JPH02224243A - Cleaner and cleaning degree measuring method - Google Patents

Cleaner and cleaning degree measuring method

Info

Publication number
JPH02224243A
JPH02224243A JP28328289A JP28328289A JPH02224243A JP H02224243 A JPH02224243 A JP H02224243A JP 28328289 A JP28328289 A JP 28328289A JP 28328289 A JP28328289 A JP 28328289A JP H02224243 A JPH02224243 A JP H02224243A
Authority
JP
Japan
Prior art keywords
cleaning
semiconductor substrate
exoelectrons
measured
cleanliness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP28328289A
Other languages
Japanese (ja)
Other versions
JPH0812851B2 (en
Inventor
Takeshi Hayashi
猛 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electronics Corp filed Critical Matsushita Electronics Corp
Priority to JP1283282A priority Critical patent/JPH0812851B2/en
Publication of JPH02224243A publication Critical patent/JPH02224243A/en
Publication of JPH0812851B2 publication Critical patent/JPH0812851B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To enable cleaning degrees of plural times to be measured independent of the change of circumstance of cleaning process by using at least one exo- electron detector which is arranged in the specified position inside a cleaner. CONSTITUTION:A semiconductor substrate 11 is attached to a holder 10, and makes a round of each chemical bath 1-8 and is soaked in chemical for cleaning for a certain time. As chemical solution 9, for example, pure water for a bath 1, and acetone solution, trichloroethylene solution, acetone solution, nitric acid solution, pure water, hydrofluoric acid solution, and pure water are used in this order. While the semiconductor substrate 11 is shifting each bath, exo- electrons are measured in the middle by a detector 12, an electronic calculator 13 and an ammeter 14 so as to measure the cleaning degrees. Hereby, the cleaning degrees of the semiconductor substrate can be measured at several stages independent of the change of outside circumstance.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、洗浄装置及び洗浄度測定方法に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a cleaning device and a cleaning degree measuring method.

従来の技術 半導体素子の製造方法では、一般に半導体基盤処理が施
される。
In conventional methods of manufacturing semiconductor devices, semiconductor substrate processing is generally performed.

その処理の一例として、結晶成長技術、不純物拡散技術
、パッシベーション膜成長技術、メタライズ技術等の加
熱処理や反応を伴う加熱処理、又基盤面に施すホトレジ
スト処理技術、ウェットエツチング、ドライエツチング
技術等の微細加工技術が組み合わされている。
Examples of such processing include crystal growth technology, impurity diffusion technology, passivation film growth technology, heat treatment accompanied by reaction such as metallization technology, and fine etching technology such as photoresist processing technology applied to the substrate surface, wet etching, and dry etching technology. Processing technology is combined.

さらに各処理技術工程には各所で基盤を清浄に保つため
の清浄処理工程、乾燥処理工程がある。
Furthermore, each processing technology process includes a cleaning process and a drying process to keep the substrate clean.

半導体素子の歩留まりはその製造工程雰囲気の異物の量
によって大部分が決まる。このために異物の量が充分に
制御されている雰囲気中で基盤の処理・取扱技術が重要
である。
The yield of semiconductor devices is largely determined by the amount of foreign matter in the atmosphere during the manufacturing process. For this reason, it is important to have techniques for processing and handling the substrate in an atmosphere where the amount of foreign matter is sufficiently controlled.

異物の発生源として人的発生、半導体処理装置からの発
生、使用ガス、使用薬品、使用する高純度純水等での発
生源がある。
Sources of foreign matter include human-generated sources, semiconductor processing equipment, gases used, chemicals used, high-purity water used, and the like.

しかし、基盤の洗浄度を管理しておくことは種種の工程
中漬に基盤を毎回洗浄する事からも重要な事である。
However, it is important to control the cleanliness of the substrate because the substrate must be cleaned every time it is soaked during various processes.

従来の技術では人的発塵と半導体処理装置から発生する
浮遊塵埃は基盤を洗浄処理することによって洗浄度を確
保している。
In the conventional technology, the level of cleanliness is ensured by cleaning the substrate to remove human-generated dust and floating dust generated from semiconductor processing equipment.

通常、半導体基盤の洗浄方法は一定の洗浄条件により詳
細な各洗浄工程が行われており、洗浄過程では洗浄状態
を観測することは行われていないとともに、洗浄工程で
チエツクするには、半導体基盤を洗浄装置より外部に取
り出して、個々に観察する必要があった。
Normally, in cleaning methods for semiconductor substrates, detailed cleaning steps are performed under certain cleaning conditions, and the cleaning state is not observed during the cleaning process. It was necessary to take them out of the cleaning equipment and observe them individually.

外部に取り出した半導体基盤の洗浄状態を調べる方法に
はオージェ電子分光法や光電子分光法などがある。
Auger electron spectroscopy and photoelectron spectroscopy are methods for examining the cleaning state of semiconductor substrates taken outside.

いずれの場合も、材料表面からの放射電子が物質固有の
エネルギー情報を担っており電子のエネルギー及び放射
電子の発生量を測定することにより定性的、または定量
的に化学分析を行うことである。
In either case, emitted electrons from the surface of the material carry energy information unique to the material, and qualitative or quantitative chemical analysis is performed by measuring the energy of the electrons and the amount of emitted electrons generated.

発明が解決しようとする課題 しかし、通常の半導体基盤洗浄工程で、洗浄装置により
外に取り出して従来の方法すなわち顕微鏡観察や塵埃測
定器、オージェ電子分光や光電子分光で観測する場合、
外気に触れたり人が移動させたり装置内に取り入れるこ
とによって半導体基盤を汚染することになるので、はと
んど洗浄状態を把握せずに次の処理工程に進むため洗浄
度がどの様に影響しているかを知るためには、全洗浄工
程が終了した後に初めて評価しなければならない。
Problems to be Solved by the Invention However, in a normal semiconductor substrate cleaning process, when the semiconductor substrate is taken out of the cleaning device and observed using conventional methods, that is, microscopic observation, dust measuring equipment, Auger electron spectroscopy, or photoelectron spectroscopy,
Semiconductor substrates can become contaminated when exposed to outside air, moved by people, or brought into equipment, so the cleaning status is often not checked before proceeding to the next process, so it is difficult to determine how the cleaning level will affect the semiconductor substrate. In order to know whether the cleaning process is complete or not, it must be evaluated only after the entire cleaning process has been completed.

また、オージェ電子分光や光電子分光は測定時に試料を
破壊しなければならなく分析時に試料表面が変化するな
ど試料の信頼性が低い。
Furthermore, in Auger electron spectroscopy and photoelectron spectroscopy, the sample must be destroyed during measurement, and the sample surface changes during analysis, resulting in low reliability of the sample.

課題を解決するための手段 洗浄装置内の所定位置に設置した少なくとも1一つのエ
キソ電子検知器を育している。
Means for solving the problem include developing at least one exoelectronic detector installed at a predetermined location within the cleaning device.

また、半導体基盤と非接触に設置されたエキソ電子検知
器を洗浄装置内に挿入する第1の工程と、前記半導体基
盤を洗浄する第2の工程と、エキソ電子量が所定量に達
した地点で前記洗浄装置から取り出す第3の工程を備え
ている。
Further, a first step of inserting an exoelectron detector installed in a non-contact with the semiconductor substrate into the cleaning device, a second step of cleaning the semiconductor substrate, and a point where the amount of exoelectrons reaches a predetermined amount. and a third step of taking it out from the cleaning device.

作用 本発明はこの原理を採用することによって、半導体基盤
の洗浄度を、基盤表面の状態変化に依存するエキソ電子
の変化となって観測可能となる。
Operation By adopting this principle, the present invention makes it possible to observe the cleanliness of a semiconductor substrate as a change in exoelectrons depending on a change in the state of the surface of the substrate.

エキソ電子として測定できることはオージェ電子分光や
光電子分光とは異なった材料物質表面の状態及びその状
態変化を情報として表面の観測が可能となる。
What can be measured as exoelectrons makes it possible to observe the surface using information on the state of the surface of a material and changes in that state, which is different from Auger electron spectroscopy or photoelectron spectroscopy.

また、表面の洗浄度の測定を半導体表面において行い、
その表面の洗浄度の観察は一般には、洗浄工程の中では
、環境が変わると洗浄度の測定が正しく行われないが、
本発明では洗浄度測定装置が洗浄装置内部に一体として
設置されているため洗浄工程の環境に変化がなく複数回
の半導体表面の洗浄度の測定を行うことができる。
In addition, the surface cleanliness was measured on the semiconductor surface.
Observation of the cleanliness of the surface is generally done during the cleaning process, but if the environment changes, the cleanliness cannot be measured correctly.
In the present invention, since the cleanliness measuring device is installed integrally inside the cleaning device, the cleanliness of the semiconductor surface can be measured multiple times without changing the environment of the cleaning process.

従来のように基盤を洗浄装置より外に取り出して洗浄度
の測定を行えば、取り出しによって生じた汚染の洗浄度
を測定することもできる。
If the degree of cleanliness is measured by taking the substrate out of the cleaning device as in the past, it is also possible to measure the degree of cleanliness of contamination caused by taking it out.

実施例 第1図に本発明の一実施例機構の概要を示す。Example FIG. 1 shows an outline of a mechanism according to an embodiment of the present invention.

半導体基盤洗浄(薬品)槽1,2,3,4,5゜6.7
.8の上部に基盤ホルダー10、及び半導体基盤11が
各洗浄槽に順次大る機構になっている。
Semiconductor substrate cleaning (chemical) tank 1, 2, 3, 4, 5°6.7
.. A substrate holder 10 and a semiconductor substrate 11 are arranged on the upper part of the cleaning tank 8 in order to expand to each cleaning tank.

用いた半導体基盤洗浄(薬品)槽1.2,3゜4.5.
6.7.8の大きさは縦30 am x横30QIIX
深さ30a11・の大きさで材料は使用する薬品によっ
て変化を生じない材料を選んでいる。例えば、水洗処理
には石英材、アセトン・トリクロルエチレンには石英材
、硝酸には石英材、弗化水素酸処理にはポリブロルエチ
レン材を採用した。
Semiconductor substrate cleaning (chemical) tank used 1.2, 3°4.5.
The size of 6.7.8 is 30 am long x 30 QIIX wide.
The depth is 30a11, and the material is selected so that it does not change depending on the chemicals used. For example, quartz material was used for water washing, quartz material was used for acetone/trichlorethylene, quartz material was used for nitric acid treatment, and polybrolethylene material was used for hydrofluoric acid treatment.

機能的には5インチシリコン基盤11が洗浄できること
とシリコン基盤を設置して充分に洗浄できるボリブロル
エチレン材のホルダー10で人的作業をせずに各種への
稼働は自動作業で処理できるようにしである。
Functionally, the 5-inch silicon substrate 11 can be cleaned, and the holder 10 made of polypropylene material can be thoroughly cleaned after installing the silicon substrate, so that various operations can be performed automatically without manual labor. It's Nishide.

半導体基盤11はホルダー10に取り付けられ各薬品槽
1ないし8を巡り定まった時間洗浄のために鶏品内に挿
入される。ここでは薬品溶液9として、槽1では純水、
槽2ではアセトン溶液、槽3ではトリクロルエチレン溶
液、槽4ではアセトン溶液、槽5では硝酸溶液、槽6で
は純水、槽7では弗化水素酸溶液、槽8では純水を使用
した。
The semiconductor substrate 11 is mounted on a holder 10 and inserted into the chicken product for cleaning around each chemical bath 1 to 8 for a predetermined period of time. Here, as the chemical solution 9, in the tank 1, pure water,
An acetone solution was used in tank 2, a trichlorethylene solution in tank 3, an acetone solution in tank 4, a nitric acid solution in tank 5, pure water in tank 6, a hydrofluoric acid solution in tank 7, and pure water in tank 8.

半導体基盤11はこの各槽内を移動しながら、その途中
において検知器12及び電子計数装置13゜電流計14
でエキソ電子を測定し洗浄度が測られる。
While the semiconductor substrate 11 moves within each tank, a detector 12, an electronic counting device 13, and an ammeter 14 are installed along the way.
The degree of cleanliness is measured by measuring exoelectrons.

すなわち、一般に用いられるオージェ電子分光や光電子
分光等の化学分析では固体の表面、例えば金属表面や半
導体表面に紫外線、X線、γ線などの電磁波または電子
イオン等の荷電粒子をあてることにより金属表面または
半導体表面より、電磁波などで誘起された固体電子が固
体表面より放出されるのと同様にして、エキソ電子は光
学的。
In other words, in commonly used chemical analyzes such as Auger electron spectroscopy and photoelectron spectroscopy, the surface of a solid, such as a metal surface or a semiconductor surface, is exposed to electromagnetic waves such as ultraviolet rays, Or, in the same way that solid-state electrons induced by electromagnetic waves are emitted from the surface of a semiconductor, exoelectrons are optical.

機械的、熱的あるいは化学的に固体表面を刺激するとき
に発生する。
Occurs when a solid surface is stimulated mechanically, thermally, or chemically.

その発生機構は、光刺激による時は光電子放射の場合と
同じである。
The generation mechanism is the same as in the case of photoelectron emission when light stimulation is used.

刺激光のエネルギー値が材料の光電子放射に必要とされ
ている仕事関数以下でもエキソ電子放射が起こり、また
光エネルギーと仕事関数のエネルギーが等しいような同
一エネルギーの刺激光照射ではエキソ電子放射量は通常
の光電子放射に比べて増強されるという特性を持ってい
る。
Exoelectron emission occurs even when the energy value of the stimulating light is less than the work function required for photoelectron emission of the material, and when the same energy of stimulating light is irradiated so that the light energy and the energy of the work function are equal, the amount of exoelectron emission is It has the property of being enhanced compared to normal photoelectron emission.

この特性は表面を構成する物質固有のものではなく表面
の物理的な破壊、ガス吸着、あるいは酸化など表面の状
態に依存して生じるものである。
This characteristic is not unique to the material that makes up the surface, but is caused by surface conditions such as physical destruction of the surface, gas adsorption, or oxidation.

本実施例ではこのエキソ電子放射量値であるエキソ電子
の電流値を測定することによって表面の状態変化を観測
している。
In this embodiment, changes in the state of the surface are observed by measuring the current value of exoelectrons, which is the amount of exoelectron radiation.

第1図では、薬品槽1の所で外部に位置した半導体基盤
11とそのホルダー10を示し、同じく薬品槽2の所で
薬品溶液内で洗浄されている場面を示し、薬品槽4の上
部において洗浄度を観測している様子を示しているが、
これは各種において同様の洗浄及び洗浄度の測定が可能
な機構である。
In FIG. 1, a semiconductor substrate 11 and its holder 10 are shown located outside in a chemical tank 1, and the semiconductor substrate 11 and its holder 10 are also shown being cleaned in a chemical solution in a chemical tank 2, and the semiconductor substrate 11 and its holder 10 are shown in a chemical solution at the top of a chemical tank 4. This shows how the degree of cleanliness is being observed.
This is a mechanism that allows for similar cleaning and cleaning degree measurements in various types.

各薬品槽の部分で、その槽での洗浄が終了したら、各半
導体基盤11の洗浄度を検知器12.電子計数装置13
.電流計14を用いて測定し、ある洗浄度が得られない
場合は、再度洗浄工程を繰り返すことを電気信号にもと
づいて判断し操作する。
After cleaning in each chemical tank is completed, the degree of cleaning of each semiconductor substrate 11 is measured by a detector 12. Electronic counting device 13
.. It is measured using the ammeter 14, and if a certain degree of cleaning cannot be obtained, it is determined and operated based on the electric signal that the cleaning process should be repeated again.

第2図は本発明の機構を用いた洗浄度とエキソ電子量の
実測結果を示す。ここでは半導体基盤としてシリコン基
盤11を用い、各種洗浄を経過した場合の結果を示して
いる。洗浄前のシリコン基盤11は通常表面の特性評価
のため、各種の雰囲気中に置かれたり、機械的な表面汚
染物除去作用などが行われ、またエキソ電子量は10−
”A以下の微小な電流である。そして、このシリコン基
盤11を洗浄装置にセットした地点を洗浄処理前として
取り扱っている。
FIG. 2 shows the actual measurement results of the cleanliness and amount of exoelectrons using the mechanism of the present invention. Here, a silicon substrate 11 is used as the semiconductor substrate, and the results are shown after various cleaning processes. The silicon substrate 11 before cleaning is usually placed in various atmospheres or mechanically removed from the surface to evaluate its surface characteristics, and the amount of exoelectrons is 10-
The current is minute, less than A. The point where the silicon substrate 11 is set in the cleaning device is treated as before the cleaning process.

この例では洗浄薬品に、アセトン、トリクロルエチレン
、弗酸、硝酸、純水を用いた例であるが、ここではエキ
ソ電子の量が多くなるにしたがって洗浄度が増して目的
にあった洗浄効果が電気的に観測されていることを示し
ている。この例では、洗浄基準を示す具体的な洗浄値は
示していないが、通常の半導体処理洗浄工程の一例とし
て実施、洗浄類も第1図の槽1ないし8の順に行った例
の結果である。
In this example, acetone, trichlorethylene, hydrofluoric acid, nitric acid, and pure water are used as cleaning chemicals.As the amount of exoelectrons increases, the degree of cleaning increases and the desired cleaning effect is achieved. This shows that it is observed electrically. In this example, specific cleaning values indicating cleaning standards are not shown, but the results are the results of an example in which the cleaning was performed as an example of a normal semiconductor processing cleaning process, and the cleaning was performed in the order of tanks 1 to 8 in Figure 1. .

このエキソ電子の観測方法について、より詳細に述べる
This method of observing exoelectrons will be described in more detail.

第3図はエキソ電子観測の方法を示すもので基盤刺激用
光源としての紫外線20がシリコン基盤21に照射され
エキソ電子22が発生し検知器23と電子計数装置24
によってエキソ電子22を観測する。
FIG. 3 shows a method of exoelectron observation. Ultraviolet rays 20 as a substrate stimulation light source are irradiated onto a silicon substrate 21, exoelectrons 22 are generated, and a detector 23 and an electronic counting device 24 are generated.
The exoelectrons 22 are observed.

ここでのシリコン基盤21は表面に酸化薄膜25が形成
されている。
A thin oxide film 25 is formed on the surface of the silicon substrate 21 here.

また、エキソ電子検知器23の回路図を第4図に示す。Further, a circuit diagram of the exoelectron detector 23 is shown in FIG.

シリコン基盤21から発生したエキソ電子22はバイア
ス電圧を印加されたアノード26に集められこれに接続
された電子計数装置24によって観測される。
Exoelectrons 22 generated from the silicon substrate 21 are collected on an anode 26 to which a bias voltage is applied, and observed by an electron counting device 24 connected thereto.

基盤刺激用光源20はアノード26内後方部に組み込ま
れており主波長254nmの低圧水銀うンブ光源(約4
W)でアノード26は中央に開口部を有した円盤電極で
構成されている。開口部寸法は2Mφの開口部を有する
10胴φの電極を用い、この電極に印加するバイアス電
位は基盤面と電極の間隔を2市とし、およそ450V/
cmの電界を作る装置で構成されている。このエキソ電
子検知器23は大気中で測定される。
The light source 20 for substrate stimulation is built into the rear part of the anode 26, and is a low-pressure mercury-filled light source (approximately 4
In W), the anode 26 is composed of a disk electrode with an opening in the center. An electrode with a diameter of 10 cylinders and an opening of 2Mφ was used, and the bias potential applied to this electrode was approximately 450 V/cm, with the distance between the substrate surface and the electrode being 2 cm.
It consists of a device that creates an electric field of cm. This exoelectron detector 23 measures in the atmosphere.

基盤がシリコン及びシリコン酸化膜とアルミニュウム及
びアルミニニウム酸化膜の場合のエキソ電子の観測結果
を第4図に示す。
FIG. 4 shows the observation results of exoelectrons when the substrate is silicon and silicon oxide film and aluminum and aluminum oxide film.

ここでエキソ電子の電流値が大きい状態は酸化膜が薄い
場合である。
Here, the state where the current value of exoelectrons is large is when the oxide film is thin.

シリコン基盤の場合、シリコン表面が洗浄な状態、すな
わち酸化膜が薄く被覆されている場合にはエキソ電子の
電流値は10−”−10−9Aの値を得ておりこの値は
洗浄度を示す指針となる。
In the case of a silicon substrate, when the silicon surface is in a clean state, that is, when it is covered with a thin oxide film, the exoelectron current value obtains a value of 10-"-10-9 A, which indicates the degree of cleanliness. It serves as a guideline.

表面に汚染物がない状態ではエキソ電子の電流値は大き
くなる。すなわち固体表面に汚染により異物が付着する
と定状的なエキソ電子は減少する。
When there are no contaminants on the surface, the exoelectron current value increases. That is, when foreign matter adheres to the solid surface due to contamination, the number of regular exoelectrons decreases.

これは表面に入射する光量が減少し、それにしたがって
放出されるエキソ電子量が減少するからである。さらに
放出されたエキソ電子は表面の異物によってエキソ電子
の発生が抑制されるため、わずかな異物でもエキソ電子
量の変化が大きく観測される。
This is because the amount of light incident on the surface decreases, and the amount of emitted exoelectrons decreases accordingly. Furthermore, the generation of emitted exoelectrons is suppressed by foreign matter on the surface, so even a small amount of foreign matter can cause a large change in the amount of exoelectrons.

定性的にはエキソ電子量Iは電気信号として次の式から
求まる。
Qualitatively, the amount of exoelectrons I can be determined as an electric signal from the following equation.

1=A−Nま ただし、Nは表面の洗浄度、Aはエキソ電子の放出係数
である。
1=A−N where N is the surface cleanliness and A is the exoelectron emission coefficient.

以上の実験から第2図の結果を評価すると、通常の洗浄
前のシリコン基盤11表面からのエキソ電子量が10−
目Aの範囲で、これを1×1O−IOから1.2X10
−  Aまで変化した経過の中で基盤の洗浄度が観測さ
れた。
Evaluating the results shown in Figure 2 from the above experiments, the amount of exoelectrons from the surface of the silicon substrate 11 before normal cleaning is 10-
In the range of eye A, change this from 1x1O-IO to 1.2X10
- The degree of cleanliness of the base was observed during the course of the change to A.

本実施例で洗浄が終了したシリコン基盤11と何の処理
も施していないシリコン基盤について光電子分光を用い
て異物の測定をしたところまったく差はなくシリコン基
盤11表面の異物はなくなっており又その検出測定が信
頼性の高いものであることが判った。
When we measured foreign substances using photoelectron spectroscopy on the silicon substrate 11 that had been cleaned in this example and the silicon substrate that had not undergone any treatment, there was no difference at all, and the foreign substances on the surface of the silicon substrate 11 were gone, and they were detected. The measurements were found to be reliable.

第5図に本実施例で測定したエキソ電子量と基盤表面の
洗浄度の関係を示す。
FIG. 5 shows the relationship between the amount of exoelectrons measured in this example and the degree of cleanliness of the substrate surface.

発明の効果 本発明によれば、数段階の半導体基盤の洗浄度が外部の
環境の変化に関係なく測定でき、すなわち測定装置は大
気中にセットし、測定部のみを常時半導体基盤洗浄液中
に設置しておくことができる。また洗浄度がどこかの段
階で不十分であれば、基盤を外気に触れさせずに洗浄度
が良好になるまで洗浄を加え洗浄工程が一度で済み、何
度も洗浄を行うような手間が省け、スルーブツトの向上
につながる。さらにエキソ電子を半導体洗浄度の測定に
利用することにより洗浄度を精密に制御でき基盤上の残
渣による素子形成の歩留まりの低下を防ぎ、歩留まりを
向上させる。
Effects of the Invention According to the present invention, the degree of cleanliness of a semiconductor substrate at several levels can be measured regardless of changes in the external environment.In other words, the measuring device is set in the atmosphere, and only the measuring section is always placed in the semiconductor substrate cleaning solution. You can keep it. Additionally, if the level of cleaning is insufficient at any stage, the board can be cleaned without exposing it to the outside air until the degree of cleaning is good, and the cleaning process can be done only once, eliminating the hassle of cleaning multiple times. This will lead to improved throughput. Furthermore, by using exoelectrons to measure the degree of semiconductor cleanliness, the degree of cleanliness can be precisely controlled, preventing a decrease in the yield of device formation due to residue on the substrate, and improving the yield.

この洗浄度測定装置を用いることによって洗浄工程を完
全に自動化でき、−貫した半導体製造工程で安定な自動
処理工程が構成される。
By using this cleanliness measuring device, the cleaning process can be completely automated, and a stable automatic processing process can be constructed in a consistent semiconductor manufacturing process.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の詳細な説明するための洗浄工程図、第
2図は本発明の実施例で生じた洗浄経過とその時のエキ
ソ電子量の関係を示す図、第3図はエキソ電子の測定原
理を説明する図、第4図は金属酸化膜及び半導体酸化膜
の膜厚とエキソ電子量の関係を示す図、第5図は本発明
の実施例での表面基盤洗浄°度とエキソ電子量の関係を
示す図である。 1〜8・・・・・・薬品槽、9・・・・・・薬品溶液、
10・・・・・・半導体基盤ホルダー 11・・・・・
・半導体基盤、12・・・・・・検知器、13・・・・
・・電子計数装置、14・・・・・・電流計。 代理人の氏名 弁理士 粟野重孝 はか1名¥3図 兜2図 芳5りtチにイ牛 (結)4順) 第4図 Z2・・■キソエレクトロづ n・疎出器 24、電子Δ才数装置 26・・・アノードよ 26a・アリ−μ′間口音φ
Figure 1 is a cleaning process diagram for explaining the present invention in detail, Figure 2 is a diagram showing the relationship between the cleaning progress and the amount of exoelectrons that occurred in an example of the present invention, and Figure 3 is a diagram of the amount of exoelectrons. Figure 4 is a diagram explaining the measurement principle, Figure 4 is a diagram showing the relationship between the film thickness of a metal oxide film and a semiconductor oxide film, and the amount of exo electrons, and Figure 5 is a diagram showing the relationship between the surface substrate cleaning degree and the amount of exo electrons in an example of the present invention. FIG. 3 is a diagram showing the relationship between quantities. 1 to 8... Chemical tank, 9... Chemical solution,
10... Semiconductor substrate holder 11...
・Semiconductor substrate, 12...Detector, 13...
...Electronic counting device, 14...Ammeter. Name of agent: Patent attorney Shigetaka Awano (1 person, 3 figures, 2 figures, 5 letters, 4 orders) Fig. 4 Z2... Δ calculation device 26...anode 26a, ant-μ' mouth sound φ

Claims (3)

【特許請求の範囲】[Claims] (1)洗浄装置内の所定位置に設置した少なくとも1つ
のエキソ電子検知器を有することを特徴とする洗浄装置
(1) A cleaning device characterized by having at least one exoelectron detector installed at a predetermined position within the cleaning device.
(2)半導体基盤と非接触に設置されたエキソ電子検知
器を洗浄装置内に挿入する第1の工程と、前記半導体基
盤を洗浄する第2の工程と、エキソ電子量が所定量に達
した地点で前記洗浄装置から取り出す第3の工程を備え
たことを特徴とする洗浄度測定方法。
(2) A first step of inserting an exoelectron detector installed in a non-contact with the semiconductor substrate into the cleaning device, a second step of cleaning the semiconductor substrate, and a step in which the amount of exoelectrons reaches a predetermined amount. A method for measuring the degree of cleanliness, comprising a third step of taking the product out of the cleaning device at a certain point.
(3)前記第1、第2および第3工程からなる処理を行
う洗浄装置の複数個を並置し、洗浄度測定を並行して実
行することを特徴とする特許請求の範囲第2項に記載の
洗浄度測定方法。
(3) A plurality of cleaning devices that carry out the processing consisting of the first, second, and third steps are arranged side by side, and the degree of cleaning is measured in parallel. How to measure the degree of cleanliness.
JP1283282A 1988-11-01 1989-10-30 Cleaning device and cleaning degree measuring method Expired - Lifetime JPH0812851B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1283282A JPH0812851B2 (en) 1988-11-01 1989-10-30 Cleaning device and cleaning degree measuring method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP63-274368 1988-11-01
JP27436888 1988-11-01
JP1283282A JPH0812851B2 (en) 1988-11-01 1989-10-30 Cleaning device and cleaning degree measuring method

Publications (2)

Publication Number Publication Date
JPH02224243A true JPH02224243A (en) 1990-09-06
JPH0812851B2 JPH0812851B2 (en) 1996-02-07

Family

ID=26551011

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1283282A Expired - Lifetime JPH0812851B2 (en) 1988-11-01 1989-10-30 Cleaning device and cleaning degree measuring method

Country Status (1)

Country Link
JP (1) JPH0812851B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05129262A (en) * 1991-11-07 1993-05-25 Orc Mfg Co Ltd Cleanness measuring device
JPH05166775A (en) * 1991-12-16 1993-07-02 Orc Mfg Co Ltd Ultraviolet washing device with washing degree measuring mechanism
KR100440466B1 (en) * 2000-08-24 2004-07-15 재단법인 포항산업과학연구원 Method of measurement for cleaning power evaluation

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57156550A (en) * 1981-03-24 1982-09-27 Toshiba Corp Measuring apparatus of specific resistance for wafer cleaning apparatus
JPS6372128A (en) * 1986-09-16 1988-04-01 Matsushita Electronics Corp Thin film manufacturing device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57156550A (en) * 1981-03-24 1982-09-27 Toshiba Corp Measuring apparatus of specific resistance for wafer cleaning apparatus
JPS6372128A (en) * 1986-09-16 1988-04-01 Matsushita Electronics Corp Thin film manufacturing device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05129262A (en) * 1991-11-07 1993-05-25 Orc Mfg Co Ltd Cleanness measuring device
JPH05166775A (en) * 1991-12-16 1993-07-02 Orc Mfg Co Ltd Ultraviolet washing device with washing degree measuring mechanism
KR100440466B1 (en) * 2000-08-24 2004-07-15 재단법인 포항산업과학연구원 Method of measurement for cleaning power evaluation

Also Published As

Publication number Publication date
JPH0812851B2 (en) 1996-02-07

Similar Documents

Publication Publication Date Title
JP2653566B2 (en) Semiconductor substrate evaluation method and apparatus
US7531462B2 (en) Method of inspecting semiconductor wafer
JPS62243338A (en) Method of classifying semiconductor wafers in accordance with prediction of oxygen deposition
JP2007048959A (en) Life time measurement method of silicon wafer
JP3044881B2 (en) Method for analyzing metal impurities in surface oxide film of semiconductor substrate
JP2000058509A (en) Method and device for evaluating crystal defect
JPH0982770A (en) Impurity analyzing method for silicon wafer interior
JP2841627B2 (en) Semiconductor wafer cleaning method
JP2751953B2 (en) Analysis method for contamination inside the hall
JPH02224243A (en) Cleaner and cleaning degree measuring method
JP3278513B2 (en) Method for analyzing impurities in semiconductor substrate
JP3690484B2 (en) Method for analyzing metal impurities on silicon substrate surface
JPH0964133A (en) Detecting method of cu concentration in semiconductor substrate
JP2776583B2 (en) Semiconductor substrate processing solution and processing method
JPH11195685A (en) Pattern defect inspection system and method of inspecting pattern defect
JP3263716B2 (en) Evaluation method of cleaning effect on semiconductor surface
JP3917245B2 (en) Silicon wafer, heat treatment boat and tube evaluation method
JP2847228B2 (en) Evaluation method of semiconductor jig material
Arora Surface Contamination Measurement and Control by Nondestructive Techniques
JP2900380B2 (en) Method for manufacturing semiconductor device
JP2004301623A (en) Standard sample for fluorescent x-ray analysis and manufacturing method thereof
JPS6378057A (en) Analysis of impurity
WO2006016448A1 (en) Apparatus for evaluating semiconductor wafer
JP2002280431A (en) Method for measuring diffusion length of minority carries of n-type wafer
JPH1032234A (en) Evaluation of soi substrate