JPS6372102A - Thin film magnetic circuit - Google Patents

Thin film magnetic circuit

Info

Publication number
JPS6372102A
JPS6372102A JP21657386A JP21657386A JPS6372102A JP S6372102 A JPS6372102 A JP S6372102A JP 21657386 A JP21657386 A JP 21657386A JP 21657386 A JP21657386 A JP 21657386A JP S6372102 A JPS6372102 A JP S6372102A
Authority
JP
Japan
Prior art keywords
magnetic
thin film
magnetic field
core
cores
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21657386A
Other languages
Japanese (ja)
Inventor
Kazuo Nakamura
和夫 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP21657386A priority Critical patent/JPS6372102A/en
Publication of JPS6372102A publication Critical patent/JPS6372102A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/31Structure or manufacture of heads, e.g. inductive using thin films
    • G11B5/3163Fabrication methods or processes specially adapted for a particular head structure, e.g. using base layers for electroplating, using functional layers for masking, using energy or particle beams for shaping the structure or modifying the properties of the basic layers

Abstract

PURPOSE:To obtain a thin film core with excellent radio frequency characteristics which provides excellent results when it is employed in a thin film magnetic head and a thin film transformer by a method wherein a thin film magnetic circuit which is composed of an annular thin film conductor layer and annular thin film cores provided adjoining to both the surfaces of the conductor layer is employed. CONSTITUTION:An annular conductor layer 11 is provided so as to be sandwiched by annular cores 10 composed of thin magnetic films. When these cores 10 are annealed in a magnetic field, the AC magnetic field is applied along the direction 12 perpendicular to the thin magnetic film surface. After those cores 10 are formed by a lithography technology or the like, the AC magnetic field is applied to the cores at a predetermined annealing temperature. At that time, the magnetic field intensity is selected to be as large as possible but without exceeding the extent of 4piMs wherein Ms denotes the saturation magnetization of the core. In this process, the magnetic core films are not vertically magnetized because of a reverse magnetic field. On the other hand, the AC magnetic field induces an AC current along the annular path in the conductor layer 11 and the induced current produces an AC magnetic field 13. With this constitution, the distribution of radial easy-to-magnetize axes can be obtained and any parts of the flux flow paths 7 operate along the difficult-to-magnetize axes so that a core with excellent radio frequency operation can be obtained.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は薄膜磁心に関し、特に薄膜磁気ヘッドや薄膜ト
ランスに用いて良好な結果が得られる高周波特性にすぐ
れた薄膜磁心を提供しようとするものである。
[Detailed Description of the Invention] Industrial Application Field The present invention relates to a thin film magnetic core, and in particular, it is an object of the present invention to provide a thin film magnetic core with excellent high frequency characteristics that can be used in thin film magnetic heads and thin film transformers to obtain good results. .

従来の技術 従来より高周波で用いる磁心、特に薄膜によって形成さ
れた磁心においては、第7図に略図を示す様に、磁束を
流す方向1に略垂直な方向2に磁性薄膜3の磁化容易軸
を付与し、すなわち、磁心を使う方向1が磁化困難軸と
なる様にすれば、その方向で高い高周波透磁率が得られ
ることが知られる。これは、磁化困難軸方向で用いると
、外部磁界変化に対する応答は主に磁化のローテーショ
ンによって行われる様になるために、高い高周波透磁率
が得られるものである。
BACKGROUND OF THE INVENTION Conventionally, in magnetic cores used at high frequencies, especially in magnetic cores formed of thin films, the axis of easy magnetization of the magnetic thin film 3 is aligned in a direction 2 approximately perpendicular to the direction 1 in which magnetic flux flows, as schematically shown in FIG. It is known that if the direction 1 in which the magnetic core is used becomes the axis of difficulty in magnetization, high high frequency magnetic permeability can be obtained in that direction. This is because when used in the direction of the difficult axis of magnetization, the response to changes in the external magnetic field is mainly performed by rotation of magnetization, resulting in high high frequency magnetic permeability.

この様な特定の異方性を付与する方法としては、磁界中
蒸着、磁界中スパッタあるいは成膜後の磁界中アニール
等が知られる。このとき磁化容易軸となるべき方向に上
記磁界の方向が向けられる。
Known methods for imparting such specific anisotropy include evaporation in a magnetic field, sputtering in a magnetic field, and annealing in a magnetic field after film formation. At this time, the direction of the magnetic field is directed in the direction that should become the axis of easy magnetization.

一方磁気ヘッド、トランス等で用いられる磁心は、磁束
が常にループをつくる性格上、略リング状に形成される
のが通常である。その様なリング状磁心が、たとえば第
8図の様に構成された薄膜磁気ヘッドの磁心である場合
(コイルは図示を省略)、単一の方向の磁界5によって
異方性を付与すれば、磁束の流れ6のいずれの部分をみ
ても磁心は磁化困難軸方向で動作することができ、まこ
とに好都合である。
On the other hand, magnetic cores used in magnetic heads, transformers, etc. are usually formed in a substantially ring shape because the magnetic flux always forms a loop. If such a ring-shaped magnetic core is, for example, the magnetic core of a thin-film magnetic head configured as shown in FIG. 8 (the coil is not shown), if anisotropy is imparted by the magnetic field 5 in a single direction, In any part of the magnetic flux flow 6, the magnetic core can be operated in the direction of the hard axis, which is very advantageous.

しかしながら第9図に示した様に1つの薄膜形成面内で
ループをえかく様に形成された磁心の場合その磁束の経
路了のすべての位置で磁化困難軸方向の動作を得るため
には、8の様な放射状の磁化容易軸分布をもたせる必要
がある。しかしながら通常の磁界印加手段によってこの
様な異方性を付与するのは容易ではない。これを解決す
る方法として第9図の磁心の膜面に垂直な方向9に磁化
容易軸を付与する方法が知られる。この様にすれば7の
経路すべてにわたって磁化困難軸方向の動作が得られる
。しかしこの方法では膜面に垂直な方向の極めて大きな
反磁界に抗して、有効な磁界を印加し所望の異方性を付
与するのが困難であるという問題がある。
However, as shown in FIG. 9, in the case of a magnetic core formed in a loop pattern within one thin film formation surface, in order to obtain movement in the direction of the difficult magnetization axis at all positions along the magnetic flux path, 8, it is necessary to have a radial easy axis distribution of magnetization. However, it is not easy to provide such anisotropy using ordinary magnetic field application means. A known method for solving this problem is to provide an axis of easy magnetization in a direction 9 perpendicular to the film surface of the magnetic core as shown in FIG. In this way, motion in the direction of the hard magnetization axis can be obtained over all seven paths. However, this method has a problem in that it is difficult to apply an effective magnetic field against an extremely large demagnetizing field in a direction perpendicular to the film surface to impart desired anisotropy.

発明が解決しようとする問題点 この様に第9図で示される様な形態の薄膜磁心に、高周
波における高透磁率が得られる様な異方性を与えること
が従来技術では困難である。
Problems to be Solved by the Invention As described above, it is difficult with the prior art to provide such anisotropy as to obtain high magnetic permeability at high frequencies to a thin film magnetic core of the form shown in FIG. 9.

問題点を解決するだめの手段 本発明においては、リング状薄膜導電体層と、上記導電
体層の少くとも一方の面に相隣接するリング状薄膜磁心
とを設け、リング状磁心のアニールに際してその薄膜面
に略垂直な方向に交流磁界を印加する。
Means for Solving the Problems In the present invention, a ring-shaped thin film conductor layer and a ring-shaped thin film magnetic core are provided adjacent to each other on at least one surface of the conductor layer, and when annealing the ring-shaped magnetic core, An alternating magnetic field is applied in a direction substantially perpendicular to the thin film surface.

作用 アニール時の交流磁界はリング状磁心の薄膜面に垂直に
印加されるが、膜面方向の大きな反磁界のために実質的
に磁心の膜面に垂直に加わる磁界は無視し得る。しかし
印加された交流磁界は電磁誘導によってリング状導電体
層に必1匠を誘起せしめ、この交流電流の生じる磁界は
リング状磁心を放射線方向に磁化する様に作用する。従
ってこの様な状態下でアニールを行えば、リング状磁心
に放射状の磁化容易軸分布をもたせることができ、すな
わち磁束の流れにそった経路はすべて困難磁方向の動作
とすることができる。
The AC magnetic field during operational annealing is applied perpendicularly to the thin film surface of the ring-shaped magnetic core, but due to the large demagnetizing field in the film surface direction, the magnetic field applied substantially perpendicular to the film surface of the magnetic core can be ignored. However, the applied alternating current magnetic field inevitably induces a wave in the ring-shaped conductive layer by electromagnetic induction, and the magnetic field generated by this alternating current acts to magnetize the ring-shaped magnetic core in the radial direction. Therefore, if annealing is performed under such conditions, the ring-shaped magnetic core can have a radial distribution of easy magnetization axes, that is, all paths along the flow of magnetic flux can be made to operate in the difficult magnetic direction.

実施例 第1図は本発明の実施例を示すものである。同図中10
は磁性薄膜より成るリング状磁心である。
Embodiment FIG. 1 shows an embodiment of the present invention. 10 in the same figure
is a ring-shaped magnetic core made of a magnetic thin film.

又11は上記リング状磁心にはさまれる様に形成したリ
ング状の導電体層である。12は上記の様な磁心を磁界
中アニールするときの印加すべき交流磁界の方向で、こ
れは磁性薄膜面に垂直な方向である。適切な薄膜技術、
リングラフイー技術を用いて第1図の様な磁心を形成し
たあと、所定のアニール温度において上記の交流磁界を
印加する。
Further, 11 is a ring-shaped conductor layer formed to be sandwiched between the ring-shaped magnetic cores. Reference numeral 12 denotes the direction of an alternating current magnetic field to be applied when annealing the magnetic core as described above in a magnetic field, and this is a direction perpendicular to the surface of the magnetic thin film. Appropriate thin film technology,
After forming a magnetic core as shown in FIG. 1 using the ring graphie technique, the above-mentioned alternating current magnetic field is applied at a predetermined annealing temperature.

このとき磁界の大きさは磁心の飽和磁化をMsとしたと
き、4πMsの程度をこえない範囲でなるべく大きくす
る。このとき反磁界のために磁心膜は垂直方向には実質
的に磁化されない。他方、上記交流磁界は導電体層11
中をそのリング状経路にそって流れる交流電流を誘起せ
しめ、更にこの交流電流は第2図13に示した交流磁界
を生じる。
At this time, the magnitude of the magnetic field is made as large as possible without exceeding 4πMs, where Ms is the saturation magnetization of the magnetic core. At this time, the magnetic core membrane is not substantially magnetized in the perpendicular direction due to the demagnetizing field. On the other hand, the alternating magnetic field
This induces an alternating current to flow through it along its ring-shaped path, which in turn produces an alternating magnetic field as shown in FIG.

この交流磁界の方向はリング状磁心中で略放射状に分布
するから、第3図14で示した様な放射状磁化容易軸の
分布が得られ、磁束の流れの経路7のいずれの部分をと
っても困難軸方向の動作となる。この様にして高周波動
作にすぐれた磁心が得られる。
Since the direction of this alternating magnetic field is distributed approximately radially in the ring-shaped magnetic core, a distribution of radial easy magnetization axes as shown in FIG. The movement is in the axial direction. In this way, a magnetic core with excellent high frequency operation can be obtained.

リング状導電体層から生じる磁界の方向のみを考えれば
磁心10は第1図、第2図の様な2層構造でなくとも良
いが、2層構造にした場合反磁界の減少によってアニー
ル中の磁界がかかりやすく、又アニールが終了した後も
、上下のモーメントが対をつくるのでエネルギー的に安
定し、放射状のモーメント分布のより安定な維持が可能
であるので望ましい。
Considering only the direction of the magnetic field generated from the ring-shaped conductive layer, the magnetic core 10 does not need to have a two-layer structure as shown in FIGS. It is desirable because it is easy to apply a magnetic field, and even after the annealing is completed, the upper and lower moments form a pair, making it stable in terms of energy and making it possible to maintain a more stable radial moment distribution.

以上の発明より明らかな様に、本発明では磁界中の膜形
成による異方性付与の手段を用いるのは実際的でなく、
膜形成が終了してのちの磁場中、アニールによって有効
に異方性を付与出来る材料において本発明の特徴がより
発揮される。従ってパーマロイやセンダストの様に成膜
中に磁界を印加しないと異方性を付与しにくい材料よシ
、アモルファス磁性体の様に成膜後のキュリ一点近傍で
の磁界中アニールによって容易に異方性を付与出来る材
料を用いて本発明を実施するのが望ましい。
As is clear from the above invention, it is not practical to use the method of imparting anisotropy by forming a film in a magnetic field in the present invention.
The features of the present invention are best exhibited in materials that can be effectively imparted with anisotropy by annealing in a magnetic field after film formation is completed. Therefore, materials such as Permalloy and Sendust, which are difficult to impart anisotropy to without applying a magnetic field during film formation, can be easily anisotropic by annealing in a magnetic field near the Curie point after film formation, such as amorphous magnetic materials. It is desirable to practice the present invention using materials that can impart properties.

第5図は本発明を薄膜トランスに応用した実施例を示す
。図中10はリング状薄膜磁心、11はリング状導電体
層であって前者はトランスの磁気回路を構成する。又1
6はトランスの1次巻線、16は同2次巻線であり、い
ずれも上記の磁心10と鎖交する様に、薄膜技術を用い
て形成される。
FIG. 5 shows an embodiment in which the present invention is applied to a thin film transformer. In the figure, 10 is a ring-shaped thin film magnetic core, 11 is a ring-shaped conductor layer, and the former constitutes a magnetic circuit of a transformer. Again 1
6 is a primary winding of the transformer, and 16 is a secondary winding of the transformer, both of which are formed using thin film technology so as to interlink with the magnetic core 10 described above.

この様に膜形成が終了したあと、第1図で説明したと同
様に、膜面に垂直な方向に交流磁界を印加した状態でア
ニールを施す。アニール温度は薄膜磁心に用いた材料に
所定の温度とする。この様にすることによって、トラン
スの磁気回路を流れる信号磁束の方向にそった透磁率の
高周波特性が向上し、高周波特性のすぐれたトランスが
得られる。
After the film formation is completed in this manner, annealing is performed while an alternating magnetic field is applied in a direction perpendicular to the film surface, as described in FIG. 1. The annealing temperature is set to a predetermined temperature for the material used for the thin film core. By doing so, the high frequency characteristics of the magnetic permeability along the direction of the signal magnetic flux flowing through the magnetic circuit of the transformer are improved, and a transformer with excellent high frequency characteristics can be obtained.

第6図は、いわゆるビデオタイプの磁気ヘッドに本発明
を応用した実施例を示す。同図中において17は磁気へ
ラドコアであり、導電体層18をはさむ様な形で形成さ
れている。19はフロントギャップ部であり左右のコア
17はこの部分で所定のギャップ長だけ磁気的にへだて
られており、しかし左右の導電体層18はこのギャップ
部で電気的に寸断されることなくつながる様に構成され
ている。パックギャップ部20においても導電体層18
は電気的にはつながる様構成されている。
FIG. 6 shows an embodiment in which the present invention is applied to a so-called video type magnetic head. In the figure, reference numeral 17 denotes a magnetic helad core, which is formed in such a manner as to sandwich a conductive layer 18 therebetween. Reference numeral 19 denotes a front gap portion, and the left and right cores 17 are magnetically separated by a predetermined gap length at this portion, but the left and right conductor layers 18 are connected at this gap portion without being electrically disconnected. It is composed of The conductor layer 18 also exists in the pack gap portion 20.
are configured to be electrically connected.

21は巻線まどであり、すなわち導電体層18は巻線ま
どを中火とするリング状導電体を形成している。この様
に形成した磁気へラドコアを、そのコア面に垂直な方向
23の交流磁界中でアニール処理をすると第1図で示し
た理由によって、22で示した放射状の磁化容易軸分布
が得られる。これによってヘッド中の信号磁束の流れる
方向にそって高透磁率が得られ、高周波特性にすぐれた
磁気ヘッドが得られる。
Reference numeral 21 denotes a winding window, that is, the conductor layer 18 forms a ring-shaped conductor that uses the winding window as a medium heat source. When the magnetic herad core thus formed is annealed in an alternating current magnetic field in the direction 23 perpendicular to the core surface, the radial easy axis distribution of magnetization shown at 22 is obtained for the reason shown in FIG. As a result, high magnetic permeability can be obtained along the direction in which the signal magnetic flux flows in the head, and a magnetic head with excellent high frequency characteristics can be obtained.

発明の効果 本発明によればリング状薄膜磁心の磁束の流れにそった
いずれの部分においても磁化困難軸方向の動作となる様
に磁気異方性を付与することが容易であり、この磁心を
用いて高周波特性のすぐれた磁気ヘッドやトランスを形
成することができる。
Effects of the Invention According to the present invention, it is easy to impart magnetic anisotropy to any part of the ring-shaped thin-film magnetic core along the flow of magnetic flux so that the magnetic core moves in the direction of the difficult-to-magnetize axis. It can be used to form magnetic heads and transformers with excellent high frequency characteristics.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第3図は各々本発明の一実施例における薄膜磁
気回路の斜視図、断面図及び平面図、第4図は同要部の
断面図、第6図a、bは各々本発明の他の実施例を示す
平面図と断面図、第6図は本発明の更に他の実施例を示
す斜視図、第7図は従来の技術を説明する平面図、第8
図及び第9図は同斜視図である。 1o・・・・・・リング状薄膜磁心、11・・・・・・
リング状導電体層、12・・・・・・交流磁界印加の方
向。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名IO
−リングオK〉号1aノへ 第2図 第47 第 5 図 ぴ9 第6図 第7図 乎 第 8 Lシイ1 第9図
1 to 3 are respectively a perspective view, a sectional view, and a plan view of a thin film magnetic circuit according to an embodiment of the present invention, FIG. 4 is a sectional view of the same essential part, and FIGS. FIG. 6 is a perspective view showing still another embodiment of the present invention, FIG. 7 is a plan view explaining the conventional technique, and FIG.
This figure and FIG. 9 are perspective views of the same. 1o... Ring-shaped thin film magnetic core, 11...
Ring-shaped conductor layer, 12...Direction of application of alternating current magnetic field. Name of agent: Patent attorney Toshio Nakao and one other IO
- To Ringo K〉 1a Figure 2 Figure 47 Figure 5 Figure 9 Figure 6 Figure 7 - Figure 8 L Sea 1 Figure 9

Claims (3)

【特許請求の範囲】[Claims] (1)リング状薄膜導電体層と、上記導電体層の少くと
も一方の面に隣接して配したリング状薄膜磁心からなる
ことを特徴とする薄膜磁気回路。
(1) A thin film magnetic circuit comprising a ring-shaped thin film conductor layer and a ring-shaped thin film magnetic core disposed adjacent to at least one surface of the conductor layer.
(2)薄膜磁心をアモルファス磁性体により形成したこ
とを特徴とする特許請求の範囲第1項記載の薄膜磁気回
路。
(2) The thin film magnetic circuit according to claim 1, characterized in that the thin film core is formed of an amorphous magnetic material.
(3)導電体層の両側の面に薄膜磁心を配したことを特
徴とする特許請求の範囲第1項記載の薄膜磁気回路。
(3) The thin film magnetic circuit according to claim 1, characterized in that thin film magnetic cores are arranged on both sides of the conductor layer.
JP21657386A 1986-09-12 1986-09-12 Thin film magnetic circuit Pending JPS6372102A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21657386A JPS6372102A (en) 1986-09-12 1986-09-12 Thin film magnetic circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21657386A JPS6372102A (en) 1986-09-12 1986-09-12 Thin film magnetic circuit

Publications (1)

Publication Number Publication Date
JPS6372102A true JPS6372102A (en) 1988-04-01

Family

ID=16690537

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21657386A Pending JPS6372102A (en) 1986-09-12 1986-09-12 Thin film magnetic circuit

Country Status (1)

Country Link
JP (1) JPS6372102A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01276708A (en) * 1988-04-28 1989-11-07 Koichi Murakami Inductance element
JPH0296305A (en) * 1988-09-29 1990-04-09 Sony Corp Magnetic core
US6593841B1 (en) 1990-05-31 2003-07-15 Kabushiki Kaisha Toshiba Planar magnetic element
JP2006327454A (en) * 2005-05-27 2006-12-07 Sumitomo Rubber Ind Ltd Pneumatic tire

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01276708A (en) * 1988-04-28 1989-11-07 Koichi Murakami Inductance element
JPH0296305A (en) * 1988-09-29 1990-04-09 Sony Corp Magnetic core
US6593841B1 (en) 1990-05-31 2003-07-15 Kabushiki Kaisha Toshiba Planar magnetic element
JP2006327454A (en) * 2005-05-27 2006-12-07 Sumitomo Rubber Ind Ltd Pneumatic tire

Similar Documents

Publication Publication Date Title
US5388019A (en) Magnetic thin film structures fabricated with edge closure layers
Yamaguchi et al. Characteristics of a thin film microtransformer with circular spiral coils
JPH0778858B2 (en) Thin film magnetic head
JPS6372102A (en) Thin film magnetic circuit
JPS58171709A (en) Thin film magnetic head
JP3640296B2 (en) Magnetic head, magnetic head manufacturing method, and information recording apparatus
JPH06267023A (en) Thin film magnetic head and manufacture thereof
Oshiki et al. A thin film head for perpendicular magnetic recording
JP2650890B2 (en) Multilayer magnetic film
JPH0766046A (en) Electromagnetic device
JPH05299282A (en) Manufacture of thin film magnetic element
JPS6124211A (en) Magnetic core for polarized choke coil
JPS58111113A (en) Magnetic head
JPH0519762B2 (en)
JPH03105711A (en) Thin-film magnetic head formed by using multilayered magnetic film
JPH01276606A (en) Multilayered magnetic film and thin-film magnetic head using same
JPS59227015A (en) Magnetic head of vertical magnetization
JPH03286405A (en) Magnetic head and production thereof
JPS62139114A (en) Heat treatment for composite type magnetic head
JPH11259810A (en) Thin film magnetic head and its formation
JPH01264619A (en) Thin-film magnetic head
JPS62177714A (en) Magnetic head
JPS62119710A (en) Magnetic head
JPH02302908A (en) Magnetic head
JPH05326268A (en) Flat transformer