JPS6372062A - Explosion-proof type battery - Google Patents

Explosion-proof type battery

Info

Publication number
JPS6372062A
JPS6372062A JP61215270A JP21527086A JPS6372062A JP S6372062 A JPS6372062 A JP S6372062A JP 61215270 A JP61215270 A JP 61215270A JP 21527086 A JP21527086 A JP 21527086A JP S6372062 A JPS6372062 A JP S6372062A
Authority
JP
Japan
Prior art keywords
battery
explosion
sealing body
memory alloy
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61215270A
Other languages
Japanese (ja)
Inventor
Kohei Yamamoto
浩平 山本
Yoshiro Harada
吉郎 原田
Yukiyoshi Murakami
村上 行由
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Corp
Original Assignee
FDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FDK Corp filed Critical FDK Corp
Priority to JP61215270A priority Critical patent/JPS6372062A/en
Publication of JPS6372062A publication Critical patent/JPS6372062A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/342Non-re-sealable arrangements
    • H01M50/3425Non-re-sealable arrangements in the form of rupturable membranes or weakened parts, e.g. pierced with the aid of a sharp member
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/375Vent means sensitive to or responsive to temperature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To make it possible to quickly release the internal pressure of a battery by arranging an explosion-proof component comprising a shape memory alloy between a terminal plate and a sealing body, and breaking the sealing body with the explosion-proof component at a temperature higher than the transformation temperature of the shape memory alloy. CONSTITUTION:A breaking component 6 made of a shape memory alloy is arranged between a terminal plate 5 and a sealing body 4. The breaking component 6 memorizes the shape so that it deforms in a straight line at a temperature higher than the transformation temperature of the shape memory alloy. When the temperature of a battery exceeded the transformation temperature of the shape memory alloy by disposing of in fire or outernal short circuit, the breaking component 6 deforms in a straight line and the tip 6a quickly moves in an I direction and breaks the sealing body 4. As a result, the gas inside the battery is quickly released from the broken part.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 この発明は、電池内圧異常上昇時における防爆構造を具
備する防爆型7m池に関するものである。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to an explosion-proof 7 m pond having an explosion-proof structure when the internal pressure of a battery rises abnormally.

〈従来の技術〉 筒形リチウム電池やニッケルーカドミウム電池などの電
池では、過充電や外部短絡などの誤使用時において電池
内部で発生した多足のカスおるいは電池の火中投入の際
の高温などによって、電池内圧が所定値以上に達した場
合、電池缶開口部に設けた防爆構造により、電池内部の
異常ガス圧を端子板に設けたガス丈き孔を介して外部に
放出し、こうして電池の爆発を防止するようにしている
<Conventional technology> With batteries such as cylindrical lithium batteries and nickel-cadmium batteries, many particles are generated inside the battery during misuse such as overcharging or external short circuit, or when the battery is thrown into a fire. When the internal pressure of the battery reaches a predetermined value or higher due to high temperatures, etc., the explosion-proof structure provided at the opening of the battery can releases the abnormal gas pressure inside the battery to the outside through the gas hole provided in the terminal board. This is to prevent the battery from exploding.

このような防爆構造としては例えば第3図に示したもの
が従来より一般的に用いられている。
As such an explosion-proof structure, for example, the one shown in FIG. 3 has been commonly used.

即ち、この例では、発電要素2を収納した有底円筒状の
電池缶1の開口部1aに、薄肉金属板からなる封口体4
、ガス仇き孔8a及び切刃8bを有する端子板8を順次
載首し、また開口部1aを絞りかしめることで合成樹脂
製の封口ガスケット3を介してこれら封口体4及び端子
板8の周縁部を一体に挾圧し、これによって開口部1a
の封口を行なう溝道としている。そして、電池内圧の異
常上昇により図中上側に凸状に膨出した封口体4を切刃
8bによって突き破り、この破断部を介して端子板8に
設けたガス。
That is, in this example, a sealing body 4 made of a thin metal plate is placed in an opening 1a of a bottomed cylindrical battery can 1 that houses a power generation element 2.
, the terminal board 8 having the gas aperture hole 8a and the cutting edge 8b is sequentially mounted, and the opening 1a is squeezed and the sealing body 4 and the terminal board 8 are closed through the synthetic resin sealing gasket 3. The periphery is clamped together, thereby opening the opening 1a.
It is said to be a ditch where the gates are sealed. Then, the cutting blade 8b breaks through the sealing body 4, which has bulged upward in the figure due to the abnormal rise in battery internal pressure, and the gas is provided to the terminal plate 8 through this broken part.

扱き孔8aから電池内の異常ガス圧を外部に放出する構
成としている。
The abnormal gas pressure inside the battery is released from the handling hole 8a to the outside.

〈発明が解決しようとする問題点〉 しかしながら、上記従来の防爆構造のように膨出した封
口体を切刃などで突き破って電池内圧を逃がす構造では
、切刃が封口体を突き破る穴は通常極く細いスリット状
になり、この穴は破断後の内圧が緩和された状態ではそ
れ以上は拡大しないことから、電池内圧の急速な放出は
いささか困難であるのが実情である。このため、過放電
時のように電池内圧の上昇が比較的緩やかな場合は異常
ガス圧の放出を有効に行ない得るものの、火中投入や外
部短絡などの際の急激な電池内圧の上昇にはうまく追随
してガス圧放出を行なえず、電池破裂に至ってしまうと
いう問題がある。
<Problems to be Solved by the Invention> However, in the conventional explosion-proof structure described above, in which the internal pressure of the battery is released by piercing the bulging sealing body with a cutting blade, the hole through which the cutting blade pierces the sealing body is usually very small. The hole becomes a narrow slit, and this hole does not expand any further when the internal pressure is relaxed after the rupture, making it somewhat difficult to rapidly release the internal pressure of the battery. For this reason, when the battery internal pressure rises relatively slowly, such as during overdischarge, abnormal gas pressure can be released effectively, but when the battery internal pressure suddenly rises, such as when the battery is thrown into a fire or an external short circuit occurs, There is a problem in that the gas pressure cannot be released properly and the battery may explode.

また、別の防爆型構造として、封口体のほぼ中央付近に
例えば十字模様の薄肉部を設け、異常内圧によりこの薄
肉部を膨張させて破断するようにしたものもあるが、こ
の場合も上記と同じく破断以後の急激な内圧上昇に追随
してガス放出を行なわせることは難しく、電池破裂を招
くという問題がある。
In addition, as another explosion-proof structure, there is one in which a thin walled part, for example, in a cross pattern, is provided near the center of the sealing body, and this thin walled part expands and ruptures due to abnormal internal pressure. Similarly, it is difficult to cause gas to be released following the rapid increase in internal pressure after rupture, resulting in the problem of battery rupture.

く問題点を解決するための手段〉 この発明の防爆型電池は、ガス後き孔を有してなる端子
板を発電要素が収納された電池缶の開口部に位置させ、
この端子板と発電要素上面に設けた封口体との間に形状
記憶合金からなる防爆部材を設け、形状記憶合金の変態
温度以上の温度においてこの防爆部材を変形させて封口
体を破断させることを要旨とする。
Means for Solving Problems〉 The explosion-proof battery of the present invention has a terminal plate having a gas rear hole located in an opening of a battery can in which a power generation element is housed,
An explosion-proof member made of a shape memory alloy is provided between the terminal plate and the sealing body provided on the top surface of the power generation element, and the explosion-proof member is deformed at a temperature higher than the transformation temperature of the shape memory alloy, causing the sealing body to break. This is the summary.

上記のような形状記憶合金としては、Ni−Ti系、C
u−Zn系おるいはCu−へ℃系などのものから、所望
の変態温度を有する組成のものを適宜に選択して用いれ
ばよい。
The shape memory alloys mentioned above include Ni-Ti, C
A material having a composition having a desired transformation temperature may be appropriately selected and used from u-Zn type or Cu- to °C type.

〈作 用〉 以上の手段を用いることで、電池の火中投入時や外部シ
ョート時などにおいて電池温度が上記変態温度以上に上
昇した場合、防爆部材の変形によって封口体を完全に破
断させることができるので、電池内圧の急速な放出が可
能となる。
<Function> By using the above means, if the battery temperature rises above the above transformation temperature when the battery is thrown into a fire or when an external short circuit occurs, the sealing body can be prevented from completely rupturing due to deformation of the explosion-proof member. As a result, the internal pressure of the battery can be rapidly released.

〈実施例〉 実施例1 この考案をスパイラル型リチウム電池に適用した例を示
した第1図において、有底円筒状の電池缶1には発電要
素2が収納されている。この発電要素2は、シート状の
正極と負極とをセパレータを介して交互に積重後に渦巻
状に巻回したもので必る。
<Examples> Example 1 In FIG. 1, which shows an example in which this invention is applied to a spiral type lithium battery, a power generation element 2 is housed in a cylindrical battery can 1 with a bottom. The power generation element 2 is formed by stacking sheet-like positive electrodes and negative electrodes alternately with separators interposed therebetween and then spirally winding them.

電池缶1の開口部1aには、環状の封口ガスケット3、
並びにガス後き孔5aが1つあるいは円周状に複数個形
成された円盤状の端子板5が位置している。また、発電
要素2の上面には、ステンレススチー製の厚さ0.2m
m程度の薄肉板からなる封口体4が位置している。この
封口体4には、発電要素2の一方の電極から導出したリ
ード板7が抵抗溶接などにより直接結線されている。そ
して、電池缶1の開口部1aを絞りかしめて封口体4並
びに端子板5の周縁部を一体に挾圧しである。
An annular sealing gasket 3 is placed in the opening 1a of the battery can 1.
Also located is a disc-shaped terminal plate 5 in which one or a plurality of gas holes 5a are formed circumferentially. In addition, the upper surface of the power generation element 2 is made of stainless steel with a thickness of 0.2 m.
A sealing body 4 made of a thin plate with a thickness of about m is located. A lead plate 7 led out from one electrode of the power generating element 2 is directly connected to the sealing body 4 by resistance welding or the like. Then, the opening 1a of the battery can 1 is squeezed and the peripheral edges of the sealing body 4 and the terminal plate 5 are clamped together.

一方、端子板5と利口体4との間には、形状記憶合金製
の破断部材6が収納されている。この破断部材6は断面
が略つの字状の形状で、図中上側の端子板内面と接する
部分は、この内面に溶接されており、また図中下側の先
端部分6aは封口体4上に位置している。そして、この
形状記憶合金を用いてなる防爆部材6は、その変態温度
以上の温度において直線状になるように形状記憶されて
あり、常温において図示したように折曲して電池内に収
納される。ここで、この先端部分6aに対向する封口体
4の部分を薄肉に成形してやるようにしてもよい。また
、上記形状記憶合金としては、例えば特開昭56−13
6945号公報に記載されているCu−A、e系あるい
はCLJ−A℃−Ni系の合金で、その変態温度(マル
テンザイト変態開始温度)Msが120〜170’Cの
範囲になるようにその組成を適宜に調整して作られた形
状記憶合金を用いればよい。ここで、変態温度をこの範
囲に規定したのは、次の理由による。即ち、この種のリ
チウム電池では一般的には、火中投入時などにおいてそ
の電池温度が120’C程度まで上昇しても電池は安全
であり爆発することはない。また、この種の電池は温度
ioo ’c程度で保存試験される場合があり、上記変
態温度が120℃より低いとこの保存試験中に防爆構造
が作動してしまうおそれがある。一方、第1図CB)は
外径’17mm。
On the other hand, a breakable member 6 made of a shape memory alloy is housed between the terminal plate 5 and the smart body 4. The breaking member 6 has a substantially square-shaped cross section, and the portion that contacts the inner surface of the terminal plate on the upper side in the figure is welded to this inner surface, and the tip portion 6a on the lower side in the figure is attached to the sealing body 4. positioned. The explosion-proof member 6 made of this shape-memory alloy is memorized so that it becomes a straight line at a temperature equal to or higher than its transformation temperature, and is stored in a battery by being bent as shown in the figure at room temperature. . Here, the portion of the sealing body 4 facing the tip portion 6a may be formed thin. Further, as the shape memory alloy, for example, JP-A-56-13
The Cu-A, e-based or CLJ-A°C-Ni based alloy described in Publication No. 6945 is used so that its transformation temperature (martenzite transformation starting temperature) Ms is in the range of 120 to 170'C. A shape memory alloy made by appropriately adjusting the composition may be used. The reason why the transformation temperature is defined within this range is as follows. That is, this type of lithium battery is generally safe and will not explode even if the battery temperature rises to about 120'C, such as when thrown into a fire. Further, this type of battery may be subjected to a storage test at a temperature of about 100° C., and if the transformation temperature is lower than 120° C., there is a risk that the explosion-proof structure will be activated during this storage test. On the other hand, Fig. 1 CB) has an outer diameter of 17 mm.

高さ33mmで防爆構造を具備しないスパイラル型リチ
ウム電池を外部ショートさせた場合の例であるが、電池
(表面)温度は時間と共に急激に上昇し、温度188°
Cで爆発(図中「×」印)に至っている。この例でもわ
かるように、温度約170’C以上では発電要素を構成
するリチウムはすでにある程度溶は出して電解液中の過
塩素酸リチウムなどと反応して爆発するなどの危険な状
態となっており、電池温度がこの温度以上に上昇する前
に封口体を破断させて防爆を図る必要がある。尚、上記
例のように電池を外部ショートさせた場合は電池温度が
120’Cから170°Cにまで上昇する時間は約2分
であり、温度上昇の割合はそれ程急峻ではないので、こ
の温度範囲内に上記変態温度を設定しておけば有効な防
爆が行ないうるが、火中投入時のように電池温度の上昇
が更に著しく急峻である場合にはそれでも防爆前に電池
の爆発が起こってしまう危険性もあり、この点も考慮す
ると、上記温度範囲としては120〜140’C程度が
好ましいといえる。
This is an example when a spiral type lithium battery with a height of 33 mm and not equipped with an explosion-proof structure is short-circuited externally.
An explosion occurred at point C (marked with an "x" in the diagram). As can be seen in this example, at temperatures above about 170'C, the lithium that makes up the power generation element will already dissolve to some extent and react with lithium perchlorate in the electrolyte, resulting in a dangerous situation such as an explosion. Therefore, it is necessary to break the sealing body before the battery temperature rises above this temperature to ensure explosion protection. In addition, when the battery is short-circuited externally as in the above example, it takes about 2 minutes for the battery temperature to rise from 120'C to 170°C, and the rate of temperature rise is not that steep. If the above transformation temperature is set within the above range, effective explosion protection can be achieved, but if the battery temperature rises significantly more rapidly, such as when the battery is thrown into a fire, the battery may still explode before explosion protection occurs. There is also a risk that the temperature will drop, and when this point is taken into consideration, it can be said that the above temperature range is preferably about 120 to 140'C.

このような構造の実施例の電池では、火中投入や外部シ
ョートなどにより電池温度が上記変態温度になった時に
は破断部材6が直線形状に変形するので、破断部材6の
先端部分6aは第1図において上方向へ急速に移動し、
この結果、封口体4は破断し、この破断部より電池内の
ガス放出が行なわれる。
In the battery of this embodiment having such a structure, when the battery temperature reaches the above-mentioned transformation temperature due to being thrown into a fire or an external short circuit, the breakable member 6 deforms into a linear shape, so that the tip portion 6a of the breakable member 6 is moving rapidly upward in the figure,
As a result, the sealing body 4 is broken, and the gas inside the battery is released from this broken part.

尚、以上は火中投入や外部ショート時などの防爆につい
て説明したが、過充放電による電池内圧の異常上昇時の
防爆を行なうためには、以上説明した破断部材に加えて
前記で説明した従来の切刃などを用いた構造を使用して
やってもよいし、また破断部材6の先端部分6aの形状
を切刃状や針状とし、内圧上昇により図中上方向に膨出
する封口体4をこの先端部分6aによって突き破る構成
としてもよい。
The above explanation has been about explosion protection in the event of being thrown into a fire or an external short circuit, but in order to provide explosion protection in the event of an abnormal rise in battery internal pressure due to overcharging or discharging, in addition to the breakable members described above, the conventional methods described above must be used. Alternatively, the tip portion 6a of the breaking member 6 may be shaped like a cutting edge or a needle, so that the sealing body 4 bulges upward in the figure due to an increase in internal pressure. A configuration may be adopted in which the tip portion 6a breaks through.

実施例2 第2図はこの発明の他の実施例を示したもので、破断部
材16の形状の違いを除いては上述の実施例と同じr4
造である。
Embodiment 2 FIG. 2 shows another embodiment of the present invention, which is the same r4 as the above-mentioned embodiment except for the difference in the shape of the breaking member 16.
It is constructed.

即ち、この破断部材16はバネ状に成形されており、破
断部材16を構成する形状記憶合金の変態温度以下の温
度下においては図示したように縮んでいるが、変態温度
以上になると、形状記憶されていた長い形状に変形する
ため、図中■の方向に急速に移動して封口体4を破断す
る。ここで、上記実施例の場合と同様に、破断部材16
の先端部分16aを切刃状に加工成形しておけば、変態
温度以上の温度上昇を伴わない電池内圧上昇の場合の防
爆にも対応することができる。
That is, this breakable member 16 is formed into a spring shape, and shrinks as shown in the figure at a temperature below the transformation temperature of the shape memory alloy that constitutes the breakable member 16, but when the temperature exceeds the transformation temperature, the shape memory In order to deform into the previously long shape, it rapidly moves in the direction indicated by ■ in the figure and breaks the sealing body 4. Here, as in the case of the above embodiment, the breaking member 16
By processing and forming the tip portion 16a into a cutting edge shape, it is possible to provide explosion protection in the case of an increase in battery internal pressure without a rise in temperature above the transformation temperature.

〈発明の効果〉 以上のように構成されるこの発明の防爆型電池によれば
、火中投入や外部ショート時などにおいて有効な防爆が
行なえ、この種の電池の防爆機構の信頼性向上を図るこ
とができるといった効果を奏する。
<Effects of the Invention> According to the explosion-proof battery of the present invention configured as described above, effective explosion-proofing can be achieved when thrown into a fire or in the event of an external short circuit, and the reliability of the explosion-proof mechanism of this type of battery is improved. It has the effect of being able to do things.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(A)はこの発明の実施例を示した説明図、第1
図(B)は電池外部ショート時にあける電池表面温度の
経時変化を示したグラフ、第2図は他側の説明図、第3
図は従来例の説明図でおる。 1・・・電池缶、2・・・発電要素、4・・・封口体、
5.8・・・端子板、6,16・・・破断部材。 第1 図(S) 時間(Jlf) 第1図(A) 第2t!1 第3ryJ
FIG. 1(A) is an explanatory diagram showing an embodiment of the present invention.
Figure (B) is a graph showing the change in battery surface temperature over time during an external short circuit of the battery, Figure 2 is an explanatory diagram of the other side, Figure 3
The figure is an explanatory diagram of a conventional example. 1... Battery can, 2... Power generation element, 4... Sealing body,
5.8...Terminal board, 6,16... Breaking member. Figure 1 (S) Time (Jlf) Figure 1 (A) 2nd t! 1 3rd ryJ

Claims (1)

【特許請求の範囲】 1、ガス抜き孔を有してなる端子板を発電要素が収納さ
れた電池缶の開口部に位置させ、この端子板と発電要素
上面に設けた封口体との間に形状記憶合金からなる防爆
部材を設け、形状記憶合金の変態温度以上の温度におい
てこの防爆部材を変形させて封口体を破断させることを
特徴とする防爆型電池。 2、電池形式が筒形リチウム電池であることを特徴とす
る特許請求の範囲第1項記載の防爆型電池。 3、形状記憶合金の変態温度が120〜170℃である
ことを特徴とする特許請求の範囲第2項記載の防爆型電
池。
[Claims] 1. A terminal plate having a gas vent hole is placed in the opening of a battery can in which a power generation element is housed, and between this terminal plate and a sealing body provided on the top surface of the power generation element. 1. An explosion-proof battery comprising an explosion-proof member made of a shape-memory alloy, the explosion-proof member being deformed at a temperature higher than the transformation temperature of the shape-memory alloy to cause the sealing body to rupture. 2. The explosion-proof battery according to claim 1, wherein the battery type is a cylindrical lithium battery. 3. The explosion-proof battery according to claim 2, wherein the shape memory alloy has a transformation temperature of 120 to 170°C.
JP61215270A 1986-09-12 1986-09-12 Explosion-proof type battery Pending JPS6372062A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61215270A JPS6372062A (en) 1986-09-12 1986-09-12 Explosion-proof type battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61215270A JPS6372062A (en) 1986-09-12 1986-09-12 Explosion-proof type battery

Publications (1)

Publication Number Publication Date
JPS6372062A true JPS6372062A (en) 1988-04-01

Family

ID=16669528

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61215270A Pending JPS6372062A (en) 1986-09-12 1986-09-12 Explosion-proof type battery

Country Status (1)

Country Link
JP (1) JPS6372062A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4975341A (en) * 1990-04-03 1990-12-04 Eveready Battery Company, Inc. Electrochemical cell with circuit disconnect device
US4992339A (en) * 1990-03-14 1991-02-12 Eveready Battery Company, Inc. Electrochemical cell with circuit disconnect device
JPH048256U (en) * 1990-05-01 1992-01-24
JPH10334875A (en) * 1997-06-04 1998-12-18 Toyota Motor Corp Lithium ion secondary battery
US7763375B2 (en) 2006-05-24 2010-07-27 Eveready Battery Company, Inc. Current interrupt device for batteries
EP2337053A1 (en) 2009-11-17 2011-06-22 Saft Groupe S.A. Battery cut out with active thermomechanical element
US8082846B2 (en) 2002-08-12 2011-12-27 Qinetiq Limited Temperature responsive safety devices for munitions
US8616131B2 (en) 2007-07-25 2013-12-31 Qinetiq Limited Rupturing devices

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60198051A (en) * 1984-03-19 1985-10-07 Matsushita Electric Ind Co Ltd Sealed battery

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60198051A (en) * 1984-03-19 1985-10-07 Matsushita Electric Ind Co Ltd Sealed battery

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4992339A (en) * 1990-03-14 1991-02-12 Eveready Battery Company, Inc. Electrochemical cell with circuit disconnect device
US4975341A (en) * 1990-04-03 1990-12-04 Eveready Battery Company, Inc. Electrochemical cell with circuit disconnect device
JPH048256U (en) * 1990-05-01 1992-01-24
JPH10334875A (en) * 1997-06-04 1998-12-18 Toyota Motor Corp Lithium ion secondary battery
US8082846B2 (en) 2002-08-12 2011-12-27 Qinetiq Limited Temperature responsive safety devices for munitions
US7763375B2 (en) 2006-05-24 2010-07-27 Eveready Battery Company, Inc. Current interrupt device for batteries
US8616131B2 (en) 2007-07-25 2013-12-31 Qinetiq Limited Rupturing devices
EP2337053A1 (en) 2009-11-17 2011-06-22 Saft Groupe S.A. Battery cut out with active thermomechanical element

Similar Documents

Publication Publication Date Title
US6258477B1 (en) Explosion-proof nonaqueous electrolyte secondary cell and rupture pressure setting method therefor
JP2000512062A (en) Battery cap assembly with fragile tab breaking mechanism
JP5389368B2 (en) Sealed battery
JP3655644B2 (en) Explosion-proof valve group and sealed secondary battery using the same
US6531242B1 (en) Enclosed cell and sealer
JPH07254402A (en) Sealed battery
JP2006228520A (en) Secondary battery
JPS6372062A (en) Explosion-proof type battery
US8685555B2 (en) Thermo-mechanically activated current interrupter
JPH09259842A (en) Sealed rectangular battery
JPH10247483A (en) Safety structure of sealed battery
JP3589427B2 (en) Cylindrical alkaline battery
JPH0831397A (en) Explosion-proof battery
JPH0917416A (en) Battery having explosion-proof function
JPH09115498A (en) Sealed storage battery
JP4431225B2 (en) Cylindrical battery
JPH11250884A (en) Battery
JP2746653B2 (en) Sealed alkaline storage battery
JP2009016079A (en) Sealing structure of cylindrical cell, and alkaline cell
JPH079338Y2 (en) Battery safety valve device
JPH07122254A (en) Cylindrical alkaline battery
JPH0718126Y2 (en) Battery safety valve device
JPS60198051A (en) Sealed battery
JPH1186819A (en) Safety structure for sealed battery
JP2521441B2 (en) Hermetically sealed liquid active material battery