JPH11250884A - Battery - Google Patents

Battery

Info

Publication number
JPH11250884A
JPH11250884A JP10046821A JP4682198A JPH11250884A JP H11250884 A JPH11250884 A JP H11250884A JP 10046821 A JP10046821 A JP 10046821A JP 4682198 A JP4682198 A JP 4682198A JP H11250884 A JPH11250884 A JP H11250884A
Authority
JP
Japan
Prior art keywords
gas
safety valve
battery
valve
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10046821A
Other languages
Japanese (ja)
Inventor
Yoshio Naganuma
義男 永沼
Katsunori Nishimura
勝憲 西村
Yoshiaki Kumashiro
祥晃 熊代
Hisashi Ando
▲壽▼ 安藤
Tadashi Muranaka
村中  廉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP10046821A priority Critical patent/JPH11250884A/en
Publication of JPH11250884A publication Critical patent/JPH11250884A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Gas Exhaust Devices For Batteries (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent bursting or explosion of a battery even if a large volume of gas is generated by enlarging the flow path cross section of a gas ejecting part after a safety valve is operated by the physical or chemical reaction of gas ejecting from a battery when the safety valve is operated with a safety valve constituting material. SOLUTION: A suppressing spring 7 and a valve body 9 are arranged between a battery cover 5 and a positive terminal 6 to block a gas ejection hole 10 with the valve body 9. A valve seat 8 is formed with a material having a function enlarging the gas ejecting hole 10 by passing of ejecting gas. For example, if a halogen based electrolyte containing chlorine is used for making an electrolyte nonflammable, when the inner pressure is raised and a valve body starts operation, chlorine in ejecting gas quickly reacts with tellurium of the valve seat 8 to be converted to tellurium chloride, and when the ejecting gas becomes 175 deg.C or higher, the valve seat 8 is melted. Thereby, the region of the valve seat 8 becomes a gas ejection hole to enlarge a gas flow path. Preferably, a shape memorizing alloy deforming at 80-130 deg.C is used in a safety valve, and a low melting point alloy melting at 80-130 deg.C is used in the valve seat 8 or the valve body 9.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電池に係わり、特
に電池の爆発や破裂を防止する安全機構を有する電池に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a battery, and more particularly, to a battery having a safety mechanism for preventing explosion or explosion of the battery.

【0002】[0002]

【従来の技術】電池の中で、例えば、リチウムイオン二
次電池(以下、リチウム電池と称す。)は、軽量,高容量
な二次電池として携帯電話やパソコン用電源として普及
している。この電池は、エネルギー密度が高く、充放電
時の発熱が大きい。更に充電時の過充電や、過電流で電
解液が分解し、同時に発生する反応熱により反応が加速
し爆発に至ることがある。このため、このリチウム電池
の搭載機器には、充放電時に電池の電圧や温度を監視
し、これらの異常を感知した場合には、回路を遮断する
等の操作を行う保護回路が設けられている。更に電池そ
のものにも、過電流に対して温度上昇があった場合に抵
抗を増加するPTC素子を備え、電流を遮断する機能
や、内圧上昇に対して動作する安全弁等の安全装置が取
り付けられている。特に電池に設ける安全弁について
は、例えば安全弁のコイルバネが動作不良になってもガ
ス放出が可能なように弾性体で構成したもの(特開平5
−325930 号公報)や、安全弁の通常時の密閉性を高め
るためにグリスを充填したもの(特開平4−328241 号公
報)等、種々改良したものが開示されている。
2. Description of the Related Art Among batteries, for example, a lithium ion secondary battery (hereinafter, referred to as a lithium battery) is widely used as a lightweight and high-capacity secondary battery as a power source for mobile phones and personal computers. This battery has a high energy density and generates a large amount of heat during charging and discharging. Furthermore, the electrolyte may be decomposed by overcharging or overcurrent during charging, and the reaction heat generated at the same time may accelerate the reaction and lead to an explosion. For this reason, this lithium battery-equipped device is provided with a protection circuit that monitors the voltage and temperature of the battery during charging and discharging, and performs operations such as shutting off the circuit when these abnormalities are detected. . In addition, the battery itself is equipped with a PTC element that increases the resistance when the temperature rises due to overcurrent, a function to cut off the current, and a safety device such as a safety valve that operates against an increase in internal pressure. I have. In particular, the safety valve provided in the battery is made of an elastic body so that gas can be released even if the coil spring of the safety valve malfunctions (Japanese Patent Application Laid-Open No. HEI-5-1993).
Various improvements have been disclosed, such as those disclosed in Japanese Patent Application Laid-Open No. 4-325241 and Japanese Patent Application Laid-Open No. 4-328241, in which the safety valve is filled with grease in order to enhance the sealing property at normal times.

【0003】[0003]

【発明が解決しようとする課題】前記従来技術で示した
ように、例えば、リチウムイオン二次電池には、通常、
種々の安全機構が設けられている。このうち、電池に使
用している有機系の電解液が分解して内圧が上昇したり
この分解反応が発生熱で暴走し、遂には破裂や爆発に至
る場合の最後の安全対策は、電池内部で発生したガスを
外へ逃すことによる危険回避である。このため、通常の
リチウムイオン二次電池には、何らかの原因で電池内の
ガス発生により内圧が上昇した場合、設定圧力以上にな
ると動作する安全弁が設けられている。しかし、電池が
火中に投下された場合や保護回路が故障して過充電とな
った場合などにおいては、急激に大量のガスが発生する
ため、従来技術で例示したような通常の安全弁の動作で
は噴出するガス量を放出しきれず、安全弁が作動したに
もかかわらず電池の破裂や爆発に至るということが生じ
る。
As shown in the prior art, for example, a lithium ion secondary battery is usually
Various safety mechanisms are provided. Of these, the last safety measure in the event that the organic electrolyte used in the battery is decomposed and the internal pressure rises or this decomposition reaction runs away due to the generated heat and eventually explodes or explodes, This is a danger avoidance by letting out the gas generated in the above. For this reason, a normal lithium ion secondary battery is provided with a safety valve which operates when the internal pressure rises due to gas generation in the battery for some reason and becomes equal to or higher than a set pressure. However, when a battery is dropped into a fire or when a protection circuit breaks down and becomes overcharged, a large amount of gas is rapidly generated. In this case, the amount of gas to be ejected cannot be completely released, and even though the safety valve operates, the battery may explode or explode.

【0004】本発明は、このような電池の異常に対して
安全弁を従来のものより効果的に作動させ、大容量のガ
ス発生に対しても電池が破裂や爆発に至ることを防止す
ることを目的とする。
The present invention makes it possible to operate a safety valve more effectively than in the prior art against such a battery abnormality, and to prevent the battery from exploding or exploding even when a large amount of gas is generated. Aim.

【0005】[0005]

【課題を解決するための手段】上記課題を解決するた
め、本発明では、安全弁の構成材料に電池から出る噴出
ガスと反応して消耗することにより、ガス噴出部の流路
断面積を拡大する機能を持たせる。すなわち、安全弁が
作動し電池内部のガスが噴出孔から放出される時、噴出
ガスが噴出孔部など安全弁を構成する材料と化学的ない
し物理的に反応することにより、安全弁が粉化消耗や溶
融変形などを起し、その結果ガス噴出部の流路断面積を
拡大することにより噴出ガスを大量に放出することを可
能にする。このため、安全弁作動後においては、急激な
ガス発生があっても電池を破裂や爆発に至るのを防止で
きる。
In order to solve the above-mentioned problems, in the present invention, the constituent material of the safety valve reacts with exhaust gas discharged from the battery and is consumed, thereby increasing the cross-sectional area of the gas outlet. Have a function. In other words, when the safety valve is activated and gas inside the battery is released from the orifice, the ejected gas chemically or physically reacts with the material that constitutes the safety valve such as the orifice, causing the safety valve to become powdered and consumed or melted. This causes deformation and the like, and as a result, it is possible to discharge a large amount of gas by expanding the cross-sectional area of the gas outlet. For this reason, after the safety valve is operated, it is possible to prevent the battery from exploding or exploding even if a sudden gas is generated.

【0006】ここで、噴出ガスと安全弁構成材料を化学
的に反応させガス噴出孔を拡大する場合は、電解液の分
解ガスに含まれる一酸化炭素や塩素等の活性成分と反応
し粉化するなどして消耗する材料を噴出孔に用いる。ま
た、物理的に反応させる場合は、噴出ガスの温度に反応
して、溶融,昇華などの物理現象を引き起こし、安全弁
のガス噴出部の形状を変化させる材料を用いる。
Here, when expanding the gas ejection hole by chemically reacting the ejection gas with the constituent material of the safety valve, it reacts with active components such as carbon monoxide and chlorine contained in the decomposition gas of the electrolytic solution to powder. A material that is consumed by the above process is used for the ejection hole. In the case of causing a physical reaction, a material that reacts with the temperature of the jet gas to cause physical phenomena such as melting and sublimation and changes the shape of the gas jet portion of the safety valve is used.

【0007】[0007]

【発明の実施の形態】通常、電池の安全弁が動作する圧
力は10〜20kg/cm2 に設定されており、電池内圧力
がこの設定値に近づくと、安全弁がわずかに開き内部の
ガスが漏れ始める。このような状態では、噴出するガス
温度も電解液の分解する80℃以上の高温になってい
る。しかもこのガスには電解液が分解して生じる一酸化
炭素や塩素などの活性成分を含む。これらの活性成分と
化学的反応を起し、構成材料を粉化するなどして消耗す
る材料を安全弁の噴出孔部に使用した場合、噴出ガスは
噴出孔部を侵食するように作用する。このため、ガス噴
出と同時に噴出孔部の侵食が急激に進むため、噴出孔が
拡大しより大量のガス放出が可能になる。また、噴出ガ
スと安全弁構成材料が物理的に反応することを利用する
場合として、噴出ガスの熱が安全弁を構成する材料に作
用する場合がある。この場合、噴出ガスの温度に反応す
る形状記憶合金や低融点材料を噴出孔部の材料として使
用する。このとき、安全弁が動作し始めると、噴出孔を
通過するガスの熱が噴出孔部の構成材料に伝わり温度上
昇するように作用する。構成材料が設定された温度に達
すると、形状記憶合金の場合は、形状記憶が作用し噴出
孔を拡大するように作用させることができる。また、低
融点合金を使用した場合には、設定した温度で材料その
ものが溶融して流出してしまうため、噴出孔部を拡大す
るように作用する。このため本発明により従来の安全弁
構造に比較して、ガス漏れ開始後の安全弁のガス放出動
作が、瞬時に大量のガス放出を可能とし、電池の破裂や
爆発に至ることを高い信頼性をもって防止する効果があ
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Normally, the pressure at which a battery safety valve operates is set at 10 to 20 kg / cm 2. When the battery internal pressure approaches this set value, the safety valve opens slightly and gas inside leaks. start. In such a state, the temperature of the gas to be ejected is also as high as 80 ° C. or more at which the electrolytic solution is decomposed. Moreover, this gas contains active components such as carbon monoxide and chlorine generated by decomposition of the electrolytic solution. When a material that causes a chemical reaction with these active components and is consumed by powdering the constituent material or the like is used for the ejection hole of the safety valve, the ejection gas acts to erode the ejection hole. For this reason, since the erosion of the ejection hole portion rapidly progresses simultaneously with the gas ejection, the ejection hole is enlarged, and a larger amount of gas can be released. Further, as a case of utilizing the physical reaction between the ejected gas and the material constituting the safety valve, there is a case where the heat of the ejected gas acts on the material constituting the safety valve. In this case, a shape memory alloy or a low melting point material that responds to the temperature of the jet gas is used as the material of the jet hole. At this time, when the safety valve starts operating, the heat of the gas passing through the ejection hole is transmitted to the constituent material of the ejection hole portion and acts to increase the temperature. When the constituent material reaches the set temperature, in the case of the shape memory alloy, the shape memory can be operated so as to enlarge the ejection hole. When a low-melting-point alloy is used, the material itself melts and flows out at a set temperature, and thus acts to enlarge the ejection hole portion. Therefore, compared to the conventional safety valve structure according to the present invention, the gas release operation of the safety valve after the start of gas leakage enables a large amount of gas to be released instantaneously, and prevents the explosion or explosion of the battery with high reliability. Has the effect of doing

【0008】以下本発明を実施例により説明する。図1
は、本発明の一実施例による防爆機能を有する電池の断
面構造をマンガン系リチウムイオン二次電池を示したも
のである。本実施例の電池は、マンガン酸化物を用いた
正極1とコークス系炭素を用いた負極2をセパレータ
(厚さが薄いので図では省略している)を挟んで捲回
し、電池缶3に納めた円筒型リチウムイオン電池であ
る。この電池には、絶縁パッキン4で押さえた電池蓋5
と正極端子6の間に本発明による安全弁機能が設けられ
ている。本実施例では、安全弁の構成は従来のものとほ
ぼ同じであり、電池蓋5と正極端子6の間に安全弁の押
さえバネ7と弁体9が置かれ、電池蓋5に設けた噴出孔
10を弁体9で塞いだ状態に組み立てられている。本実
施例では、電池蓋5の噴出孔部を構成する弁座8を噴出
ガスの通過による噴出孔拡大の機能を有するような材料
で構成している。この弁座8に本発明の機能を持たせる
ための材料としては、例えば電池に用いる電解液を不燃
化するため塩素を多く含むハロゲン系電解液を用いた場
合には、発生するガスに多量の塩素が含まれるため、こ
の塩素と反応し粉末化するテルルを用いると本発明の機
能が付加された安全弁となる。以下この場合の動作につ
いて説明する。
Hereinafter, the present invention will be described with reference to examples. FIG.
1 shows a manganese-based lithium ion secondary battery having a cross-sectional structure of a battery having an explosion-proof function according to an embodiment of the present invention. In the battery of this embodiment, a positive electrode 1 using manganese oxide and a negative electrode 2 using coke-based carbon are wound around a separator (not shown in the figure because the thickness is small) and placed in a battery can 3. This is a cylindrical lithium ion battery. The battery has a battery cover 5 held by an insulating packing 4.
The safety valve function according to the present invention is provided between the positive electrode terminal 6 and the positive electrode terminal 6. In this embodiment, the configuration of the safety valve is almost the same as that of the conventional one, and a holding spring 7 and a valve body 9 of the safety valve are placed between the battery cover 5 and the positive electrode terminal 6. Is closed by a valve body 9. In the present embodiment, the valve seat 8 constituting the ejection hole portion of the battery cover 5 is made of a material having a function of expanding the ejection hole by passing the ejection gas. As a material for imparting the function of the present invention to the valve seat 8, for example, when a halogen-based electrolyte containing a large amount of chlorine is used to make the electrolyte used for the battery nonflammable, a large amount of gas is generated. Since chlorine is contained, the use of tellurium which reacts with the chlorine to form a powder provides a safety valve having the function of the present invention. The operation in this case will be described below.

【0009】火中投下などにより外部からの加熱があっ
た場合、内圧が上昇し安全弁が動作し始めると、噴出す
るガスが温度が高いので、噴出ガス中の塩素と弁座のテ
ルルが急激に反応し、弁座はガスとの接触部分から順次
二塩化テルルに変化する。二塩化テルルは融点175℃
の物質であるため、これ以上の温度の噴出ガスでは溶融
してしまう。この結果、弁座8の構成領域がすべて噴出
孔となり、ガス噴出流路が拡大される。更に、このよう
な塩素を含むガスを発生させる電解液では、セレンを弁
座に用いることも有効であり、この場合、噴出ガスとの
反応で四塩化セレンが生成する。四塩化セレンは、19
6℃で昇華する性質があるため、これより温度の高いガ
スが噴出する場合は、生成した四塩化セレンが昇華温度
に達すると瞬時にガス化して吹き飛んでしまうため、噴
出孔の拡大作用に特に効果的である。また、通常の有機
電解液を使用した電池の場合には、分解で発生するガス
には一酸化炭素が含まれるため、これとよく反応し揮発
性の金属カルボニル化合物を作るニッケル,コバルトな
どの遷移金属が有効である。
If the internal pressure rises and the safety valve starts operating when there is external heating due to a fire drop or the like, the temperature of the gas to be ejected is high, so that chlorine in the ejected gas and tellurium in the valve seat rapidly increase. In response, the valve seat changes into tellurium dichloride sequentially from the portion in contact with the gas. Tellurium dichloride melting point 175 ° C
Because of the above-mentioned substance, the gas ejected at a higher temperature will melt. As a result, the entire configuration area of the valve seat 8 becomes an ejection hole, and the gas ejection flow path is enlarged. Further, in the electrolytic solution that generates such a gas containing chlorine, it is also effective to use selenium for the valve seat. In this case, selenium tetrachloride is generated by the reaction with the ejected gas. Selenium tetrachloride is 19
Because of the property of sublimation at 6 ° C, when a gas with a higher temperature is ejected, the generated selenium tetrachloride gasifies and blows off instantly when it reaches the sublimation temperature. It is effective. Also, in the case of a battery using a normal organic electrolyte, since the gas generated by decomposition contains carbon monoxide, the gas reacts well with this to form a volatile metal carbonyl compound. Metal is effective.

【0010】以上の実施例は、噴出ガスとの化学反応を
利用して安全弁の噴出孔を拡大する場合を例示したもの
であるが、次に物理的反応として噴出ガスの熱を利用し
て噴出孔の拡大機能を実現する場合を例示する。これに
は例えば図1の電池構成において、弁座8を低融点半田
などの低融点金属合金で構成することで実現できる。例
えば、SnとPbとBiの比を22:28:50とした
低融点金属を弁座8に用いた場合、これは100℃で溶
融するため通常の電池使用ではこれほどの温度にならな
いため、バネで押さえられた弁座と弁体は気密性を保っ
ている。しかし、電解液の分解で内圧が上昇し安全弁か
らガスが漏れ始めると、100℃以上の温度の高いガス
が弁座の噴出孔を通過するためすぐに弁座の温度が上昇
し、弁座を溶融させるため噴出孔を容易に拡大する。こ
の現象を、以下に電池を過充電にした場合の温度と圧力
の実測例を用いて説明する。
In the above embodiment, the case where the ejection hole of the safety valve is expanded by utilizing the chemical reaction with the ejected gas is explained. Next, the ejection is performed by utilizing the heat of the ejected gas as a physical reaction. An example in which the function of enlarging a hole is realized will be described. This can be realized, for example, by configuring the valve seat 8 with a low melting point metal alloy such as low melting point solder in the battery configuration of FIG. For example, when a low-melting-point metal having a ratio of Sn: Pb: Bi of 22:28:50 is used for the valve seat 8, it melts at 100 ° C., so that the temperature does not reach such a high temperature by using a normal battery. The valve seat and valve body held by the spring maintain airtightness. However, when the internal pressure rises due to the decomposition of the electrolyte and gas starts to leak from the safety valve, a high temperature gas of 100 ° C. or more passes through the ejection hole of the valve seat, so that the temperature of the valve seat immediately rises and the valve seat is opened. The orifice is easily enlarged for melting. This phenomenon will be described below using an actual measurement example of temperature and pressure when the battery is overcharged.

【0011】図2は、通常の安全弁を設けた電池の過充
電領域における電池内圧と温度の関係を測定した例であ
る。この図に示すように、過充電で電解液が分解すると
内圧が徐々に上昇し、本測定例では、過充電割合がおよ
そ155%(図中に細破線で示す)で圧力上昇勾配がそ
れ以前より一時小さくなる。これは発生したガスが洩れ
始めたことを示すと考えられる。このとき電池表面温度
は、50℃で温度的には電池に影響ないと考えられる
が、電池内部では電解液の分解を促進する70℃に達し
ている。この漏れ始めたガスは電池内の温度と同じ温度
であり、その後、熱暴走で急激に上昇する。測定例から
明らかなように、温度上昇は内圧上昇より大きく変化す
るため、安全弁が完全に動作する設定圧力(ここでは
0.2MPa)に達する前に100℃以上のガスが安全弁
を通過することになる。この結果、この高温の噴出ガス
で弁座8を加熱し溶融に至らせる。この結果、溶融して
拡大した噴出孔からは、従来の安全弁構造に比較して大
量のガスを放出することが可能となり、電池が内圧上昇
による爆発に至ることを防止できる。
FIG. 2 shows an example in which the relationship between battery internal pressure and temperature in an overcharge region of a battery provided with a normal safety valve is measured. As shown in this figure, when the electrolyte is decomposed by overcharging, the internal pressure gradually increases. In this measurement example, the overcharge ratio is about 155% (shown by a thin broken line in the figure) and the pressure rise gradient is earlier than that. Temporarily smaller. This is considered to indicate that the generated gas has begun to leak. At this time, the battery surface temperature is considered to be 50 ° C. and does not affect the battery, but has reached 70 ° C. inside the battery, which promotes decomposition of the electrolytic solution. The gas that has begun to leak has the same temperature as the temperature inside the battery, and then rapidly rises due to thermal runaway. As is clear from the measurement example, since the temperature rise changes more than the internal pressure rise, the gas of 100 ° C or more passes through the safety valve before reaching the set pressure (here, 0.2 MPa) at which the safety valve fully operates. Become. As a result, the valve seat 8 is heated and melted by the high-temperature blast gas. As a result, a larger amount of gas can be released from the melted and expanded orifice as compared with the conventional safety valve structure, and the battery can be prevented from exploding due to an increase in internal pressure.

【0012】図3に示す如く、本実施例の電池で、噴出
孔10の直径をd1、弁座8の外径をd2とし、各々の
面積をS1,S2とすると、この直径の比d2/d1に
対する拡大された流路断面積の比S2/S1は直径比の
2乗の割合で大きくなる。例えば、安全弁をd2/d1
=3で設計した場合、従来の安全弁の作動時より最大9
倍にガス放出流路を拡大可能であり、異常時において非
常に高いガス放出能力を持つことがわかる。
As shown in FIG. 3, in the battery of the present embodiment, if the diameter of the ejection hole 10 is d1, the outer diameter of the valve seat 8 is d2, and the areas of the two are S1 and S2, the ratio of this diameter is d2 /. The ratio S2 / S1 of the enlarged flow path cross-sectional area to d1 increases with the ratio of the square of the diameter ratio. For example, if the safety valve is d2 / d1
= 3, up to 9 more than the conventional safety valve
It can be seen that the gas discharge flow path can be doubled and has a very high gas discharge capacity in an abnormal condition.

【0013】図4には、形状記憶合金を用いて安全弁が
温度に反応する構造とした一実施例を示した。図は電池
蓋部の安全弁構造を拡大したものであり、弁体9を押さ
えるバネを従来の安全弁に使用されている通常の押さえ
バネ7と形状記憶合金によるバネ12を、図示のように
組み合わせた例を示した。ただし、形状記憶合金ばね1
2は上部が正極端子6に固定されている。
FIG. 4 shows an embodiment in which a safety valve is made to respond to temperature by using a shape memory alloy. The figure shows an enlarged view of the safety valve structure of the battery lid. The spring for holding the valve body 9 is a combination of a normal holding spring 7 used in a conventional safety valve and a spring 12 made of a shape memory alloy as shown in the figure. Examples have been given. However, shape memory alloy spring 1
The upper part 2 is fixed to the positive electrode terminal 6.

【0014】ここで使用した各ばねは図5に示すような
温度特性のものを使用することにより本発明の噴出ガス
流路拡大機能を実現する。すなわち、通常の押さえバネ
は、図示した温度範囲(60℃〜120℃)では温度の
影響はなく常に一定の圧縮力で弁体を弁座に押し付けて
いる。一方、これと組み合わせる形状記憶合金バネ12
は、90℃より温度が高くなると元の形状に戻ろうとし
て押さえばねの圧縮力を上回る引張力が発生する。この
ため、図4のような構造の安全弁が内圧上昇でガスが洩
れ始めて、噴出ガスの熱でバネの温度を上昇させると、
90℃以上になった時点で形状記憶合金バネ12が縮ん
で弁を開くように作用する。この状態では、内圧に関係
なく温度変化のみで安全弁を作動できるため、従来の内
圧だけによる弁体9の押し上げに加えて形状記憶合金バ
ネ12による弁体9の押し上げが追加されるため、従来
の安全弁に比較してガス漏れ開始後の弁の開度が大きく
なり、結果として弁座と弁体の間のガス流路断面積はよ
り拡大される。このため本発明により、電池の異常によ
る急激なガス発生がある場合でも、爆発に至ることを回
避できる。以上リチウム二次電池を例に説明したが、本
発明は、異常時に内圧上昇する電池に用いることができ
る。
Each of the springs used here has a temperature characteristic as shown in FIG. 5, thereby realizing the function of expanding the gas flow path of the present invention. That is, the normal pressing spring has no influence of the temperature in the illustrated temperature range (60 ° C. to 120 ° C.) and always presses the valve body against the valve seat with a constant compressive force. On the other hand, the shape memory alloy spring 12
When the temperature is higher than 90 ° C., a tensile force exceeding the compressive force of the presser spring is generated in an attempt to return to the original shape. For this reason, when the safety valve having the structure as shown in FIG. 4 starts to leak gas due to an increase in the internal pressure and raises the temperature of the spring by the heat of the ejected gas,
When the temperature reaches 90 ° C. or more, the shape memory alloy spring 12 contracts and acts to open the valve. In this state, the safety valve can be operated only by the temperature change regardless of the internal pressure. Therefore, in addition to the conventional push-up of the valve body 9 by only the internal pressure, the push-up of the valve body 9 by the shape memory alloy spring 12 is added. The opening degree of the valve after the start of gas leakage becomes larger than that of the safety valve, and as a result, the cross-sectional area of the gas flow path between the valve seat and the valve element is further increased. Therefore, according to the present invention, even when there is a sudden generation of gas due to an abnormality in the battery, it is possible to avoid an explosion. Although the lithium secondary battery has been described as an example, the present invention can be used for a battery whose internal pressure rises when an abnormality occurs.

【0015】[0015]

【発明の効果】本発明によれば、電池を破裂や爆発に至
ることなく安全に使用できる効果がある。
According to the present invention, there is an effect that the battery can be used safely without rupture or explosion.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例の電池構造を示す図。FIG. 1 is a diagram showing a battery structure according to one embodiment of the present invention.

【図2】過充電時の温度と圧力の測定例を示す図。FIG. 2 is a diagram showing a measurement example of temperature and pressure during overcharge.

【図3】流路断面積の増大効果を示す図。FIG. 3 is a diagram showing an effect of increasing a cross-sectional area of a flow channel.

【図4】本発明の一実施例の安全弁構造を示す図。FIG. 4 is a diagram showing a safety valve structure according to one embodiment of the present invention.

【図5】安全弁押さえばねの特性を示す図。FIG. 5 is a view showing characteristics of a safety valve holding spring.

【符号の説明】[Explanation of symbols]

1…正極、2…負極、3…電池缶、4…絶縁パッキン、
5…電池蓋、6…正極端子、7…押さえバネ、8…弁
座、9…弁体、10…噴出孔、12…形状記憶合金バ
ネ。
DESCRIPTION OF SYMBOLS 1 ... Positive electrode, 2 ... Negative electrode, 3 ... Battery can, 4 ... Insulating packing,
5: Battery cover, 6: Positive electrode terminal, 7: Pressing spring, 8: Valve seat, 9: Valve body, 10: Jet hole, 12: Shape memory alloy spring.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 安藤 ▲壽▼ 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 村中 廉 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 ──────────────────────────────────────────────────の Continuing on the front page (72) Inventor ▲ Toshi ▼ 7-1-1, Omika-cho, Hitachi City, Ibaraki Prefecture Inside the Hitachi Research Laboratory, Hitachi, Ltd. 7-1-1, Hitachi Research Laboratory, Hitachi Research Laboratory

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】電池の内圧を解放するための安全弁を備え
た電池において、安全弁の作動時に電池から出る噴出ガ
スと安全弁構成材料とが物理的または化学的に反応する
ことにより、安全弁作動後のガス噴出部の流路断面積を
拡大する機能を備えたことを特徴とする電池。
In a battery provided with a safety valve for releasing the internal pressure of the battery, the gas discharged from the battery when the safety valve is operated and the material constituting the safety valve physically or chemically react with each other, whereby the safety valve after the operation of the safety valve is operated. A battery having a function of enlarging a flow path cross-sectional area of a gas ejection part.
【請求項2】請求項1において、安全弁の作動時に噴出
するガスと安全弁のガス噴出部構成材料とが化学反応し
て消耗し、噴出ガスの流路断面積を拡大させることを特
徴とする電池。
2. A battery according to claim 1, wherein the gas ejected when the safety valve is operated and the material for forming the gas ejection portion of the safety valve are chemically reacted and consumed, thereby increasing the cross-sectional area of the passage of the ejected gas. .
【請求項3】請求項2において、ガス噴出部構成材料
を、テルル,セレン又は、ニッケル,コバルトなどの遷
移金属で構成したことを特徴とする電池。
3. The battery according to claim 2, wherein the material for forming the gas ejection portion is made of a transition metal such as tellurium, selenium, nickel, or cobalt.
【請求項4】請求項1において、安全弁の作動時に噴出
するガスの温度に反応して安全弁作動後のガス噴出部の
流路断面積を拡大させる機能を備えたことを特徴とする
電池。
4. The battery according to claim 1, further comprising a function of expanding a flow path cross-sectional area of the gas ejection portion after the safety valve is operated in response to a temperature of gas ejected when the safety valve is operated.
【請求項5】請求項2において、一酸化炭素または塩素
と反応して粉化消耗する材料を安全弁のガス噴出部に用
いたことを特徴とする電池。
5. The battery according to claim 2, wherein a material which is decomposed and consumed by reacting with carbon monoxide or chlorine is used for a gas ejection portion of the safety valve.
【請求項6】請求項4において、温度80℃から130
℃の温度範囲で変形する形状記憶合金を安全弁に用いた
ことを特徴とする電池。
6. The method according to claim 4, wherein the temperature is from 80 ° C. to 130 ° C.
A battery using a shape memory alloy which deforms in a temperature range of ° C. for a safety valve.
【請求項7】請求項4において、温度80℃から130
℃の温度範囲で溶融する低融点合金または熱可塑性プラ
スチックを安全弁のガス噴出部を構成する弁座または弁
体に用いたことを特徴とする二次電池。
7. The method according to claim 4, wherein the temperature is from 80 ° C. to 130 ° C.
A secondary battery characterized in that a low-melting alloy or a thermoplastic plastic that melts in a temperature range of ° C is used for a valve seat or a valve body constituting a gas ejection portion of a safety valve.
【請求項8】請求項4において、温度80℃から130
℃の温度で昇華する固体材料を安全弁のガス噴出部の弁
座又は弁体、あるいはその両者に用いたことを特徴とす
る電池。
8. The method according to claim 4, wherein the temperature ranges from 80 ° C. to 130 ° C.
A battery characterized in that a solid material that sublimates at a temperature of ° C. is used for a valve seat and / or a valve body of a gas ejection part of a safety valve, or both.
【請求項9】請求項1から8のいずれか記載の電池を使
用した電子機器又は電気駆動装置。
9. An electronic device or an electric driving device using the battery according to claim 1.
JP10046821A 1998-02-27 1998-02-27 Battery Pending JPH11250884A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10046821A JPH11250884A (en) 1998-02-27 1998-02-27 Battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10046821A JPH11250884A (en) 1998-02-27 1998-02-27 Battery

Publications (1)

Publication Number Publication Date
JPH11250884A true JPH11250884A (en) 1999-09-17

Family

ID=12758010

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10046821A Pending JPH11250884A (en) 1998-02-27 1998-02-27 Battery

Country Status (1)

Country Link
JP (1) JPH11250884A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003077348A1 (en) * 2002-03-08 2003-09-18 Yongming Ju A rechargeable lithium-ion power battery and manufacture method of the same
WO2014050110A1 (en) * 2012-09-26 2014-04-03 三洋電機株式会社 Sealed type battery
WO2015098066A1 (en) * 2013-12-27 2015-07-02 三洋電機株式会社 Battery case and battery
KR20190002992A (en) * 2017-06-30 2019-01-09 에스케이이노베이션 주식회사 Secondary cell
CN111611669A (en) * 2019-02-22 2020-09-01 清华大学 Battery safety improvement method and device, computer equipment and storage medium
US11088429B2 (en) * 2014-02-20 2021-08-10 Samsung Sdi Co., Ltd. Cap assembly and secondary battery including the same
CN115133217A (en) * 2022-05-27 2022-09-30 上海交通大学 Automobile battery active safety valve based on shape memory alloy circular ring and lithium battery

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003077348A1 (en) * 2002-03-08 2003-09-18 Yongming Ju A rechargeable lithium-ion power battery and manufacture method of the same
WO2014050110A1 (en) * 2012-09-26 2014-04-03 三洋電機株式会社 Sealed type battery
JPWO2014050110A1 (en) * 2012-09-26 2016-08-22 三洋電機株式会社 Sealed battery
US9831479B2 (en) 2012-09-26 2017-11-28 Sanyo Electric Co., Ltd. Sealed type battery
US10164228B2 (en) 2012-09-26 2018-12-25 Sanyo Electric Co., Ltd. Sealed type battery
WO2015098066A1 (en) * 2013-12-27 2015-07-02 三洋電機株式会社 Battery case and battery
US11088429B2 (en) * 2014-02-20 2021-08-10 Samsung Sdi Co., Ltd. Cap assembly and secondary battery including the same
KR20190002992A (en) * 2017-06-30 2019-01-09 에스케이이노베이션 주식회사 Secondary cell
CN111611669A (en) * 2019-02-22 2020-09-01 清华大学 Battery safety improvement method and device, computer equipment and storage medium
CN111611669B (en) * 2019-02-22 2024-01-23 清华大学 Battery safety improvement method, device, computer equipment and storage medium
CN115133217A (en) * 2022-05-27 2022-09-30 上海交通大学 Automobile battery active safety valve based on shape memory alloy circular ring and lithium battery

Similar Documents

Publication Publication Date Title
JP4297892B2 (en) Lithium ion secondary battery with safety vent
US20040170887A1 (en) Non-aqueous electrolytic secondary battery
US5609972A (en) Cell cap assembly having frangible tab disconnect mechanism
JP2000067840A (en) Safe vent hole for storage battery or battery
US10164228B2 (en) Sealed type battery
KR19980071780A (en) Lithium secondary battery having thermal switch
JP2006286624A (en) Cylindrical lithium ion secondary battery
KR20090026648A (en) Battery pack
JPH11144705A (en) Explosion-proof non aqueous electrolyte secondary battery and its breaking pressure setting method
US8338010B2 (en) Safety device for a sealed accumulator
JPH1140203A (en) Secondary battery
JPH10326610A (en) Non-aqueous electrolyte secondary battery
JPH117931A (en) Secondary battery
JPH0562664A (en) Explosion proof type nonaqueous secondary battery
JP2003051304A (en) Nonaqueous electrolyte secondary battery
JPH10214613A (en) Nonaqueous electrolyte secondary battery and assembled battery using the same
JPH07254401A (en) Sealed battery
JPH11250884A (en) Battery
KR101069163B1 (en) Lithium Secondary Battery Having Improved Stability against Fire and Explosion
JPH06290767A (en) Chemical battery with safety mechanism
JPH04328279A (en) Battery device having protecting element
KR100770110B1 (en) Cylinderical lithium rechargeable battery
JP2002141112A (en) Battery device
JP3038659B1 (en) Method and device for preventing explosion of secondary battery
JPH06349480A (en) Composite protective element and battery pack with composite protective element