらに説明を加えると、防火剤Aは、発泡性無機
物1、吸着物粉末2を壁膜物質3によつて線状、
あるいは図示しないがテープ状、ペレツト状等に
封入したものであり、パネルの合成樹脂発泡体形
成過程での原料と発泡性無機物1とを融離し、反
応するのを阻止して発泡組織が荒れるのを阻止
し、有効発泡の低下を防止すると共に、合成樹脂
発泡体中における発泡性無機物1のアルカリ性に
よる破壊を阻止するものである。しかも、発泡性
無機物1と吸着物粉末2を封入しているため、水
分の低下、発泡性無機物1の溶出がなく、火災時
における防火剤Aの防火性が低下するのを阻止で
きる。なお、防火剤Aの発泡性無機物1の封入構
造としては第2図a〜cに示すようなものであ
り、発泡性無機物1を中心にその回りを吸着物粉
末2で囲んだり(a,b図)、内部に空気4を幾
分内包させたり(c図)することができる。ま
た、発泡性無機物1をグラスフアイバー、クラフ
ト紙、アスベスト紙、布、石膏紙、その他の不織
布に含浸させ、これを小片、糸状に切断して封入
することもできる。さらに発泡性無機物1が粒
状、粉状の場合は吸着物粉末2と混合した状態で
封入することも可能である。さらに説明すると、
第1図では、発泡性無機物1、吸着物粉末2を線
状に封入し、かつこれを複数本平設し、中間を壁
膜物質3のみによる分割帯5で連結し、その上、
分割帯5に小孔6を穿設し、全体的にシート状と
したものである。この場合、例えば第4図aに示
すような外表面材イ、合成樹脂発泡体ロ、裏面材
ハからなるパネルの外表面材イと合成樹脂発泡体
ロとの中間に防火剤Aを用いたとすると、小孔6
を介して合成樹脂発泡体ロの自己接着性のみによ
つて各構成材を一体化でき、しかも防火剤Aは粉
末体と異なり、合成樹脂発泡体ロの発泡圧による
移動がほとんどなく、所定位置に配設することが
できる。なお、壁膜物質3に予め吸着物粉末3、
あるいは繊維を添加、分布することも可能であ
る。 次に実施例につき説明する 実施例 1 ポリエチレンフイルム(90ミクロン)
……壁膜物質3 硼砂(10水塩) ……発泡性無機物1 活性炭 ……吸着物粉末2 10gの充填量で内2gが活性炭で、第1図に示
す形状に封入した。これを20℃の温水に2ケ月間
浸漬してもアルカリ溶出が一切見られなかつた。
そこで、この防火剤Aを70℃に10時間さらしたと
ころ、防火剤Aにふくらみは見られなかつた。勿
論、防火剤Aの破壊はなかつた。また、この防火
剤Aを900℃の直火炎にさらしたところ、本来の
無機質発泡層を形成した。 以上説明したのは、本発明の一実施例にすぎ
ず、第3図a〜dに示すように形成することもで
きる。すなわち、a図は棒状に形成した防火剤
A、b図は独立構造の線状に形成した防火剤A、
c図はテープ状に形成した防火剤A、d図は封入
形状をペレツト状にし、全体的にシート状に形成
した防火剤Aである。特にb、d図に示す防火剤
Aは各々独立構造になつているため、切断によつ
ても耐火性の劣化等の他への伝達がない。また、
第4図a〜eは本発明に係る防火剤Aを用いたパ
ネル例である。なお、イは外表面材で金属板、例
えばカラー鉄板、ステンレス板、アルミニウム板
等を図のように成形し、その背面に防火材Aを全
面に敷設し、その上にポリイソシアヌレートフオ
ーム、ポリウレタンフオーム、フエノールフオー
ム等の合成樹脂発泡体ロを形成し、その上に裏面
材ハを積層したパネルを示す。 上述したように本発明に係る防火材によれば、
○イ高温下において、非常に強力に防火性を発揮す
る防火剤を所期の性能を有して長期に亘つて維持
できる特徴がある。○ロ合成樹脂発泡体を形成する
際に従来はその組織、反応系に大きな悪影響を与
えていた防火剤の分布、添加をその反応等を阻害
することなく添加、敷設したため、高断熱性を得
られると共に、高い機械強度を得ることができ
る。○ハ発泡性無機物、吸着物粉末は壁膜物質によ
つて線状、テープ状、ペレツト状に封入されてい
るため、合成樹脂発泡体中で所定位置に配設する
ことが容易である。等の効果、特徴がある。
The present invention relates to a fire retardant that releases crystal water at high temperatures and gradually expands to form an inorganic foam layer. To explain further, the fire resistance of synthetic resin foam used as a core material and insulation material in composite construction panels, etc. can be improved by distributing and installing a fire retardant with excellent weather resistance without impairing its physical properties. , relates to a fire retardant that improves the fire resistance of the panel itself. Recently, there has been a significant demand for insulation properties in building materials.
Synthetic resin foam exists as a material that meets this requirement. Moreover, many of these types of heat insulating materials are used that mainly function as core materials and heat insulating materials, adhesives, and the like. Furthermore, as building materials, composite structures such as panels in which a metal plate, which is highly workable, nonflammable, chemical resistant, weather resistant, and the core material etc. are integrated as an exterior material, are commercially available. In addition to heat insulation properties, this type of panel is also subject to stricter legal regulations due to its fire resistance, which is related to the generation of toxic gases in the event of a fire. Therefore, in the past, for example, Utility Model Publication No. 46-20443, Special Publication No.
No. 48-3235, Japanese Patent Application Publication No. 1983-95017, Special Publication No. 1973-
As shown in No. 30736, a method of making a combustible core material flame retardant (additive type) has been proposed, and has shown some degree of flame retardant effect. However, in the additive flame retardant method, the synthetic resin foam raw material and the flame retardant additive react with one of the components during reaction foaming of the resin and roughen the foam structure, resulting in improved insulation and effective foaming ( There was an inconvenience that led to a decrease in the effective use of raw materials. Moreover, since the moisture content of the added material for softening the flame decreases, the formation of the desired inorganic foam layer cannot be expected in the event of a fire, and overall there is a drawback that flame retardancy deteriorates and decreases. Ta. Furthermore, borax and sodium metaborate are soluble in water and have melting points of 62℃ and 54℃.
℃, so it was not very weather resistant, and there was a risk of melting and deterioration. Moreover, it had the disadvantage that even alkali-resistant synthetic resin foam could be easily destroyed due to strong alkalinity (PH9), temperature, and moisture. In other words, the temperature on the back side of the metal plate on the exterior wall rises to about 70 to 80 degrees Celsius in midsummer, causing moisture to evaporate and melt in areas that are in direct contact with borax, etc. Exposure to these conditions will cause the synthetic resin foam to break down. In an attempt to improve these drawbacks, the internal voids of inorganic porous grains, such as perlite grains, are impregnated with the aforementioned borax, etc., and the outer periphery of the flame retardant is coated with paint or other resin to form synthetic resin foams. There is also a core material that is added and mixed into the structure and dispersed to improve fire resistance. However, in this case, it is difficult to completely coat the granular flame retardant without pinholes due to coating technology, and in the end, the destruction of the synthetic resin foam is slightly more time-consuming than the conventional method described above. I could only expect the effect of extending the period. In addition, when the flame retardant is scattered in the synthetic resin foam structure, not only will the above-mentioned destruction spread throughout the core material, but it will also be difficult to disperse the flame retardant uniformly. There were also some inconveniences, such as destruction of the equipment. In order to eliminate such drawbacks, the present invention provides one or more borates, silicates, etc. and adsorbent powder in a linear or tape-like manner through an impermeable film-like wall material. , sealed in pellet form,
To provide a fire retardant that greatly improves weather resistance, can be easily mixed into a synthetic resin foam, and can exhibit desired fire resistance in the event of a fire. An embodiment of the fire retardant according to the present invention will be described in detail below with reference to the drawings. FIG. 1 is a perspective view showing a typical example of fire retardant A according to the present invention.
is a foamable inorganic material such as a borate, a silicate, or dibasic sodium phosphate, which releases crystal water when exposed to high temperatures and gradually expands to form an inorganic foam layer. Specific examples include borax, sodium metaborate, (4-8) sodium borate, etc., silicates include sodium silicate, sodium metasilicate, sodium orthosilicate, etc., and sodium phosphates include sodium silicate, etc.
Sodium phosphate, sodium pyrophosphate, etc., and one or more of these molded into a lump or small piece, or one that can ultimately be formed into a small piece. 2 is adsorbent powder;
When the foamable inorganic material 1 melts at 70 to 80°C, it adsorbs the water vapor and prevents the film-like wall material 3 from being destroyed by preventing a significant increase in pressure within the voids, which will be described later. It is. The adsorbent powder 2 is a powder of activated carbon, silica gel, or the like. Reference numeral 3 denotes a wall film material, which is made of an impermeable film and covers and protects the foamable inorganic material 1 and adsorbent powder 2, and is made of polyethylene, vinyl chloride,
These include polyamide, ABS resin, polyester resin, fluorine resin, polycarbonate nylon, etc.
To explain further, the fire retardant A forms the foamable inorganic substance 1 and the adsorbent powder 2 into linear form through the wall film substance 3.
Alternatively, although not shown, it is encapsulated in a tape shape, pellet shape, etc., and melts the raw material and the foamable inorganic substance 1 during the process of forming the synthetic resin foam of the panel, preventing them from reacting and causing the foam structure to become rough. This prevents the deterioration of effective foaming and also prevents the foamable inorganic substance 1 in the synthetic resin foam from being destroyed by alkalinity. Moreover, since the foamable inorganic substance 1 and the adsorbent powder 2 are enclosed, there is no drop in moisture content and no elution of the foamable inorganic substance 1, and it is possible to prevent the fire retardant properties of the fire retardant A from decreasing in the event of a fire. The encapsulation structure of the foamable inorganic material 1 of the fire retardant A is as shown in FIGS. (Fig.), or some amount of air 4 can be contained inside (Fig. c). It is also possible to impregnate glass fiber, kraft paper, asbestos paper, cloth, gypsum paper, or other nonwoven fabric with the foamable inorganic material 1, and then cut this into small pieces or threads and encapsulate them. Furthermore, when the foamable inorganic substance 1 is in the form of particles or powder, it is also possible to encapsulate it in a mixed state with the adsorbate powder 2. To explain further,
In FIG. 1, a foamable inorganic material 1 and an adsorbent powder 2 are enclosed in a linear shape, and a plurality of these are arranged horizontally, and the middle is connected by a dividing band 5 made of only a wall film material 3, and furthermore,
A small hole 6 is bored in the dividing band 5, and the whole is made into a sheet shape. In this case, for example, if fire retardant A is used between outer surface material A and synthetic resin foam B of a panel consisting of outer surface material A, synthetic resin foam B, and back surface material C as shown in FIG. 4a, Then, small hole 6
It is possible to integrate each constituent material only by the self-adhesive properties of the synthetic resin foam (2) through the fire retardant (A).Furthermore, unlike powder, the fire retardant (A) hardly moves due to the foaming pressure of the synthetic resin foam (2), so it remains in place. It can be placed in Note that adsorbent powder 3,
Alternatively, it is also possible to add and distribute fibers. Example 1 Polyethylene film (90 microns)
...Wall film material 3 Borax (decahydrate) ...Expansible inorganic material 1 Activated carbon ...Adsorbent powder 2 A filling amount of 10 g, of which 2 g was activated carbon, was sealed in the shape shown in Figure 1. No alkaline elution was observed even when this was immersed in hot water at 20°C for two months.
Therefore, when this fire retardant A was exposed to 70°C for 10 hours, no swelling was observed in the fire retardant A. Of course, fire retardant A was not destroyed. Furthermore, when this fire retardant A was exposed to a direct flame at 900°C, it formed an original inorganic foam layer. What has been described above is only one embodiment of the present invention, and it can also be formed as shown in FIGS. 3a to 3d. That is, figure a shows fire retardant A formed into a rod shape, figure b shows fire retardant A formed into an independent linear structure,
Figure c shows the fire retardant A formed into a tape shape, and Figure d shows the fire retardant A sealed in a pellet shape and formed entirely into a sheet. In particular, since the fire retardants A shown in Figures b and d each have an independent structure, there is no transmission of deterioration of fire resistance to others even when cut. Also,
Figures 4a to 4e are examples of panels using fire retardant A according to the present invention. In addition, A is a metal plate, such as a colored iron plate, a stainless steel plate, an aluminum plate, etc., is formed as an outer surface material as shown in the figure, and the fireproofing material A is laid on the entire surface on the back side, and polyisocyanurate foam, polyurethane foam, etc. This figure shows a panel in which a synthetic resin foam such as foam or phenol foam (2) is formed, and a backing material (3) is laminated thereon. As mentioned above, according to the fireproof material according to the present invention,
○B) A fire retardant that exhibits extremely strong fire retardant properties under high temperatures can maintain its desired performance over a long period of time. ○ When forming a synthetic resin foam, the distribution and addition of a fire retardant, which conventionally had a large adverse effect on the structure and reaction system, was added and installed without inhibiting the reaction, etc., resulting in high heat insulation properties. It is possible to obtain high mechanical strength. C. Since the foamable inorganic substance and adsorbent powder are encapsulated in the form of a line, tape, or pellet by the wall material, it is easy to arrange them at a predetermined position in the synthetic resin foam. It has the following effects and characteristics.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る防火剤の代表的一実施例
を示す斜視図、第2図a〜cは発泡性無機物の封
入状態を説明する説明図、第3図a〜dはその他
の実施例を示す説明図、第4図a〜eは本発明に
係る防火剤を用いたパネルの一例を示す説明図で
ある。 A……防火剤、1……発泡性無機物、2……吸
着物粉末、3……壁膜物質。
Fig. 1 is a perspective view showing a typical example of the fire retardant according to the present invention, Figs. 2 a to c are explanatory views explaining the state of inclusion of the foamable inorganic substance, and Figs. 3 a to d are other embodiments. FIGS. 4A to 4E are explanatory views showing an example of a panel using the fire retardant according to the present invention. A... Fire retardant, 1... Foaming inorganic material, 2... Adsorbent powder, 3... Wall film material.

Claims (1)

【特許請求の範囲】[Claims] 1 高温下において、結晶水を放出すると共に次
第に発泡膨脹して無機質発泡層を形成する発泡性
無機物と吸着物粉末とを不通気性の壁膜物質で線
状、あるいはテープ状、ペレツト状に封入したこ
とを特徴とする防火剤。
1. A foamable inorganic substance and adsorbent powder that releases crystal water and gradually expands to form an inorganic foam layer at high temperatures are enclosed in an impermeable wall material in the form of a line, tape, or pellet. A fire retardant characterized by:
JP13048979A 1979-10-09 1979-10-09 Fireproofing agent Granted JPS5655478A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13048979A JPS5655478A (en) 1979-10-09 1979-10-09 Fireproofing agent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13048979A JPS5655478A (en) 1979-10-09 1979-10-09 Fireproofing agent

Publications (2)

Publication Number Publication Date
JPS5655478A JPS5655478A (en) 1981-05-16
JPS637237B2 true JPS637237B2 (en) 1988-02-16

Family

ID=15035474

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13048979A Granted JPS5655478A (en) 1979-10-09 1979-10-09 Fireproofing agent

Country Status (1)

Country Link
JP (1) JPS5655478A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6041410U (en) * 1983-08-30 1985-03-23 株式会社アイジ−技術研究所 Insulated panels with fire retardant properties
PL2611860T3 (en) * 2010-08-30 2019-01-31 Kaneka Belgium N.V. Expanded polyolefin containing powdered activated carbon

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4842599A (en) * 1971-10-05 1973-06-20
JPS5113118A (en) * 1974-07-24 1976-02-02 Hitachi Chemical Co Ltd KENZAIBOODO
JPS5146714A (en) * 1974-10-18 1976-04-21 Ig Gijutsu Kenkyusho Kk Zooryutaikazai oyobi zooryutaikazaio mochiitenaru taikapaneru
JPS52148578A (en) * 1976-06-07 1977-12-09 Ishikawa Takashi Improved sheet and insulating fire panel using same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4842599A (en) * 1971-10-05 1973-06-20
JPS5113118A (en) * 1974-07-24 1976-02-02 Hitachi Chemical Co Ltd KENZAIBOODO
JPS5146714A (en) * 1974-10-18 1976-04-21 Ig Gijutsu Kenkyusho Kk Zooryutaikazai oyobi zooryutaikazaio mochiitenaru taikapaneru
JPS52148578A (en) * 1976-06-07 1977-12-09 Ishikawa Takashi Improved sheet and insulating fire panel using same

Also Published As

Publication number Publication date
JPS5655478A (en) 1981-05-16

Similar Documents

Publication Publication Date Title
JPS6042285A (en) Expandable silicate
KR20070004916A (en) Thermal insulation composite with improved thermal stability and improved fire resistance
US4372997A (en) Heat- and flame-resistant sheet material
JPS5815577B2 (en) fire protection panel
JPS637237B2 (en)
JPS6116116Y2 (en)
JPS6316542B2 (en)
EP0543349A1 (en) Intumescent composite material
JPS6229522Y2 (en)
JPH0960154A (en) Fire resistant panel
JPS5947984B2 (en) Fire-resistant, heat-resistant fiber laminate
JPH0932153A (en) Fire-resisting panel
JPH0119699Y2 (en)
JP2919904B2 (en) Fire resistant plastic material
JPS625446Y2 (en)
JPS625315Y2 (en)
JPS594109Y2 (en) siding board
JPS607164Y2 (en) architectural board
JPS625314Y2 (en)
JPS5817148B2 (en) Nannenseigouseijiyushidannetsuzai Oyobisono Seizouhouhou
JPS625313Y2 (en)
JPS6315444Y2 (en)
JPS6227216B2 (en)
JPS6123233B2 (en)
JPH1088697A (en) Fire-resistive heat-insulating panel