JPH1140203A - Secondary battery - Google Patents

Secondary battery

Info

Publication number
JPH1140203A
JPH1140203A JP9187959A JP18795997A JPH1140203A JP H1140203 A JPH1140203 A JP H1140203A JP 9187959 A JP9187959 A JP 9187959A JP 18795997 A JP18795997 A JP 18795997A JP H1140203 A JPH1140203 A JP H1140203A
Authority
JP
Japan
Prior art keywords
battery
temperature
switch
contact
terminal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9187959A
Other languages
Japanese (ja)
Inventor
Morio Kobayashi
守夫 小林
Koichi Sato
耕一 佐藤
Toyokazu Okawa
豊和 大川
Michiko Sakairi
美千子 坂入
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP9187959A priority Critical patent/JPH1140203A/en
Publication of JPH1140203A publication Critical patent/JPH1140203A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To enhance safety of a battery of providing a safety device, in which a temperature switch or a pressure switch and a varistor element are connected in parallel between each of battery terminals, to prevent over charge and to bypass only a battery with an abnormal temperature rise. SOLUTION: A temperature switch 22 has a contact 22 a on both ends of a bimetal and is curved upward and separated from a positive electrode terminal contact 6a and a negative terminal contact 7a under a normal temperature to turn into an off condition. When a temperature of the temperature switch 22 rises higher than a preset temperature, 80 deg.C for an example, its curve is reversed abruptly and the contact 22a of the temperature switch 22 makes a contact with the negative terminal contacts 6a, 7a to make an on position. That is, when the temperature of a power generating element rises to an abnormal temperature, a short circuited occurs between the positive electrode terminal 6 and the negative electrode 7. A varistor element 26 is to protect the overcharge of a battery by setting a varistor temperature to a level not less than a charging end voltage.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電気自動車,電動
カート等の移動体機器,ビデオカメラ,パソコン等の携
帯機器,停電時のバックアップ機器、及びセキュリテイ
機器等の製品の電源として使われる二次電池の過充電や
内部短絡等の異常発熱,圧力上昇による発火や爆発を防
止し、異常電池を切り離しバイパスして使用する電池の
安全性に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a secondary device used as a power source for products such as mobile devices such as electric vehicles and electric carts, portable devices such as video cameras and personal computers, backup devices in the event of a power failure, and security devices. The present invention relates to the safety of a battery used to prevent abnormal heat generation such as overcharging of a battery or internal short-circuit or ignition or explosion due to pressure increase, and to disconnect and bypass an abnormal battery.

【0002】[0002]

【従来の技術】従来の異常温度となった電池の発電要素
を切り離してバイパスして使う電池の安全保護装置とし
ては、特開平6−290767 号公報に示されている通り、電
池反応部と正又は負の極端子と他の極端子を兼ねる電池
容器とを有する化学電池で、電池の異常反応時に発生す
るガス圧又は反応熱にて駆動する駆動部材により、電極
に接続され絶縁材を介して電池容器を密封している仕切
板と極端子間の導通を遮断し、極端子と電池容器間を短
絡する方法等が知られている。
2. Description of the Related Art As a conventional battery safety protection device which is used by separating and bypassing a power generation element of a battery at an abnormal temperature, as disclosed in Japanese Patent Application Laid-Open No. 6-290767, a battery reaction portion is provided. Or in a chemical battery having a negative electrode terminal and a battery container also serving as another electrode terminal, a driving member driven by gas pressure or reaction heat generated at the time of abnormal reaction of the battery, connected to the electrode via an insulating material There is known a method of interrupting conduction between a partition plate sealing a battery container and an electrode terminal, and short-circuiting the electrode terminal and the battery container.

【0003】また、過充電保護としては、特開平5−234
614 号公報に示されている通り、正極と負極および電解
液が密封された二次電池において、容器内の空隙部分に
温度スイッチ又は温度ヒューズが電池に対して直列に、
ツェナーダイオードが並列に電気的接続されたもの、お
よび、特開平5−325943 号公報に示されている通り、正
極と負極および電解液が密封された二次電池において、
容器内の空隙部分に2個直列の温度ヒューズが電池の正
極端子に直列に接続され、かつ2個の温度ヒューズの接
続点と電池の負極端子間にツェナーダイオードが接続さ
れたものがある。
[0003] As for overcharge protection, Japanese Patent Application Laid-Open No. 5-234 has been disclosed.
As shown in Japanese Patent Publication No. 614, in a secondary battery in which a positive electrode, a negative electrode, and an electrolyte are sealed, a temperature switch or a temperature fuse is provided in series with the battery in a void portion in the container.
In a secondary battery in which a Zener diode is electrically connected in parallel and a positive electrode, a negative electrode and an electrolyte are sealed as shown in JP-A-5-325943,
In some cases, two series thermal fuses are connected in series to the positive terminal of the battery in a gap portion in the container, and a Zener diode is connected between the connection point of the two thermal fuses and the negative terminal of the battery.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記特
開平6−290767 号公報のように、異常温度となった電極
を外部端子と電気的に遮断し正負極端子間を短絡してバ
イパスする方法には、次のような問題がある。単に電池
ケース内の異常温度となった発電要素を電気回路的に遮
断する方法では、外部短絡や過充電,過放電等の外部に
原因がある場合には効果があるが、異物混入,活物質脱
落,デンドライト析出等による発電要素自身の内部に原
因のある短絡に対しては、外部電気回路と遮断しても効
果はない。しかも、外部要因については電池と外部回路
を遮断すれば良いので保護手段は色々あるが、電池内の
短絡については発電要素自身内の正極と負極間で蓄電さ
れたエネルギーが電池内に放電されるので、保護する手
段がないのが現状である。
However, as disclosed in Japanese Patent Laid-Open No. 6-290767, a method of electrically disconnecting an electrode having an abnormal temperature from an external terminal and short-circuiting between a positive electrode terminal and a negative electrode terminal to bypass the electrode. Has the following problems. The method of simply shutting off the power generating element in the battery case at an abnormal temperature in an electric circuit is effective when there is an external cause such as an external short circuit, overcharging, or overdischarging. With respect to a short circuit caused inside the power generating element itself due to falling off, dendrite deposition, etc., there is no effect even if it is cut off from the external electric circuit. In addition, as for external factors, there is a variety of protection means since it is sufficient to shut off the battery and the external circuit, but for a short circuit in the battery, energy stored between the positive electrode and the negative electrode in the power generation element itself is discharged into the battery. Therefore, there is no means for protection at present.

【0005】また、上記特開平5−234614 号公報や特開
平5−325943 号公報のように電池ケース内が異常温度に
なった場合、温度スイッチや温度ヒューズにて発電要素
を電気的に遮断しても発電要素内の内部短絡に対しては
保護機能がないことは明らかである。また、過充電保護
回路であるツェナーダイオード,温度スイッチについて
も、電解液が充填された電池容器内に設置されており電
解液による腐食や電池作用時の電気化学による腐食から
防御する必要がある。つまり、耐電解液性の材料にてツ
ェナーダイオードや温度スイッチを密閉しなければなら
ない。
When the temperature inside the battery case becomes abnormal as disclosed in Japanese Patent Application Laid-Open Nos. 5-234614 and 5-325943, the power generating element is electrically cut off by a temperature switch or a thermal fuse. However, it is clear that there is no protection function against an internal short circuit in the power generating element. Also, the Zener diode and the temperature switch, which are overcharge protection circuits, are installed in the battery container filled with the electrolytic solution, and need to be protected from corrosion by the electrolytic solution and corrosion by the electrochemical action during the operation of the battery. That is, the Zener diode and the temperature switch must be sealed with an electrolyte-resistant material.

【0006】しかし、ツェナーダイオードや温度スイッ
チ等の部品は耐電解液の樹脂等で密閉可能であるが、各
電気部品と電極との接続部は密閉が難しい。しかもツェ
ナーダイオード,温度ヒューズ等の電気素子のリード線
は銅系金属であるのが一般的であり、また正極集電体は
電池の電気化学反応の関係からアルミニウム箔が使われ
ており、銅リード線とアルミニウム箔の溶接が難しい事
や電解液の中で異種金属を接続すると急速に腐食断線に
至るという問題がある。
However, components such as a Zener diode and a temperature switch can be sealed with an electrolyte-resistant resin or the like, but it is difficult to seal the connection between each electrical component and an electrode. In addition, the lead wires of electrical elements such as zener diodes and thermal fuses are generally made of copper-based metal, and the positive electrode current collector is made of aluminum foil due to the electrochemical reaction of the battery. There are problems that it is difficult to weld the wire and the aluminum foil, and that when a dissimilar metal is connected in the electrolytic solution, the wire rapidly breaks due to corrosion.

【0007】本発明は上記従来技術の問題点に鑑みてな
されたものであり、その目的とするところは、過充電を
防止し、複数個直列接続された二次電池の内、異常温度
上昇した電池の正負極端子間を短絡して蓄電エネルギー
を電池外に放出し、さらに異常電池のみをバイパスし、
電池の安全性の向上を図ると共に、使い勝手の良い二次
電池を提供することにある。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems of the prior art, and has as its object to prevent overcharging and increase an abnormal temperature among a plurality of secondary batteries connected in series. Short-circuiting the positive and negative terminals of the battery releases the stored energy out of the battery, and further bypasses only the abnormal battery.
An object of the present invention is to improve the safety of a battery and to provide a secondary battery that is easy to use.

【0008】[0008]

【課題を解決するための手段】本発明は上記目的を達成
するために、正極,負極およびセパレータを有する電極
群と電解液からなる発電要素を電池ケース内に収納し、
各電極をリード線で封口部材に貫通設置された各極端子
に接続し、前記封口部材で密閉された電解液を有する密
閉容器の外郭部にて、電池の各極端子間に温度スイッチ
または圧力スイッチおよびバリスタ素子を並列接続した
安全装置を設置したものである。
According to the present invention, in order to achieve the above object, a power generating element comprising an electrode group having a positive electrode, a negative electrode and a separator and an electrolyte is accommodated in a battery case.
Each electrode is connected with a lead terminal to each pole terminal penetrated through the sealing member, and a temperature switch or pressure is applied between each pole terminal of the battery at the outer part of the sealed container having the electrolyte sealed by the sealing member. A safety device in which a switch and a varistor element are connected in parallel is installed.

【0009】前記安全装置は、通常は正極端子,負極端
子間をオフとし、温度上昇時または圧力上昇時には正負
極端子間をオン状態となるようにしたので、異常温度と
なった電池ケース内部の発電要素の蓄電エネルギーが電
池外で消費されると共に、異常電池のみがバイパスされ
て使用されるものである。また、バリスタ素子のバリス
タ電圧を電池の充電終止電圧以上に設定することにより
電池の過充電保護ができるものである。
The safety device normally turns off the positive terminal and the negative terminal and turns on the positive and negative terminals when the temperature or the pressure rises. The stored energy of the power generating element is consumed outside the battery, and only the abnormal battery is used by bypass. Further, by setting the varistor voltage of the varistor element to be equal to or higher than the charge end voltage of the battery, overcharge protection of the battery can be performed.

【0010】[0010]

【発明の実施の形態】以下、本発明に係わる二次電池の
一実施例を、リチウムイオン二次電池を例にして図面を
参照しながら説明する。図1は、本発明の二次電池の一
実施例を示す構造縦断面図であり、図2は図1のA−A
断面図、図3は図2のB−B断面図である。同図におい
て、1は正極であり、アルミ箔からなる正極集電体1a
の両面に無機リチウムインターカレーション材料を正極
活物質とする正極合剤1b(例えば活物質としてLiM
24,LiCoO2 ,LiNiO2 等、導電剤として
カーボン、結着剤としてポリフッ化ビニリデンを混合調
整したもの)を保持させたものである。2は負極であ
り、銅箔からなる負極集電体2aの両面にリチウムイン
ターカレーションカーボン材料を負極活物質とする負極
合剤2b(例えば活物質として黒鉛,結着剤としてポリ
フッ化ビニリデンを混合調整したもの)を保持させたも
のである。3はセパレータであり、微多孔性のポリエチ
レンフィルム、またはポリプロピレンフィルムからな
る。なお、ポリエチレンフィルムは温度が上昇した時、
フィルム自身の溶融によって前記微多孔が閉じるシャッ
トダウン開始温度が約130℃であり、ポリプロピレン
フィルムのシャットダウン開始温度は約150℃であ
る。上記、正極1と負極2はセパレータ3を介して対向
した状態で渦巻き状に捲回され、電極群15を形成して
いる。この場合、セパレータ3は正極1,負極2よりも
若干幅広く巻かれており、さらに巻芯部および巻き終り
部において数回セパレータ3単独で巻かれており、正
極,負極間及び電極群周囲との絶縁性を持たせている。
この電極群15は電解液(図示せず)に浸漬されて発電
要素となる。上記電解液は、LiPF6 ,LiBF4
LiClO4 ,LiAsF6 等のリチウム塩を電解質と
して有機溶媒(プロピレンカーボネート,エチレンカー
ボネート,ジエチルカーボネート,ジメチルカーボネー
ト等の単独または混合物)に溶解したものが使われる。
10は電池ケースでステンレス鋼,ニッケルめっき鉄,
ニッケルめっき銅やアルミニウムが使われ、上記電極群
15と電解液からなる発電要素を有底円筒形の容器に収
納し、封口部材11を有する安全装置20を被せてガス
ケット19を介して電池ケース10の開口部に加締め密
封したものである。つまり、電極群15と電解液は封口
部材11により密封され、安全装置の各部品は電解液か
ら完全に隔離されるものである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of a secondary battery according to the present invention will be described below with reference to the drawings, taking a lithium ion secondary battery as an example. FIG. 1 is a structural vertical sectional view showing an embodiment of the secondary battery of the present invention, and FIG.
FIG. 3 is a cross-sectional view of FIG. In the figure, reference numeral 1 denotes a positive electrode, and a positive electrode current collector 1a made of aluminum foil
A positive electrode mixture 1b using an inorganic lithium intercalation material as a positive electrode active material (for example, LiM
n 2 O 4, LiCoO 2, LiNiO 2 or the like, carbon as a conductive agent, a mixture adjusted polyvinylidene fluoride as a binder) is obtained by holding the. Reference numeral 2 denotes a negative electrode, and a negative electrode mixture 2b (for example, a mixture of graphite as an active material and polyvinylidene fluoride as a binder) on both surfaces of a negative electrode current collector 2a formed of a copper foil and having a lithium intercalation carbon material as a negative electrode active material. Adjusted). Reference numeral 3 denotes a separator made of a microporous polyethylene film or polypropylene film. When the temperature of the polyethylene film rises,
The shutdown start temperature at which the microporous closes due to the melting of the film itself is about 130 ° C, and the shutdown start temperature of the polypropylene film is about 150 ° C. The positive electrode 1 and the negative electrode 2 are spirally wound in a state where they face each other with the separator 3 interposed therebetween, thereby forming an electrode group 15. In this case, the separator 3 is wound slightly wider than the positive electrode 1 and the negative electrode 2, and is further wound several times alone at the core portion and the end portion of the winding, so that the separator 3 can be wound between the positive electrode and the negative electrode and around the electrode group. Has insulation properties.
The electrode group 15 is immersed in an electrolytic solution (not shown) to become a power generating element. The electrolyte is LiPF 6 , LiBF 4 ,
A solution in which a lithium salt such as LiClO 4 or LiAsF 6 is dissolved as an electrolyte in an organic solvent (single or a mixture of propylene carbonate, ethylene carbonate, diethyl carbonate, dimethyl carbonate, etc.) is used.
10 is a battery case made of stainless steel, nickel-plated iron,
Nickel-plated copper or aluminum is used, and the power generating element composed of the electrode group 15 and the electrolytic solution is housed in a cylindrical container having a bottom. Is sealed by caulking in the opening of the first embodiment. That is, the electrode group 15 and the electrolyte are sealed by the sealing member 11, and each component of the safety device is completely isolated from the electrolyte.

【0011】封口部材11はステンレス,ニッケルめっ
き鉄,ニッケルめっき銅,アルミニウム等の熱伝導性の
良い金属材料からなる。また、電池ケース10内の封口
部材11側および容器底部10aには電池内充電部と電
池ケース10との電気絶縁性を保つために、絶縁板12
a,12bが設置されている。4はアルミニウム材の正
極リードであり、正極1の正極集電体1aとアルミニウ
ム材の正極端子6に溶接等により接続されている。5は
ニッケル又は銅材の負極リードであり、負極2の負極集
電体2aとニッケル又は銅材の負極端子7に溶接等によ
り接続されている。13は絶縁デスタントであり、電極
群15と封口部材11間に、正極リード4および負極リ
ード5を取りまとめて収納する空間を確保すると共に、
電極群15が電池ケース10内で移動しないように押さ
えている。
The sealing member 11 is made of a metal material having good heat conductivity, such as stainless steel, nickel-plated iron, nickel-plated copper, and aluminum. In addition, an insulating plate 12 is provided on the side of the sealing member 11 in the battery case 10 and the container bottom 10a in order to maintain electrical insulation between the battery charging section and the battery case 10.
a and 12b are installed. Reference numeral 4 denotes an aluminum material positive electrode lead, which is connected to the positive electrode current collector 1a of the positive electrode 1 and the aluminum material positive electrode terminal 6 by welding or the like. Reference numeral 5 denotes a nickel or copper negative electrode lead, which is connected to the negative electrode current collector 2a of the negative electrode 2 and a nickel or copper negative electrode terminal 7 by welding or the like. Numeral 13 denotes an insulating destant which secures a space between the electrode group 15 and the sealing member 11 for accommodating and storing the positive electrode lead 4 and the negative electrode lead 5 together.
The electrode group 15 is pressed so as not to move in the battery case 10.

【0012】正極端子6,負極端子7は、封口部材11
に、ガラスまたはプラスチック層を介在させて電気絶縁
をすると共に、密封性を持たせたハーメチックシール8
により貫通固定され、さらにスイッチケース21を貫通
しスイッチケース外に出た部分が外部との電気接続部と
なる。封口部材11に設けられた防爆穴11aは、切り
込み等の弱点部を有する金属板や薄膜金属板からなる防
爆弁9(図3)でシールされており、電池ケース10内
の圧力が異常温度上昇により高圧になった場合に開裂
し、電池ケース10の爆発を防止する。防爆弁9の部分
に位置するスイッチケース21の鍔部21aにもガス抜
き穴21bが開けられてガスが直接外部の大気中に放出
できるようにしてある。
The positive terminal 6 and the negative terminal 7 are connected to the sealing member 11.
A hermetic seal 8 which is electrically insulated with a glass or plastic layer interposed and has a sealing property.
, And the portion that penetrates through the switch case 21 and goes out of the switch case becomes an electrical connection with the outside. The explosion-proof hole 11a provided in the sealing member 11 is sealed with an explosion-proof valve 9 (FIG. 3) made of a metal plate or a thin-film metal plate having a weak point such as a cut, so that the pressure inside the battery case 10 rises abnormally. This causes the battery case 10 to break when it becomes high pressure, thereby preventing the battery case 10 from exploding. A gas vent hole 21b is also formed in the flange portion 21a of the switch case 21 located at the explosion-proof valve 9 so that gas can be directly discharged to the outside atmosphere.

【0013】防爆弁の設置場所としては、噴出ガスがス
イッチケース21のスイッチ内蔵密閉空間の外部に放出
される位置ならば、封口部材に限定されずどこでも良
い。防爆弁9の作動圧力としては、実使用時の電池ケー
ス内の圧力上昇限度と、電池ケース自身および加締め部
が先に破壊しない強度から決定され、10kg/cm2 〜2
0kg/cm2 が望ましい。安全装置20はプラスチック等
の絶縁材から成る鍔付き帽子形の端子ケース21とその
鍔部21a周辺を前記封口部材11の周辺部で包み込む
ように加締められて一体の密閉空間を形成し、その内部
に熱応動のバイメタル,形状記憶合金,熱可溶体金属等
からなる温度スイッチ22を内蔵している。
The location of the explosion-proof valve is not limited to the sealing member, but may be any location as long as the blast gas is discharged to the outside of the enclosed switch housing of the switch case 21. The operating pressure of the explosion-proof valve 9 is determined based on the pressure rise limit in the battery case during actual use and the strength at which the battery case itself and the crimped portion do not break first, and is 10 kg / cm 2 to 2 kg.
0 kg / cm 2 is desirable. The safety device 20 is swaged so as to wrap the periphery of the cap member 11 in the form of a hat-shaped terminal case 21 made of an insulating material such as plastic and the periphery of the flange portion 21a to form an integral sealed space. A temperature switch 22 made of a thermally responsive bimetal, a shape memory alloy, a heat fusible metal, or the like is built therein.

【0014】正極端子6および負極端子7はスイッチケ
ース21内の封口部材11面上でクランク状に曲がって
おり、その水平部には正極端子接点6aおよび負極端子
接点7aを有している。この正極端子接点6aと負極端
子接点7a間には温度スイッチ22がスプリング24を
介し支持棒23によりスイッチケース21の底部にネジ
込まれた後、ナット25により固定されている。支持棒
23のネジ込み量を調整することにより温度スイッチ2
2の位置が調整でき、バイメタルの接点の接触圧力を適
正にすることができる。
The positive terminal 6 and the negative terminal 7 are bent in a crank shape on the surface of the sealing member 11 in the switch case 21, and have a positive terminal contact 6a and a negative terminal contact 7a in a horizontal portion thereof. Between the positive terminal contact 6a and the negative terminal contact 7a, a temperature switch 22 is screwed into the bottom of the switch case 21 by a support rod 23 via a spring 24, and then fixed by a nut 25. By adjusting the screwing amount of the support rod 23, the temperature switch 2
2 can be adjusted, and the contact pressure of the bimetal contact can be made appropriate.

【0015】温度スイッチ22はバイメタル両端に接点
22aを有する両接点バイメタルであり、通常温度では
上側に湾曲して正極端子接点6aと負極端子接点7aか
ら離れオフ状態となり、温度スイッチ22が設定温度以
上に上昇すると下側に急激に反転湾曲して正極端子接点
6aと負極端子接点7aに温度スイッチの接点22aが
接触しオン状態になる。つまり、発電要素が温度上昇に
より異常温度になると正極端子と負極端子間が温度スイ
ッチにより短絡するものである。
The temperature switch 22 is a double-contact bimetal having contacts 22a at both ends of the bimetal. At a normal temperature, the temperature switch 22 is bent upward and separated from the positive terminal contact 6a and the negative terminal contact 7a to be in an off state. When it rises, the temperature switch contact 22a comes into contact with the positive terminal contact 6a and the negative terminal contact 7a and turns on. In other words, when the temperature of the power generating element becomes abnormal due to a rise in temperature, the positive electrode terminal and the negative electrode terminal are short-circuited by the temperature switch.

【0016】スプリング24は、温度スイッチ22を支
持棒23の端部に押えるのと、温度スイッチ22が反転
動作する時のバイメタル板の振動を吸収して接点のチャ
タリングを防止する。26はバリスタ素子であり、スイ
ッチケース21内でバリスタ素子26の一方の端子が正
極端子6に、他方の端子が負極端子7に溶接等により接
続されている。バリスタ素子26は酸化亜鉛を主成分と
し、数種の添加物を混合焼成したセラミックス半導体で
あり、素子の両極間に正又は負の電圧を印加し、徐々に
電圧を上げてバリスタ電圧に達すると、この電圧を保っ
た電流を流す働きがある。
The spring 24 presses the temperature switch 22 against the end of the support rod 23 and absorbs the vibration of the bimetal plate when the temperature switch 22 performs the reversing operation to prevent chattering of the contacts. Reference numeral 26 denotes a varistor element. In the switch case 21, one terminal of the varistor element 26 is connected to the positive terminal 6 and the other terminal is connected to the negative terminal 7 by welding or the like. The varistor element 26 is a ceramic semiconductor containing zinc oxide as a main component and mixed and fired with several kinds of additives. When a positive or negative voltage is applied between both electrodes of the element, the voltage is gradually increased to reach the varistor voltage. It has the function of flowing a current maintaining this voltage.

【0017】図4は安全装置20の他の実施例を示す断
面図である。同図においては、温度スイッチの代わりに
駆動源が圧力の圧力スイッチが採用されており、他の構
成は図1から図3の一実施例と同じものである。27は
ベローズやダイヤフラム等の圧力により伸縮する圧力可
動体であり、封口部材11の開口穴11bを塞ぐように
半田付けや溶接等によりスイッチケース21側に取り付
けられている。28はスイッチ片であり両端に接点28
aを有し、正極端子6と負極端子7の各接点6a,7a
に対向している。スイッチ片28は絶縁材の押棒29と
制動バネ30に挟まれて圧力可動体27とスイッチケー
ス21の底部間に移動可能に設置されている。
FIG. 4 is a sectional view showing another embodiment of the safety device 20. As shown in FIG. In this figure, a pressure switch whose driving source is pressure is used instead of the temperature switch, and the other structure is the same as that of the embodiment shown in FIGS. Reference numeral 27 denotes a pressure movable body that expands and contracts due to pressure of a bellows, a diaphragm, or the like, and is attached to the switch case 21 by soldering, welding, or the like so as to close the opening hole 11b of the sealing member 11. Reference numeral 28 denotes a switch piece and a contact 28 at each end.
a, and each contact 6a, 7a of the positive terminal 6 and the negative terminal 7
Facing. The switch piece 28 is movably disposed between the pressure movable body 27 and the bottom of the switch case 21 sandwiched between an insulating push rod 29 and a braking spring 30.

【0018】スイッチ片28の接点28aは、通常の低
圧時は圧力可動体27の膨張力よりも制動バネ30の力
が大きく、正極端子接点6a,負極端子接点7aから離
れた位置にあり、設定圧力以上に上昇すると圧力可動体
27の膨張力が制動バネ30の力に勝ち、スイッチ片2
8を押し上げ接点28aは正極端子接点6a,負極端子
接点7aに押し付けられ両極端子間を短絡する。つま
り、前記一実施例では直接温度上昇により正極端子と負
極端子間が短絡したが、この実施例では温度上昇により
二次的に電池内の圧力が上昇または電解液の分解ガス発
生による圧力上昇により、正極端子と負極端子間が短絡
するものである。
The contact 28a of the switch piece 28 is located at a position far from the positive terminal contact 6a and the negative terminal contact 7a because the force of the braking spring 30 is greater than the expansion force of the pressure movable body 27 at normal low pressure. When the pressure rises above the pressure, the expansion force of the pressure movable body 27 overcomes the force of the braking spring 30, and the switch piece 2
8, the contact 28a is pressed against the positive terminal contact 6a and the negative terminal contact 7a, and short-circuits between the two terminals. That is, in the above-described embodiment, the positive electrode terminal and the negative electrode terminal were short-circuited due to the direct temperature rise. However, in this embodiment, the pressure inside the battery increased secondary to the temperature rise or the pressure rise due to the generation of decomposition gas of the electrolyte. In addition, a short circuit occurs between the positive terminal and the negative terminal.

【0019】図5は本発明の二次電池を複数個直列接続
して使用する場合の電気回路ブロック図である。同図で
はn個の単電池(40a〜40n)を直列接続した組電
池41を示し、組電池41の出力端子XYはヒューズ4
2,メインスイッチ43を介して制御回路44,負荷4
5と接続されている。46は組電池41に流れる電流を
検出する電流センサであり、また、47は組電池の温度
を検出する温度センサで、それぞれ制御回路44に入力
される。48は電流センサ46または温度センサ47が
異常電流や異常温度を感知した場合に制御回路44から
出される出力信号であり、メインスイッチ43を切る働
きをする。この回路で単電池の電圧をE(V)とする
と、組電池の出力端子X−Y間の電圧はn×E(V)と
なる。aは発電要素の正極に接続された正極端子6、b
は発電要素の負極に接続された負極端子7を表してい
る。通常は端子abはオフ状態であり、温度上昇又は圧
力上昇により電池が異常となるとオン状態に切り替わ
る。VTは各単電池の正負極端子間に接続されたバリス
タ素子26を表している。
FIG. 5 is an electric circuit block diagram when a plurality of secondary batteries of the present invention are connected in series and used. The figure shows an assembled battery 41 in which n cells (40a to 40n) are connected in series, and the output terminal XY of the assembled battery 41 is a fuse 4
2, control circuit 44 and load 4 via main switch 43
5 is connected. Reference numeral 46 denotes a current sensor for detecting a current flowing through the battery pack 41, and reference numeral 47 denotes a temperature sensor for detecting a temperature of the battery pack, which is input to the control circuit 44, respectively. Reference numeral 48 denotes an output signal output from the control circuit 44 when the current sensor 46 or the temperature sensor 47 detects an abnormal current or abnormal temperature, and serves to turn off the main switch 43. Assuming that the voltage of the unit cell is E (V) in this circuit, the voltage between the output terminals X and Y of the assembled battery is n × E (V). a is a positive electrode terminal 6 connected to the positive electrode of the power generating element, b
Denotes a negative electrode terminal 7 connected to the negative electrode of the power generating element. Normally, the terminal ab is in the off state, and switches to the on state when the battery becomes abnormal due to a rise in temperature or pressure. VT represents a varistor element 26 connected between the positive and negative terminals of each cell.

【0020】次に、本発明による二次電池の組み立て方
法について説明する。先ず、正極1および負極2にそれ
ぞれ正極リード4,負極リード5をスポット溶接または
超音波溶接により取り付けておく。このとき、電池容量
の大きさにより取り付けるリードの数は増減される。上
記正極1,負極2をセパレータ3を介して捲回し、巻終
わり部はテープ等で止めて電極群15を作る。有底円筒
形容器の底部10a側から絶縁板12b,電極群15,
絶縁デスタント13の順に入れ、正極リード4,負極リ
ード5をそれぞれ束ねて纏めておく。一方、安全装置2
0はスイッチケース21内にバリスタ素子26および温
度スイッチ機構または圧力スイッチ機構を組み込み、封
口部材11で蓋をして密閉一体構造としておく。
Next, a method of assembling a secondary battery according to the present invention will be described. First, the positive electrode lead 4 and the negative electrode lead 5 are attached to the positive electrode 1 and the negative electrode 2, respectively, by spot welding or ultrasonic welding. At this time, the number of leads to be attached is increased or decreased depending on the size of the battery capacity. The positive electrode 1 and the negative electrode 2 are wound with the separator 3 interposed therebetween, and the end of the winding is stopped with a tape or the like to form an electrode group 15. From the bottom 10a side of the bottomed cylindrical container, an insulating plate 12b, an electrode group 15,
The positive electrode lead 4 and the negative electrode lead 5 are bundled and put together in the order of the insulating detent 13. On the other hand, safety device 2
Numeral 0 incorporates a varistor element 26 and a temperature switch mechanism or a pressure switch mechanism in a switch case 21 and is covered with a sealing member 11 to form a hermetically sealed structure.

【0021】次に、絶縁板12aを安全装置20の封口
部材11側に重ね合わせ、正極リード4,負極リード5
を封口部材11の正極端子6,負極端子7に溶接する。
次に電池ケース10の開口部付近にネッキング成形して
から電解液を注入し、安全装置20をガスケット19を
介して加締めにより密封して完成する。このように、安
全装置20を備えた二次電池を従来の組立工程と変わり
なく組立てられるので作業性が良い。
Next, the insulating plate 12a is overlaid on the sealing member 11 side of the safety device 20, and the positive electrode lead 4, the negative electrode lead 5
Is welded to the positive terminal 6 and the negative terminal 7 of the sealing member 11.
Next, necking is formed near the opening of the battery case 10, and then an electrolytic solution is injected, and the safety device 20 is sealed by caulking via a gasket 19 to complete the safety device 20. As described above, the secondary battery provided with the safety device 20 can be assembled without changing the conventional assembly process, so that the workability is good.

【0022】次に、本発明による二次電池の作用につい
て説明する。電池は充電回路の故障により充電終止電圧
以上に過充電されると、リチウムインターカレーション
としての電池反応以外の電解液を分解する化学反応を起
こし、電池を劣化させると共に電池の圧力を上昇させ
る。さらに、過充電が進んだり急速充電されると、負極
にデントライト反応によりリチウム金属が析出し、セパ
レータ3を突き破り、正・負極間短絡を起こし、短絡電
流が流れて異常温度になる。また、通常の電池の使用温
度範囲を越えた高温での使用や、誤使用による外部短
絡、何らかの原因による電池内の内部短絡によっても、
電池は発熱し異常温度となる。二次電池の温度が上昇す
ると、正極1,負極2間にあるセパレータ3のフィルム
が130℃〜150℃で溶融し、フィルムの微多孔が閉
じて正負電極間のリチウムイオンの移動を停止させるシ
ャットダウン効果により電流を遮断する働きがある。
Next, the operation of the secondary battery according to the present invention will be described. When a battery is overcharged to a voltage equal to or higher than a charge termination voltage due to a failure in a charging circuit, a chemical reaction other than the battery reaction as lithium intercalation is performed to decompose an electrolytic solution, thereby deteriorating the battery and increasing the pressure of the battery. Further, when overcharging proceeds or is rapidly charged, lithium metal precipitates on the negative electrode due to a dentite reaction, breaks through the separator 3, causes a short circuit between the positive electrode and the negative electrode, and causes a short-circuit current to flow to an abnormal temperature. Also, use at high temperature beyond the normal battery operating temperature range, external short circuit due to misuse, internal short circuit inside the battery for some reason,
The battery generates heat and reaches an abnormal temperature. When the temperature of the secondary battery rises, the film of the separator 3 between the positive electrode 1 and the negative electrode 2 melts at 130 ° C. to 150 ° C., and the micropores of the film close to shut down the movement of lithium ions between the positive and negative electrodes. There is a function to cut off the current by the effect.

【0023】しかしながら、セパレータの材料であるポ
リエチレンフィルムやポリプロピレンフィルムは、更な
る温度上昇により溶融収縮し、正負電極間の絶縁性が確
保出来ずに、電極間短絡に至ってしまう場合がある。電
池内温度が150℃を越えると、電極に使われている正
極活物質が熱暴走を起こし、発煙・発火・爆発に至る危
険な温度領域となる。つまり、正極活物質であるLiM
24,LiCoO2,LiNiO2 等の結晶格子からの酸素
脱離反応により急激な発熱を伴ない熱暴走状態になる。
酸素脱離開始温度は活物質の種類や各元素の構成比,充
電状態により異なるが150℃〜400℃の範囲にあ
る。
However, a polyethylene film or a polypropylene film, which is a material of the separator, may melt and shrink due to a further rise in temperature, and may not be able to secure insulation between the positive and negative electrodes, resulting in a short circuit between the electrodes. When the temperature inside the battery exceeds 150 ° C., the positive electrode active material used for the electrode causes a thermal runaway, which is a dangerous temperature range where smoke, ignition, and explosion occur. In other words, LiM which is a positive electrode active material
A thermal runaway state occurs with rapid heat generation due to an oxygen elimination reaction from a crystal lattice of n 2 O 4 , LiCoO 2 , LiNiO 2 or the like.
The oxygen desorption starting temperature varies depending on the type of active material, the composition ratio of each element, and the state of charge, but is in the range of 150 ° C to 400 ° C.

【0024】ここで、電池が何らかの原因により異常温
度上昇し、電池内の電解液が分解してガス発生、および
電解液と正極,負極の活物質が化学反応を起こしてガス
発生し、電池ケース内の圧力が上昇した場合を考えてみ
る。電池の異常温度上昇は熱伝導の良い封口部材11を
通して安全装置20の温度スイッチ22の温度を上昇さ
せ、バイメタルを反転して正極端子6と負極端子7が発
電要素を接続したまま短絡される。または、電池の異常
温度により電解液がガス化して電池ケース10内の圧力
が上昇すると、圧力可動体27が膨張し、スイッチ片2
8を押し上げて正極端子6と負極端子7が発電要素を接
続したまま短絡される。つまり、図5の異常単電池のa
−b間が短絡される。
Here, the battery abnormally rises in temperature for some reason, the electrolytic solution in the battery decomposes and gas is generated, and the electrolytic solution and the active material of the positive electrode and the negative electrode generate a gas to generate gas. Consider the case where the pressure inside rises. The abnormal temperature rise of the battery raises the temperature of the temperature switch 22 of the safety device 20 through the sealing member 11 having good heat conduction, inverts the bimetal, and the positive electrode terminal 6 and the negative electrode terminal 7 are short-circuited while the power generating element is connected. Alternatively, when the electrolyte gasifies due to the abnormal temperature of the battery and the pressure in the battery case 10 increases, the pressure movable body 27 expands and the switch piece 2
8, the positive electrode terminal 6 and the negative electrode terminal 7 are short-circuited while the power generating element is connected. That is, a of the abnormal unit cell in FIG.
-B is short-circuited.

【0025】従って、異常単電池の電極間が短絡される
と共に、異常単電池が切り離されてバイパスされた直列
回路が形成され、出力電圧は(n−1)×E(V)で運
転を継続する。この時、内部短絡が原因で電池が温度上
昇した場合、密封された発電要素の蓄電エネルギーを電
池内部の正極・負極間に放電すると同時に温度スイッチ
または圧力スイッチを通して電池ケース10外にも放電
するので電池内の温度上昇が抑えられる効果がある。
Accordingly, the electrodes of the abnormal unit cell are short-circuited, and the abnormal unit cell is cut off to form a bypassed series circuit, and the output voltage is continued at (n-1) × E (V). I do. At this time, when the temperature of the battery rises due to an internal short circuit, the stored energy of the sealed power generation element is discharged between the positive electrode and the negative electrode inside the battery and simultaneously discharged outside the battery case 10 through the temperature switch or the pressure switch. This has the effect of suppressing the temperature rise in the battery.

【0026】つまり、本来の内部短絡の場合は蓄電エネ
ルギーが電池内で供給と消費を完結していたが、本案に
よれば蓄電エネルギーの消費の一部が電池外で行われる
ので、電池内の温度上昇が軽減され、最悪の爆発に至る
危険温度状態になるのを低減できるものである。充電エ
ネルギーを放電すると爆発に対して安全であることは、
充電量を変えた電池でのバーナー燃焼試験の結果でも確
認されている。つまり、電池を加熱した場合、充電量が
少ない電池は全く爆発が生じなかったが、充電量を増し
ていくと爆発が発生し、爆発力は充電量が大きいほど大
きく、また爆発発生温度も低くなった。また、外部短絡
が原因で電池が温度上昇した場合は、制御回路の電流セ
ンサ46や温度センサ47の感知により、出力信号48
が発せられてメインスイッチ43がオフし、組電池41
および負荷45を保護する。
That is, in the case of an internal short circuit, the stored energy completes the supply and consumption in the battery. However, according to the present invention, a part of the stored energy is consumed outside the battery, so The temperature rise is reduced, and it is possible to reduce the danger of a dangerous explosive temperature condition. It is safe to explode when discharging the charging energy,
It has also been confirmed in the results of burner combustion tests on batteries with different amounts of charge. In other words, when the battery was heated, the battery with a small charge did not explode at all, but when the charge was increased, an explosion occurred, and the explosive power increased as the charge increased and the explosion temperature decreased. became. When the temperature of the battery rises due to an external short circuit, the output signal 48 is sensed by the current sensor 46 and the temperature sensor 47 of the control circuit.
Is issued, the main switch 43 is turned off, and the battery pack 41 is turned off.
And the load 45 is protected.

【0027】さらに、制御回路44が故障し過電流が流
れた場合には、ヒューズ42が溶断し二重に保護する。
さらに電池内の圧力が上昇して10kg/cm2 〜20kg/
cm2になると、防爆弁9が開裂しガスを電池ケース外に
放出して、電池の爆発力を軽減する。この時、高温ガス
は温度スイッチまたは圧力スイッチのある密閉空間外の
ガス抜き穴21bから放出されるので、スイッチを腐食
させたり、電解液の高温ガスに着火したりすることがな
い。温度スイッチ22の作動温度としては電池の実用温
度を阻害しない範囲と電池の劣化が加速される温度以上
およびセパレータの溶融温度以下との関係から80℃〜
130℃が、また、復帰温度は−20℃以下が望まし
い。
Further, when the control circuit 44 fails and an overcurrent flows, the fuse 42 is blown and double protected.
In addition, the pressure inside the battery rises to 10 kg / cm 2 to 20 kg /
When the pressure reaches cm 2 , the explosion-proof valve 9 ruptures and discharges gas out of the battery case to reduce the explosive power of the battery. At this time, the high-temperature gas is released from the gas vent hole 21b outside the closed space having the temperature switch or the pressure switch, so that the switch does not corrode or the high-temperature gas of the electrolyte does not ignite. The operation temperature of the temperature switch 22 is set to 80 ° C.
130 ° C., and the return temperature is preferably −20 ° C. or less.

【0028】こうすることにより、1度作動すると実用
温度範囲では強制的に冷却しない限り非復帰となり、安
全性が向上する。また、外部短絡時の温度スイッチ22
の作動温度は制御回路44による作動より高く設定する
必要がある。つまり、外部短絡時の異常温度上昇により
制御回路44より温度スイッチ22が先に作動した場合
は、正負極端子間が短絡するので電力が負荷に供給され
ないので負荷は保護される。しかし電池自身は蓄電エネ
ルギーを放電し尽くすまで外部短絡状態が継続されたの
と同じであり、電池自身の温度上昇は元のまま継続され
るからである。
By doing so, once the device is operated, it will not recover unless it is forcibly cooled in a practical temperature range, and safety will be improved. In addition, the temperature switch 22 when an external short circuit occurs
Need to be set higher than the operation temperature of the control circuit 44. That is, when the temperature switch 22 is operated earlier than the control circuit 44 due to the abnormal temperature rise due to the external short circuit, the load is protected because power is not supplied to the load because the positive and negative terminals are short-circuited. However, this is because the external short-circuit state is continued until the battery itself discharges the stored energy, and the temperature rise of the battery itself is continued as it is.

【0029】一方、圧力スイッチの作動値は防爆弁の作
動値より低く設定され、電池内圧が3kg/cm2 以上で圧
力スイッチを先に作動させ、電池内の蓄電エネルギーを
減少させて、電池内の温度上昇および圧力上昇を減少さ
せる効果を発揮させた後に、10kg/cm2 〜20kg/cm
2 での防爆弁の破裂を安全に導くことが望ましい。
On the other hand, the operation value of the pressure switch is set lower than the operation value of the explosion-proof valve. When the internal pressure of the battery is 3 kg / cm 2 or more, the pressure switch is operated first to reduce the stored energy in the battery, 10 kg / cm 2 to 20 kg / cm 2 after exerting the effect of reducing the temperature rise and pressure rise
It is desirable to safely guide the explosion-proof valve rupture in 2 .

【0030】次に、充電回路が故障して単電池の電極間
電圧が例えば充電終止電圧の4.2Vになっても充電が
止まらない場合を考えてみる。バリスタ素子26のバリ
スタ電圧を充電終止電圧以上でこれよりも僅かに高い
4.3V に設定しておけば、単電池電圧が4.3Vまで
過充電されるとバリスタ素子はバリスタ電圧の4.3V
を保持したまま電流を流し、単電池への4.3V 以上の
充電を防止できる。一般的にリチウムイオン二次電池の
場合、充電終止電圧以上に過充電されると電池の異常温
度上昇やガス発生による圧力上昇が生じ、5V以上とな
ると発火・爆発等の危険状態になる。
Next, let us consider a case where charging does not stop even if the charging circuit breaks down and the voltage between the electrodes of the unit cell becomes, for example, 4.2 V, which is the charging end voltage. If the varistor voltage of the varistor element 26 is set to 4.3 V which is higher than the charging end voltage and slightly higher than this, when the cell voltage is overcharged to 4.3 V, the varistor element will have a varistor voltage of 4.3 V.
Current is supplied while the voltage is maintained, and the charging of the cell to 4.3 V or more can be prevented. In general, in the case of a lithium ion secondary battery, if the battery is overcharged at a charge end voltage or higher, an abnormal temperature rise of the battery or a pressure rise due to gas generation occurs.

【0031】[0031]

【発明の効果】以上説明したように、本発明では、正
極,負極および電解液からなる発電要素を電池ケース内
に収納し、各電極端子間を短絡できる熱応動の温度スイ
ッチまたは圧力駆動による圧力スイッチおよびバリスタ
素子を正負極端子間に並列接続した安全装置により電池
ケースの開口部を密封したものであり、前記安全装置
は、通常は正負極端子間がオープン状態となり、電池の
温度上昇時および圧力上昇時は正負極端子間が温度スイ
ッチおよび圧力スイッチを通して導通状態となるように
した。したがって、複数個の単電池が直列接続されて使
用される組電池の場合、ある単電池が異常温度上昇する
と異常電池の正負極端子間が短絡されてバイパスし、残
りの正常電池は継続使用できるので使い勝手が良い。
As described above, according to the present invention, a power generating element comprising a positive electrode, a negative electrode and an electrolyte is housed in a battery case, and a heat-responsive temperature switch capable of short-circuiting between electrode terminals or a pressure-driven pressure switch. The opening of the battery case is sealed by a safety device in which a switch and a varistor element are connected in parallel between the positive and negative terminals, and the safety device is usually in an open state between the positive and negative terminals, when the temperature of the battery rises and At the time of pressure rise, the connection between the positive and negative terminals was made conductive through a temperature switch and a pressure switch. Therefore, in the case of an assembled battery in which a plurality of cells are used in series, when a certain cell rises in abnormal temperature, the positive and negative terminals of the abnormal battery are short-circuited and bypassed, and the remaining normal cells can be continuously used. So easy to use.

【0032】また、内部短絡による異常温度上昇にも発
電要素の蓄電エネルギーが安全装置のスイッチを通して
短絡し、電池ケース外にエネルギー放出が行われるので
電池内の異常温度上昇が抑えられ、安全性が向上する。
また、安全装置の受熱板となる封口部材は熱伝導の良い
一枚の金属板であるので、電池内部の熱変化に対して熱
応答性が良く、電池ケース封口部の密閉信頼性が高い。
In addition, even when an abnormal temperature rise occurs due to an internal short circuit, the stored energy of the power generating element is short-circuited through the switch of the safety device, and the energy is released to the outside of the battery case. improves.
In addition, since the sealing member serving as the heat receiving plate of the safety device is a single metal plate having good heat conductivity, it has good thermal response to a change in heat inside the battery, and the sealing reliability of the battery case sealing portion is high.

【0033】さらに、安全装置内のスイッチによる接点
切り換え回路がスイッチケース21と封口部材11でイ
ンクローズされており、かつ、防爆弁がバイメタルスイ
ッチのある密閉空間外にあるので、ゴミやガス等が入る
恐れがなく接点の接触不良が少なく、接点のアークによ
り噴出した可燃性電解液の高温ガスに着火の恐れもな
い。また安全装置に内蔵されたバリスタ素子の電圧電流
特性により、単電池の過充電を防止できる二次電池を提
供することができる。
Further, since the contact switching circuit by the switch in the safety device is closed by the switch case 21 and the sealing member 11 and the explosion-proof valve is outside the closed space where the bimetal switch is provided, dust and gas are removed. There is no danger of contact, there is little contact failure of the contacts, and there is no danger of igniting the high-temperature gas of the flammable electrolyte ejected by the arc of the contacts. Further, it is possible to provide a secondary battery capable of preventing overcharge of a single battery by the voltage-current characteristics of a varistor element incorporated in the safety device.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の二次電池の一実施例を示す構造断面図
である。
FIG. 1 is a structural sectional view showing one embodiment of a secondary battery of the present invention.

【図2】図1のA−A断面図である。FIG. 2 is a sectional view taken along line AA of FIG.

【図3】図2のB−B断面図である。FIG. 3 is a sectional view taken along line BB of FIG. 2;

【図4】本発明の二次電池の安全装置の他の実施例を示
す構造断面図である。
FIG. 4 is a structural sectional view showing another embodiment of the safety device for a secondary battery of the present invention.

【図5】本発明の二次電池を直列接続して使用した電気
回路ブロック図である。
FIG. 5 is an electric circuit block diagram using the secondary batteries of the present invention connected in series.

【符号の説明】[Explanation of symbols]

1…正極、1a…正極集電体、1b…正極合剤、2…負
極、2a…負極集電体、2b…負極合剤、3…セパレー
タ、4…正極リード、5…負極リード、6…正極端子、
6a…正極端子の接点、7…負極端子、7a…負極端子
の接点、8…ハーメチックシール、9…防爆弁、10…
電池ケース、10a…容器底部、11…封口部材、11
a…防爆穴、11b…開口穴、12a,12b…絶縁
板、13…絶縁デスタント、15…電極群、19…ガス
ケット、20…安全装置、21…スイッチケース、21
a…鍔部、21b…ガス抜き穴、22…温度スイッチ、
22a…温度スイッチの接点、23…支持棒、24…スプ
リング、25…ナット、26…バリスタ素子、27…圧
力可動体、28…スイッチ片、28a…スイッチ片の接
点、29…押棒、30…制動バネ、40a,40b,4
0n…単電池、41…組電池、42…ヒューズ、43…
メインスイッチ、44…制御回路、45…負荷、46…
電流センサ、47…温度センサ、48…出力信号。
DESCRIPTION OF SYMBOLS 1 ... Positive electrode, 1a ... Positive electrode collector, 1b ... Positive electrode mixture, 2 ... Negative electrode, 2a ... Negative electrode collector, 2b ... Negative electrode mixture, 3 ... Separator, 4 ... Positive electrode lead, 5 ... Negative electrode lead, 6 ... Positive terminal,
6a: contact of positive terminal, 7: negative terminal, 7a: contact of negative terminal, 8: hermetic seal, 9: explosion-proof valve, 10 ...
Battery case, 10a: bottom of container, 11: sealing member, 11
a: Explosion-proof hole, 11b: Opening hole, 12a, 12b: Insulating plate, 13: Insulated distant, 15: Electrode group, 19: Gasket, 20: Safety device, 21: Switch case, 21
a: flange, 21b: vent hole, 22: temperature switch,
22a: temperature switch contact, 23: support rod, 24: spring, 25: nut, 26: varistor element, 27: pressure movable body, 28: switch piece, 28a: switch piece contact, 29: push rod, 30: braking Spring, 40a, 40b, 4
0n: single cell, 41: assembled battery, 42: fuse, 43 ...
Main switch, 44: control circuit, 45: load, 46:
Current sensor, 47: temperature sensor, 48: output signal.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 坂入 美千子 栃木県下都賀郡大平町大字富田800番地 株式会社日立製作所冷熱事業部内 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Michiko Sakairi 800, Tomita, Ohira-cho, Shimotsuga-gun, Tochigi Pref.Hitachi, Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】電池の温度が80℃以上または電池内圧が
3kg/cm2 以上で電池の正極端子,負極端子間を短絡さ
せるスイッチを設けると共に電池内圧が10kg/cm2
20kg/cm2 で開放する防爆弁をスイッチケース外に設
けたことを特徴とする二次電池。
1. A switch for short-circuiting between a positive electrode terminal and a negative electrode terminal of a battery when the temperature of the battery is 80 ° C. or more or the internal pressure of the battery is 3 kg / cm 2 or more, and the internal pressure of the battery is 10 kg / cm 2 or more.
An explosion-proof valve that opens at 20 kg / cm 2 is provided outside the switch case.
JP9187959A 1997-07-14 1997-07-14 Secondary battery Pending JPH1140203A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9187959A JPH1140203A (en) 1997-07-14 1997-07-14 Secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9187959A JPH1140203A (en) 1997-07-14 1997-07-14 Secondary battery

Publications (1)

Publication Number Publication Date
JPH1140203A true JPH1140203A (en) 1999-02-12

Family

ID=16215166

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9187959A Pending JPH1140203A (en) 1997-07-14 1997-07-14 Secondary battery

Country Status (1)

Country Link
JP (1) JPH1140203A (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001357895A (en) * 2000-04-12 2001-12-26 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
JP2005038702A (en) * 2003-07-15 2005-02-10 Sanyo Gs Soft Energy Co Ltd Battery
KR100563030B1 (en) * 1999-04-09 2006-03-22 삼성에스디아이 주식회사 Safety device of a battery
CN101950812A (en) * 2009-07-09 2011-01-19 Sb锂摩托有限公司 Rechargeable battery
KR101112447B1 (en) * 2006-11-13 2012-02-20 주식회사 엘지화학 Secondary Battery of Improved Safety
KR101116449B1 (en) 2010-01-26 2012-02-27 에스비리모티브 주식회사 Rechargeable battery
JP2012064560A (en) * 2010-09-17 2012-03-29 Sb Limotive Co Ltd Secondary battery
US20120141845A1 (en) * 2010-12-02 2012-06-07 Sang-Won Byun Rechargeable battery
KR101222306B1 (en) * 2011-01-31 2013-01-16 로베르트 보쉬 게엠베하 Rechargeable battery
JP2013504288A (en) * 2009-09-04 2013-02-04 リ−テック・バッテリー・ゲーエムベーハー Protection device for galvanicel
JP2013058475A (en) * 2011-09-06 2013-03-28 Sb Limotive Co Ltd Secondary battery
US8632911B2 (en) 2010-01-15 2014-01-21 Samsung Sdi Co., Ltd. Rechargeable battery
US8642196B2 (en) 2011-06-08 2014-02-04 Samsung Sdi Co., Ltd. Rechargeable battery
WO2014016382A3 (en) * 2012-07-25 2014-03-13 Volkswagen Varta Microbattery Forschungsgesellschaft Mbh & Co. Kg Battery having a thermal switch
US8877361B2 (en) 2009-09-01 2014-11-04 Samsung Sdi Co., Ltd. Rechargeable battery
US9012050B2 (en) 2011-07-26 2015-04-21 Samsung Sdi Co., Ltd. Rechargeable battery
EP2863454A1 (en) * 2013-10-16 2015-04-22 Siemens Aktiengesellschaft Electrochemical energy storage device with voltage-dependent intermediate layer
US9054371B2 (en) 2011-11-17 2015-06-09 Samsung Sdi Co., Ltd. Rechargeable battery
US9118091B2 (en) 2011-04-05 2015-08-25 Samsung Sdi Co., Ltd. Secondary battery
KR20150097042A (en) * 2014-02-17 2015-08-26 주식회사 엘지화학 Cap assembly and cylinderical type battery comprising the same
EP3082179A1 (en) * 2015-04-17 2016-10-19 VARTA Microbattery GmbH Battery with electric pneumo safety switch
EP3540822A4 (en) * 2017-05-26 2020-03-25 LG Chem, Ltd. Battery module, and battery pack and automobile including same

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100563030B1 (en) * 1999-04-09 2006-03-22 삼성에스디아이 주식회사 Safety device of a battery
JP2001357895A (en) * 2000-04-12 2001-12-26 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
JP4670170B2 (en) * 2000-04-12 2011-04-13 パナソニック株式会社 Nonaqueous electrolyte secondary battery
JP2005038702A (en) * 2003-07-15 2005-02-10 Sanyo Gs Soft Energy Co Ltd Battery
KR101112447B1 (en) * 2006-11-13 2012-02-20 주식회사 엘지화학 Secondary Battery of Improved Safety
CN101950812A (en) * 2009-07-09 2011-01-19 Sb锂摩托有限公司 Rechargeable battery
KR101093691B1 (en) * 2009-07-09 2011-12-15 에스비리모티브 주식회사 Rechargeable battery
US9246140B2 (en) 2009-07-09 2016-01-26 Samsung Sdi Co., Ltd. Rechargeable battery with a cap assembly having a first tab located outside of the case
US8877361B2 (en) 2009-09-01 2014-11-04 Samsung Sdi Co., Ltd. Rechargeable battery
JP2013504288A (en) * 2009-09-04 2013-02-04 リ−テック・バッテリー・ゲーエムベーハー Protection device for galvanicel
US8632911B2 (en) 2010-01-15 2014-01-21 Samsung Sdi Co., Ltd. Rechargeable battery
KR101116449B1 (en) 2010-01-26 2012-02-27 에스비리모티브 주식회사 Rechargeable battery
CN102412381A (en) * 2010-09-17 2012-04-11 Sb锂摩托有限公司 Rechargeable battery
JP2012064560A (en) * 2010-09-17 2012-03-29 Sb Limotive Co Ltd Secondary battery
US9293756B2 (en) 2010-09-17 2016-03-22 Samsung Sdi Co., Ltd. Rechargeable battery
US20120141845A1 (en) * 2010-12-02 2012-06-07 Sang-Won Byun Rechargeable battery
US9478774B2 (en) 2010-12-02 2016-10-25 Samsung Sdi Co., Ltd. Rechargeable battery
KR101222306B1 (en) * 2011-01-31 2013-01-16 로베르트 보쉬 게엠베하 Rechargeable battery
US8835028B2 (en) 2011-01-31 2014-09-16 Samsung Sdi Co., Ltd. Rechargeable battery
US9118091B2 (en) 2011-04-05 2015-08-25 Samsung Sdi Co., Ltd. Secondary battery
US8642196B2 (en) 2011-06-08 2014-02-04 Samsung Sdi Co., Ltd. Rechargeable battery
US9012050B2 (en) 2011-07-26 2015-04-21 Samsung Sdi Co., Ltd. Rechargeable battery
JP2013058475A (en) * 2011-09-06 2013-03-28 Sb Limotive Co Ltd Secondary battery
EP2568518B1 (en) * 2011-09-06 2017-03-29 Samsung SDI Co., Ltd. Rechargeable battery
US9634299B2 (en) 2011-09-06 2017-04-25 Samsung Sdi Co., Ltd. Rechargeable battery
US9054371B2 (en) 2011-11-17 2015-06-09 Samsung Sdi Co., Ltd. Rechargeable battery
WO2014016382A3 (en) * 2012-07-25 2014-03-13 Volkswagen Varta Microbattery Forschungsgesellschaft Mbh & Co. Kg Battery having a thermal switch
JP2015528989A (en) * 2012-07-25 2015-10-01 フォルクスヴァーゲン ヴァルタ マイクロバッテリー フォルシュングスゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディートゲゼルシャフト Battery with thermal switch
CN104603987A (en) * 2012-07-25 2015-05-06 大众汽车瓦尔塔微电池研究有限责任两合公司 Battery having a thermal switch
EP2863454A1 (en) * 2013-10-16 2015-04-22 Siemens Aktiengesellschaft Electrochemical energy storage device with voltage-dependent intermediate layer
KR20150097042A (en) * 2014-02-17 2015-08-26 주식회사 엘지화학 Cap assembly and cylinderical type battery comprising the same
EP3082179A1 (en) * 2015-04-17 2016-10-19 VARTA Microbattery GmbH Battery with electric pneumo safety switch
EP3540822A4 (en) * 2017-05-26 2020-03-25 LG Chem, Ltd. Battery module, and battery pack and automobile including same
US11121434B2 (en) 2017-05-26 2021-09-14 Lg Chem, Ltd. Battery module and battery pack and vehicle comprising the same

Similar Documents

Publication Publication Date Title
JPH1140203A (en) Secondary battery
EP2827408B1 (en) Lithium-ion rechargeable battery
JP4802188B2 (en) Electrochemical element having electrode lead with built-in protective element
JPH10326610A (en) Non-aqueous electrolyte secondary battery
US6045939A (en) Lithium secondary battery having thermal switch
JPH117931A (en) Secondary battery
US5609972A (en) Cell cap assembly having frangible tab disconnect mechanism
JP2000182598A (en) Nonaqueous electrolyte secondary battery and electrothermal relay for battery
US20040170887A1 (en) Non-aqueous electrolytic secondary battery
CN114094162A (en) Battery cell, battery, electric device, and method and device for manufacturing battery cell
US8338010B2 (en) Safety device for a sealed accumulator
JPH0562664A (en) Explosion proof type nonaqueous secondary battery
JPH1140204A (en) Secondary battery
JPH10214613A (en) Nonaqueous electrolyte secondary battery and assembled battery using the same
JP2003051304A (en) Nonaqueous electrolyte secondary battery
JP2000067847A (en) Secondary battery and assembled battery
JPH10241738A (en) Nonaqueous electrolytic secondary battery
JPH117932A (en) Secondary battery
JPH10261400A (en) Nonaqueous electrolyte secondary battery
JPH10241733A (en) Nonaqueous electrolytic secondary battery
JP2000208132A (en) Nonaqueous electrolyte secondary battery and battery thermal relay
JPH06349480A (en) Composite protective element and battery pack with composite protective element
JP2000182596A (en) Electrothermal relay for battery
KR101201081B1 (en) Lithium Rechargeable Battery
JPH10241739A (en) Nonaqueous electrolytic secondary battery