JPS6372128A - Thin film manufacturing device - Google Patents
Thin film manufacturing deviceInfo
- Publication number
- JPS6372128A JPS6372128A JP21745086A JP21745086A JPS6372128A JP S6372128 A JPS6372128 A JP S6372128A JP 21745086 A JP21745086 A JP 21745086A JP 21745086 A JP21745086 A JP 21745086A JP S6372128 A JPS6372128 A JP S6372128A
- Authority
- JP
- Japan
- Prior art keywords
- sample
- thin film
- film thickness
- detector
- film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000010409 thin film Substances 0.000 title claims abstract description 25
- 238000004519 manufacturing process Methods 0.000 title claims description 6
- 239000004065 semiconductor Substances 0.000 claims abstract description 11
- 238000006243 chemical reaction Methods 0.000 claims abstract description 5
- 239000010408 film Substances 0.000 abstract description 29
- 238000000034 method Methods 0.000 abstract description 11
- 230000003647 oxidation Effects 0.000 abstract description 7
- 238000007254 oxidation reaction Methods 0.000 abstract description 7
- 238000005259 measurement Methods 0.000 abstract description 6
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 abstract description 6
- 239000012159 carrier gas Substances 0.000 abstract description 5
- 239000010453 quartz Substances 0.000 abstract description 5
- 230000001590 oxidative effect Effects 0.000 abstract description 3
- 230000007246 mechanism Effects 0.000 description 6
- 239000007787 solid Substances 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 210000000988 bone and bone Anatomy 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- LIVNPJMFVYWSIS-UHFFFAOYSA-N silicon monoxide Chemical compound [Si-]#[O+] LIVNPJMFVYWSIS-UHFFFAOYSA-N 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
Landscapes
- Testing Or Measuring Of Semiconductors Or The Like (AREA)
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
本発明は、基板上に成長あるいは付着する半導体又は絶
縁体薄膜の膜厚を、その製造工程で、測定できる機構を
有する薄膜製造装置に関する。DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a thin film manufacturing apparatus having a mechanism capable of measuring the thickness of a semiconductor or insulator thin film grown or attached on a substrate during the manufacturing process.
従来の技術
薄い膜成長の例としては、通常は酸化ガスとキャリヤガ
スの雰囲気を、加熱された(500〜1200℃)炉の
中で成長させる方法がある。BACKGROUND OF THE INVENTION An example of thin film growth is growth in a heated (500 DEG -1200 DEG C.) furnace, usually in an oxidizing gas and carrier gas atmosphere.
常圧下で膜厚を成長する過程でその膜厚を測定するには
、膜厚500A以上の場合は、成長膜の境界面で反射し
た白色光による干渉色で、目視により膜厚を測ることが
できる。To measure the film thickness during the growth process under normal pressure, if the film thickness is 500A or more, it is possible to visually measure the film thickness using the interference color of white light reflected from the boundary surface of the grown film. can.
しかしこの方法は、基板上に成長する薄膜が500A未
満の超薄膜等の薄い薄膜成長の制御データに利用するに
は適さない。However, this method is not suitable for use as control data for the growth of thin films, such as ultra-thin films of less than 500A, grown on a substrate.
しかも、薄い膜厚の測定のために、膜成長工程の中で試
料を逐次外部に取り出す事はできない。Moreover, in order to measure a thin film thickness, it is not possible to take samples out sequentially during the film growth process.
均一な質の膜、および膜厚を制御するには、膜成長の雰
囲気を微少たりとも変動することができない。一般に膜
の厚みを測定するにはモニター用サンプル又はディテク
ターを膜形成工程で装置から取り出し、膜厚測定器で観
測し、現成長膜厚を測定している。In order to obtain a film of uniform quality and to control the film thickness, the atmosphere in which the film is grown cannot be changed even slightly. Generally, to measure the thickness of a film, a monitoring sample or a detector is taken out of the apparatus during the film forming process, observed with a film thickness measuring device, and the currently grown film thickness is measured.
発明が解決しようとする問題点
しかし、この方法では、薄膜厚500A以下では観測が
困難である。Problems to be Solved by the Invention However, with this method, it is difficult to observe a thin film with a thickness of 500 Å or less.
本発明は、これら問題点を解決することを目的としてお
り、薄膜を形成する過程において膜厚を観測しつつ、膜
厚の制御を行うものである。The present invention aims to solve these problems, and controls the film thickness while observing the film thickness in the process of forming a thin film.
問題点を解決するための手段
本発明は、エキソ電子を利用した半導体薄膜測定器を反
応管内部に設定し、成長過程で膜厚測定可能な構成とし
た薄膜製造装置である。Means for Solving the Problems The present invention is a thin film manufacturing apparatus having a structure in which a semiconductor thin film measuring device using exoelectrons is set inside a reaction tube to enable film thickness measurement during the growth process.
作用
本発明によると、エキソ電子を利用した膜厚測定器を薄
膜形成反応管の後端部に設置し、膜形成過程の試料を後
端部まで移動させることにより、容易に測定することが
できる。According to the present invention, a film thickness measurement device using exoelectrons is installed at the rear end of the thin film forming reaction tube, and the sample in the film formation process is moved to the rear end, thereby making it possible to easily measure the thickness. .
実施例
一般に固体の表面、具体的には金属表面又は半導体表面
に紫外線、X線、γ線などの電磁波又は電子イオンなど
の荷電粒子(以下、電磁波等という)をあてることによ
り、金属表面又は半導体表面より、電磁波等により励起
された、金属表面又は半導体表面電子が、固体表面より
放出される。Examples Generally, the surface of a solid, specifically a metal surface or a semiconductor surface, is exposed to electromagnetic waves such as ultraviolet rays, Metal surface or semiconductor surface electrons excited by electromagnetic waves or the like are emitted from the solid surface.
これがエキソ電子であり、この電流値を測定することに
よって表面の状態変化を観測することができる。These are exoelectrons, and changes in the state of the surface can be observed by measuring this current value.
エキソ電子は通常の熱電子放射とか光電子放射とは、異
なる機構で、固体から非定常的に放出される電子であり
、特に固体の構造変化に依存する放射電子である。Exoelectrons are electrons that are unsteadily emitted from a solid by a mechanism different from normal thermionic emission or photoelectron emission, and are emitted electrons that are particularly dependent on structural changes in the solid.
本発明は、この現象を利用して、薄膜を形成している雰
囲気に影響することなく、その生成薄膜厚を観測するも
のである。一般に半導体薄膜の製造方法として、特に酸
化薄膜の場合は、拡散電気炉において、生成される。特
に500A以下の薄膜を形成する場合は、キャリヤガス
の成分および温度制御に複雑な機構が必要であり薄膜の
成長過程で膜厚を測定しながら測定することが望ましい
O
第1図に本発明の構成の概要を示す。即ち、電気炉ヒー
タ部1に包まれた石英炉芯管2内に、試料7を試料ホル
ダー6上に設置する。キャリヤガス5の流れる下流部に
検知器3および電子計数装置4を設定する。なお、試料
ホルダー6は石英炉芯管内を前後に移動可能である。本
発明によると、試料は試料ホルダーに乗せたまま酸化作
用をさせる。ある程度酸化が進んでから、酸化雪囲気は
変更せず、試料を検知器近くまで移動させて測定するこ
とができる。The present invention makes use of this phenomenon to observe the thickness of the formed thin film without affecting the atmosphere in which the thin film is formed. Generally, semiconductor thin films are produced in an electric diffusion furnace, especially in the case of oxide thin films. In particular, when forming a thin film of 500A or less, a complicated mechanism is required to control the carrier gas composition and temperature, so it is desirable to measure the film thickness during the thin film growth process. An overview of the configuration is shown. That is, the sample 7 is placed on the sample holder 6 inside the quartz furnace core tube 2 enclosed in the electric furnace heater section 1 . A detector 3 and an electronic counting device 4 are set downstream through which the carrier gas 5 flows. Note that the sample holder 6 can be moved back and forth within the quartz furnace core tube. According to the present invention, the sample is subjected to the oxidation action while it is placed on the sample holder. After oxidation has progressed to a certain extent, the sample can be moved close to the detector and measured without changing the oxidation snow surroundings.
膜厚の観測が終了すれば、再び酸化雰囲気にもどすこと
が出来る。この場合、検知器3は試料雰囲気の位置より
2m以上は隔離することができるので、試料雰囲気が1
000℃近くでも輻射熱をさけることが可能であり、検
知器3の構成材質を考慮して500〜800℃の熱にも
耐える機構にする必要性がある。しかし検知器の基本は
紫外線光源と電子集取電極材料だけなので、高温近傍に
設ける事は可能である。測定する時は、試料を検知器に
近づける工夫をすることで、酸化炉の他の機構は動かす
こともなく、雰囲気を変更することもなくできる。Once the film thickness has been observed, the atmosphere can be returned to the oxidizing atmosphere. In this case, the detector 3 can be separated from the sample atmosphere by 2 m or more, so the sample atmosphere is
It is possible to avoid radiant heat even at temperatures close to 000°C, and it is necessary to consider the constituent material of the detector 3 to create a mechanism that can withstand heat of 500 to 800°C. However, since the basics of the detector are only an ultraviolet light source and an electron collection electrode material, it is possible to install it near high temperatures. By moving the sample closer to the detector, measurements can be made without moving other mechanisms in the oxidation furnace or changing the atmosphere.
第2図に観測時の様子を示す。ここでは試料ホルダーを
移動させることで、測定を可能にする。Figure 2 shows the situation during observation. Here, measurements are made possible by moving the sample holder.
さらに測定結果によってはホルダーの移動をくりかえす
ことで、酸化膜厚の制御も可能である。Furthermore, depending on the measurement results, it is also possible to control the oxide film thickness by repeatedly moving the holder.
第3図に本発明の機構を用いてシリコン酸化膜厚の測定
をした結果を示す。FIG. 3 shows the results of measuring the thickness of a silicon oxide film using the mechanism of the present invention.
ここでは、酸化膜を形成する過程で酸化時間とエキソ電
子量を測定した結果を示している。Here, the results of measuring the oxidation time and amount of exoelectrons during the process of forming an oxide film are shown.
但、シ、試料取出しによる温度補正は無視するものとす
る。However, temperature correction due to sample removal shall be ignored.
第4図に金属表面(アルミニウム)及び半導体(シリコ
ン)酸化薄膜の変化に対するエキソ電子流量の観測例を
示す。FIG. 4 shows an example of observation of the exoelectron flow rate with respect to changes in a metal surface (aluminum) and a semiconductor (silicon) oxide thin film.
この結果を応用する事によって、酸化薄膜厚を電気的に
容易に観測することができる。By applying this result, the thickness of the oxide thin film can be easily observed electrically.
発明の効果
本発明によると半導体基板上に成長させる半導体酸化膜
を、成長させながら正確な観測が可能となる。Effects of the Invention According to the present invention, it is possible to accurately observe a semiconductor oxide film grown on a semiconductor substrate while it is growing.
第1図、第2図は本発明の薄膜製造装置の概要断面図、
第3図は実施例によるシリコン酸化時間とエキソエレク
トロン量の関係特性図、第4図は金属酸化膜及び半導体
酸化膜の膜厚とエキソ電子量の関係特性図である。
1・・・・・・電気炉ヒータ部、2・・・・・・石英炉
芯管、3・・・・・・検知器、4・・・・・・電子計数
装置、5・・・・・・キャリヤガス、6・・・・・・試
料ホルダー、7・・・・・・試料。
代理人の氏名 弁理士 中尾敏男 ほか1名5“−丁7
ソ了rス
第2図
第3図
(骨21 and 2 are schematic sectional views of the thin film manufacturing apparatus of the present invention,
FIG. 3 is a characteristic diagram of the relationship between the silicon oxidation time and the amount of exoelectrons according to the example, and FIG. 4 is a characteristic diagram of the relationship between the thickness of the metal oxide film and the semiconductor oxide film and the amount of exoelectrons. 1... Electric furnace heater section, 2... Quartz furnace core tube, 3... Detector, 4... Electronic counting device, 5... ...Carrier gas, 6...Sample holder, 7...Sample. Name of agent: Patent attorney Toshio Nakao and 1 other person 5"-7
Figure 2 Figure 3 (Bone 2
Claims (1)
部に設定したことを特徴とする薄膜製造装置。A thin film manufacturing apparatus characterized in that a semiconductor thin film thickness measuring device using exoelectrons is set inside a reaction tube.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61217450A JPH0793267B2 (en) | 1986-09-16 | 1986-09-16 | Thin film manufacturing equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61217450A JPH0793267B2 (en) | 1986-09-16 | 1986-09-16 | Thin film manufacturing equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6372128A true JPS6372128A (en) | 1988-04-01 |
JPH0793267B2 JPH0793267B2 (en) | 1995-10-09 |
Family
ID=16704426
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61217450A Expired - Lifetime JPH0793267B2 (en) | 1986-09-16 | 1986-09-16 | Thin film manufacturing equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0793267B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02224243A (en) * | 1988-11-01 | 1990-09-06 | Matsushita Electron Corp | Cleaner and cleaning degree measuring method |
JPH0458446A (en) * | 1990-06-25 | 1992-02-25 | Matsushita Electron Corp | Ion implantation device |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS54136385A (en) * | 1978-04-13 | 1979-10-23 | Agency Of Ind Science & Technol | Measuring apparatus of surface damage distribution |
JPS59172367U (en) * | 1983-05-06 | 1984-11-17 | 株式会社日立製作所 | Scanning exoelectron detection device |
JPS59172368U (en) * | 1983-05-06 | 1984-11-17 | 株式会社日立製作所 | Surface property measuring device |
-
1986
- 1986-09-16 JP JP61217450A patent/JPH0793267B2/en not_active Expired - Lifetime
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS54136385A (en) * | 1978-04-13 | 1979-10-23 | Agency Of Ind Science & Technol | Measuring apparatus of surface damage distribution |
JPS59172367U (en) * | 1983-05-06 | 1984-11-17 | 株式会社日立製作所 | Scanning exoelectron detection device |
JPS59172368U (en) * | 1983-05-06 | 1984-11-17 | 株式会社日立製作所 | Surface property measuring device |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02224243A (en) * | 1988-11-01 | 1990-09-06 | Matsushita Electron Corp | Cleaner and cleaning degree measuring method |
JPH0458446A (en) * | 1990-06-25 | 1992-02-25 | Matsushita Electron Corp | Ion implantation device |
Also Published As
Publication number | Publication date |
---|---|
JPH0793267B2 (en) | 1995-10-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Belle et al. | Kinetics of the high temperature oxidation of zirconium | |
TW200913106A (en) | A novel method for monitoring and calibrating temperature in semiconductor processing chambers | |
Katz | Adhesion of copper films to aluminum oxide using a spinel structure interface | |
KR930006305B1 (en) | Wafer-temperature detecting apparatus | |
Ng et al. | Growth kinetics of thin silicon dioxide in a controlled ambient oxidation system | |
Morosanu et al. | Kinetics and properties of chemically vapour-deposited tungsten films on silicon substrates | |
JPS6372128A (en) | Thin film manufacturing device | |
JP5002803B2 (en) | Method for producing diamond-like carbon film | |
CN114672782B (en) | Integrated sample stage device for thin film deposition and continuous film growth monitoring and monitoring method | |
Simpson et al. | Kinetics of the growth of spinel on alumina using Rutherford backscattering spectroscopy | |
JPH059728A (en) | Thin film formation method | |
JP2754823B2 (en) | Film thickness measurement method | |
Barton et al. | Performance of room-temperature X-ray detectors made from mercuric iodide (HgI2) platelets | |
Zampiceni et al. | Thermal treatment stabilization processes in SnO/sub 2/thin films catalyzed with Au and Pt | |
Surnev | Interaction of oxygen with a Ge-covered Si (100) surface | |
Bradley et al. | Uniform Depth Profiling in X-ray Photoelectron Spectroscopy (Electron Spectroscopy for Chemical Analysis) | |
JPH063353A (en) | Method for measuring thickness of oxide film on rear surface of semiconductor wafer | |
JPH09161707A (en) | Sample cooling observing device | |
JPH04239742A (en) | Film thickness measuring method in manufacturer of semiconductor | |
JP5500543B2 (en) | Zinc sulfide nanobelts, UV detection sensors, and methods for producing them | |
CN116143167A (en) | Growing In based on polycrystalline InSe 2 O 3 Method for preparing nanowire | |
JP2000321124A (en) | Formation of vanadium oxide thin film and bolometer type infrared sensor employing vanadium oxide thin film | |
JPH11163070A (en) | Temperature control method for heat treatment process in production of semiconductor device | |
JPH05156439A (en) | Production of transparent conductive film and measuring instrument | |
Frietsch et al. | Wedge-shaped ceramic membranes for gas sensor applications produced by a variety of CVD techniques |