JPH10241733A - Nonaqueous electrolytic secondary battery - Google Patents

Nonaqueous electrolytic secondary battery

Info

Publication number
JPH10241733A
JPH10241733A JP3882597A JP3882597A JPH10241733A JP H10241733 A JPH10241733 A JP H10241733A JP 3882597 A JP3882597 A JP 3882597A JP 3882597 A JP3882597 A JP 3882597A JP H10241733 A JPH10241733 A JP H10241733A
Authority
JP
Japan
Prior art keywords
battery
refrigerant
temperature
pressure
aqueous electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3882597A
Other languages
Japanese (ja)
Inventor
Morio Kobayashi
守夫 小林
Toyokazu Okawa
豊和 大川
Katsuyuki Matsuki
勝行 松木
Koichi Sato
耕一 佐藤
Michiko Sakairi
美千子 坂入
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP3882597A priority Critical patent/JPH10241733A/en
Publication of JPH10241733A publication Critical patent/JPH10241733A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To suppress the abnormal temperature rise in a battery to improve safety by installing a refrigerant vessel in the center part of a battery case, and when the pressure in the refrigerant vessel exceeds a set value, releasing the sealing of the refrigerant vessel to vaporize the refrigerant remove the heat in a battery by vaporization heat. SOLUTION: An electrolyte is injected from the opening part of a battery case 10 for sealing an upper lid 11, and then a refrigerant vessel 20, wherein a refrigerant 21 is sealed, is inserted into the hollow cylinder 10b of the inner diameter part of the battery case 10 to be fitted by a fixing screw 34 and a presser bush 25. When the vapor pressure of the refrigerant 21 in the refrigerant vessel 20, corresponding to the temperature in a battery, reaches a set pressure corresponding to or less than the oxygen-separation starting temperature for a positive electrode active material, a pressure valve mechanism 22 is opened continuously, to make the heat in the battery be absorbed by the refrigerant 21, and vaporized and gasified in air, thereby preventing the temperature rise in the battery. Operating lower limit pressure of a pressure valve is decided from the relation between an in-battery temperature rise characteristic within the practical temperature range of the battery and the temperature deterioration characteristic of the battery, and the vapor pressure of the refrigerant 21 is preferably one which corresponds to 100 deg.C in the temperature in a battery group 15.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電気自動車,電動
カート等の移動体機器、ビデオカメラ,パソコン等の携
帯機器、停電時のバックアップ機器、及びセキュリテイ
機器等の製品の電源として使われる単電池の容量が20
Wh以上の中容量,高容量タイプ非水電解液二次電池の
異常発熱による発火や爆発を防止する電池の安全性に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a unit battery used as a power source for products such as mobile devices such as electric vehicles and electric carts, portable devices such as video cameras and personal computers, backup devices in the event of a power failure, and security devices. Capacity of 20
The present invention relates to safety of a battery for preventing ignition and explosion due to abnormal heat generation of a medium capacity, high capacity type non-aqueous electrolyte secondary battery of Wh or more.

【0002】[0002]

【従来の技術】従来の非水電解液二次電池の安全保護装
置としては、特開平7−192753に示されている通
り、正極と負極を渦巻き状に捲回する巻芯としてポリプ
ロピレン、ポリエチレン等の高分子材料を使用し、短絡
等により電池温度が急激に上昇し設定温度以上になる
と、前記高分子材料の巻芯材料が溶融し融解熱により周
囲の熱を吸熱し、電池温度の上昇を防止する方法が知ら
れている。
2. Description of the Related Art As a conventional safety protection device for a non-aqueous electrolyte secondary battery, as shown in Japanese Patent Application Laid-Open No. 7-192753, as a core for winding a positive electrode and a negative electrode in a spiral shape, polypropylene, polyethylene or the like is used. When the battery temperature rises rapidly due to a short circuit or the like and exceeds the set temperature, the core material of the polymer material melts and absorbs the surrounding heat by the heat of fusion, thereby increasing the battery temperature. Methods to prevent this are known.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、高分子
材料の巻芯が溶融する融解熱では熱容量が小さく、か
つ、融解した高分子材料が電池ケース内に封じ込められ
たままなので熱放散が十分できず、電池サイズが186
50(18D×65L)程度の小容量の電池にしか効果
がなく、容量の大きい電池には使用出来なかった。ま
た、非水電解液に耐える高分子材料となると材質が限ら
れて、溶融温度を自由に設定することが出来ず、電池を
保護するための最適な温度で作動させられなかった。
However, the heat of fusion at which the core of the polymer material is melted has a small heat capacity, and the heat is not sufficiently dissipated because the melted polymer material remains sealed in the battery case. , Battery size is 186
It is effective only for a battery having a small capacity of about 50 (18D × 65L), and cannot be used for a battery having a large capacity. Further, when the polymer material is resistant to a non-aqueous electrolyte, the material is limited, the melting temperature cannot be set freely, and the battery cannot be operated at an optimal temperature for protecting the battery.

【0004】本発明は上記従来技術の問題点に鑑みてな
されたものであり、その目的とするところは、中・高容
量タイプの熱発生量の大きい非水電解液二次電池の異常
温度上昇を抑えて安全性の向上を図ると共に、組立性の
良い非水電解液二次電池を提供することにある。
The present invention has been made in view of the above-mentioned problems of the prior art, and has as its object to increase the abnormal temperature rise of a non-aqueous electrolyte secondary battery of a medium / high capacity type which generates a large amount of heat. Another object of the present invention is to provide a non-aqueous electrolyte secondary battery with good assemblability, while improving safety by suppressing pressure.

【0005】[0005]

【課題を解決するための手段】本発明は上記目的を達成
するために、正極および負極をセパレータを介して対向
させて捲回した電極群に非水電解液を含浸させた発電要
素を、蜜封収納した電池ケースの中心部に、冷媒を封入
した冷媒容器を設置し、冷媒容器内の圧力が設定値を越
えると冷媒容器の密封が開放され、冷媒が大気中に蒸発
する気化熱で電池の熱を奪うことにより、非水電解液二
次電池の温度上昇を防止するものである。
In order to achieve the above object, the present invention provides a power generating element in which a non-aqueous electrolyte is impregnated into a group of electrodes wound with a positive electrode and a negative electrode facing each other via a separator. At the center of the sealed battery case, a refrigerant container containing a refrigerant is installed.When the pressure inside the refrigerant container exceeds a set value, the sealing of the refrigerant container is opened, and the battery is heated by vaporization heat in which the refrigerant evaporates into the atmosphere. To prevent the temperature of the non-aqueous electrolyte secondary battery from rising.

【0006】[0006]

【発明の実施の形態】以下、本発明に係わる非水電解液
二次電池の実施例を、図面を参照しながら説明する。図
1は、本発明の非水電解液二次電池の一実施例を示す構
造断面図である。同図において、1は正極であり、アル
ミ箔からなる正極集電体1aの両面に無機リチウムイン
ターカレーション材料を正極活物質とする正極合剤1b
(例えば活物質としてLiMn2O4,LiCoO2,LiNiO2等、導
電剤としてカーボン、結着剤としてポリフッ化ビニリデ
ンを混合調整したもの)を保持させたものである。2は
負極であり、銅箔からなる負極集電体2aの両面にリチ
ウムインターカレーションカーボン材料を負極活物質と
する負極合剤2b(例えば活物質として黒鉛,結着剤と
してポリフッ化ビニリデンを混合調整したもの)を保持
させたものである。3はセパレータであり、微多孔性の
ポリエチレンフィルム、またはポリプロピレンフィルム
からなる。なお、ポリエチレンフィルムは温度が上昇し
た時、フィルム自身の溶融によって前記微多孔が閉じる
シャットダウン開始温度が約130℃であり、ポリプロ
ピレンフィルムのシャットダウン開始温度は約150℃
である。上記、正極1と負極2はセパレータ3を介して
対向した状態で渦巻き状に捲回され、電極群15を形成
し、巻芯部には電極群内径空間を有している。この場
合、セパレータ3は正極1,負極2よりも若干幅広く巻
かれており、さらに巻芯部および巻き終り部において数
回セパレータ3単独で巻かれており、正極,負極間及び
電極群周囲との絶縁性を持たせている。この電極群15
は非水電解液(図示せず)に浸漬されて発電要素とな
る。上記非水電解液は、LiPF6,LiBF4,LiClO4,LiAsF6
等のリチウム塩を電解質として有機溶媒(プロピレンカ
ーボネート,エチレンカーボネート,ジエチルカーボネ
ート,ジメチルカーボネート等の単独または混合物)に
溶解したものが使われる。10は電池ケースでステンレ
ス鋼,ニッケルめっき鉄やアルミニウムが使われ、上記
電極群15と非水電解液からなる発電要素を外径部円筒
10aと内径部中空円筒10bを有する有底二重円筒形
の容器に収納し、上蓋11を被せて溶接または加締め方
法により蜜封したものである。また、電池ケース10内
の上蓋11側および容器底部10cには電池内充電部と
電池ケース10との電気絶縁性を保つために、絶縁板1
2a,12bが設置されている。4はアルミニウム材の
正極リードであり、正極1の正極集電体1aと正極端子
6に溶接等により接続されている。5はニッケル又は銅
材の負極リードであり、負極2の負極集電体2aと負極
端子7に溶接等により接続されている。13は絶縁デス
タントであり、電極群15と上蓋部11間に、正極リー
ド4および負極リード5を取りまとめて収納する空間1
6を確保すると共に、電極群15が電池ケース10内で
移動しないように押さえている。正極端子6,負極端子
7は、電池ケース10の上蓋11に、ガラスまたはプラ
スチック層を介在させて電気絶縁をすると共に、密封性
を持たせたハーメチックシール8により固定されてい
る。9は防爆弁であり、切り込み等の弱点部を有する金
属板や薄膜金属板からなり、電池ケース10内の圧力が
異常温度上昇により高圧になった場合に開裂し、電池ケ
ース10の爆発を防止する。防爆弁9の作動圧力として
は、電池ケース内の温度と、電池ケース自身および溶接
部や加締め部が先に破壊しない強度から決定され、10
Kg/cm2〜20Kg/cm2が望ましい。20は冷
媒容器であり、ステンレス,ニッケルめっき鉄,銅,ア
ルミニウム等の熱伝導性の良い金属材料からなる有底円
筒形の容器である。冷媒容器20内には、冷却媒体溶液
である冷媒21が封入され、圧力弁機構22がガスケッ
ト23を介して冷媒容器20の開口部に加締められて密
封されている。冷媒としてはオゾン層破壊係数や地球温
暖化係数の小さい地球環境に優しく、かつ、難然性であ
るHFC系冷媒(HFC-134a,HFC-143a,HFC-32,HFC-12
5等の単独または混合物)や不活性ガスの溶液が安全で
あり適している。冷媒容器20は電池ケース10の内径
部中空円筒10b内に圧力弁機構22が外気と連通する
ように固定ネジ24や中空形状の押えブッシュ25で固
定されている。つまり、冷媒容器20は電池ケース10
内の発熱源である電極群15の中心部に位置し、圧力弁
機構22が開放した場合冷媒21が大気中に蒸発するよ
うに設置されている。この場所は発電要素の発熱を最も
受ける位置であり、温度変化に対する応答性が良く、異
常温度感知に対する時間遅れが少ないという利点の他
に、冷媒が蒸発した時に最も冷却効果のある電池の中心
部から冷却できるという効果がある。圧力弁機構22は
設定圧力以上になると、圧力弁が継続的に開放するもの
であり、ラッチ機構を有するバネ押圧式圧力弁や金属板
に切り込み等の弱点部を有する金属板破壊式圧力弁や金
属薄膜破壊式圧力弁等がある。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the nonaqueous electrolyte secondary battery according to the present invention will be described below with reference to the drawings. FIG. 1 is a structural sectional view showing one embodiment of the non-aqueous electrolyte secondary battery of the present invention. In FIG. 1, reference numeral 1 denotes a positive electrode, and a positive electrode mixture 1b using an inorganic lithium intercalation material as a positive electrode active material on both surfaces of a positive electrode current collector 1a made of aluminum foil.
(For example, a mixture prepared by mixing and adjusting carbon as a conductive agent and polyvinylidene fluoride as a binder, such as LiMn2O4, LiCoO2, and LiNiO2 as an active material). Reference numeral 2 denotes a negative electrode, and a negative electrode mixture 2b (for example, a mixture of graphite as an active material and polyvinylidene fluoride as a binder) on both surfaces of a negative electrode current collector 2a formed of a copper foil and having a lithium intercalation carbon material as a negative electrode active material. Adjusted). Reference numeral 3 denotes a separator made of a microporous polyethylene film or polypropylene film. When the temperature of the polyethylene film rises, the shutdown start temperature at which the micropores close due to melting of the film itself is about 130 ° C., and the shutdown start temperature of the polypropylene film is about 150 ° C.
It is. The positive electrode 1 and the negative electrode 2 are spirally wound in a state where they face each other with the separator 3 interposed therebetween to form an electrode group 15, and the core has an electrode group inner diameter space. In this case, the separator 3 is wound slightly wider than the positive electrode 1 and the negative electrode 2, and is further wound several times alone at the core portion and the end portion of the winding, so that the separator 3 can be wound between the positive electrode and the negative electrode and around the electrode group. Has insulation properties. This electrode group 15
Is immersed in a non-aqueous electrolyte (not shown) to become a power generating element. The non-aqueous electrolyte is LiPF6, LiBF4, LiClO4, LiAsF6
And the like are dissolved in an organic solvent (single or mixture of propylene carbonate, ethylene carbonate, diethyl carbonate, dimethyl carbonate, etc.) as an electrolyte. Reference numeral 10 denotes a battery case made of stainless steel, nickel-plated iron or aluminum, and a bottomed double cylindrical type having an outer diameter portion cylinder 10a and an inner diameter portion hollow cylinder 10b as the electrode group 15 and a power generation element composed of a non-aqueous electrolyte. And covered with the upper lid 11 and sealed by welding or caulking. In addition, an insulating plate 1 is provided on the upper lid 11 side and the container bottom 10c in the battery case 10 in order to maintain electrical insulation between the battery charging section and the battery case 10.
2a and 12b are provided. Reference numeral 4 denotes a positive electrode lead made of an aluminum material, which is connected to the positive electrode current collector 1a of the positive electrode 1 and the positive electrode terminal 6 by welding or the like. Reference numeral 5 denotes a nickel or copper negative electrode lead, which is connected to the negative electrode current collector 2a of the negative electrode 2 and the negative electrode terminal 7 by welding or the like. Numeral 13 denotes an insulating destant, which is a space 1 for collectively housing the positive electrode lead 4 and the negative electrode lead 5 between the electrode group 15 and the upper lid 11.
6, and the electrode group 15 is pressed so as not to move in the battery case 10. The positive electrode terminal 6 and the negative electrode terminal 7 are fixed to the upper lid 11 of the battery case 10 by a hermetic seal 8 which is electrically insulated with a glass or plastic layer interposed and has a hermetic property. Reference numeral 9 denotes an explosion-proof valve, which is made of a metal plate or a thin-film metal plate having a weak portion such as a notch. The explosion-proof valve is opened when the pressure in the battery case 10 becomes high due to an abnormal temperature rise. I do. The operating pressure of the explosion-proof valve 9 is determined based on the temperature inside the battery case and the strength of the battery case itself and the strength at which the welded portion and the caulked portion do not break first.
Kg / cm2-20 kg / cm2 is desirable. Reference numeral 20 denotes a refrigerant container, which is a bottomed cylindrical container made of a metal material having good heat conductivity such as stainless steel, nickel-plated iron, copper, and aluminum. A refrigerant 21 which is a cooling medium solution is sealed in the refrigerant container 20, and a pressure valve mechanism 22 is caulked to an opening of the refrigerant container 20 via a gasket 23 and hermetically sealed. HFC-based refrigerants (HFC-134a, HFC-143a, HFC-32, HFC-12) which are friendly to the global environment and have a low ozone depletion potential and a low global warming potential
5 or the like alone or in mixtures) and inert gas solutions are safe and suitable. The refrigerant container 20 is fixed in the hollow cylinder 10b of the inner diameter part of the battery case 10 by a fixing screw 24 and a hollow pressing bush 25 so that the pressure valve mechanism 22 communicates with the outside air. That is, the refrigerant container 20 is
It is located at the center of the electrode group 15 which is a heat source inside, and is installed such that the refrigerant 21 evaporates into the atmosphere when the pressure valve mechanism 22 is opened. This location is the location that receives the heat generated by the power generating element most.It has the advantage of good response to temperature change and little time lag for abnormal temperature detection, and also the central part of the battery that has the best cooling effect when the refrigerant evaporates. There is an effect that can be cooled from. The pressure valve mechanism 22 is such that when the pressure becomes equal to or higher than a set pressure, the pressure valve is continuously opened. There is a metal thin film destruction type pressure valve.

【0007】図2は圧力弁機構22の一実施例を示す拡
大断面図であり、圧力弁26は切り込み等の弱点部26
aを有する金属板等から成る。圧力弁26は、設定圧力
を越えると弱点部26aが開裂するように、切り込み深
さや形状が決められている。27は保護キャップでガス
抜き穴27aを持ち、圧力弁26を覆い保護している。
FIG. 2 is an enlarged sectional view showing an embodiment of the pressure valve mechanism 22. The pressure valve 26 has a weak portion 26 such as a notch.
a. The cut depth and shape of the pressure valve 26 are determined so that the weak point portion 26a is split when the pressure exceeds a set pressure. Reference numeral 27 denotes a protective cap having a gas vent hole 27a for covering and protecting the pressure valve 26.

【0008】図3は圧力弁機構22の他の一実施例を示
す拡大断面図でありシール板30の中央部には吐出口3
0aがあり、シール板30とケース31は、吐出口30
aを閉鎖するように弁32,バネ33を内蔵挟持し、ケ
ースを形成している。弁32の他端には、ケース31の
貫通穴31aを貫通した部分に鉤状のラッチ32aを有
し、ラッチ32の外側にはラッチバネ34が先端を外側
向きに接触している。冷媒容器20内の圧力が設定圧力
になると、バネ33の力に抗して弁32が押し上げら
れ、ラッチ32aがラッチバネ34に乗り上げて引っか
かり、弁32が吐出口30aを開放したままとなる。弁
が開放する設定圧力は、バネの押圧力を変えることによ
り自由に設定出来る。
FIG. 3 is an enlarged sectional view showing another embodiment of the pressure valve mechanism 22.
0a, the seal plate 30 and the case 31
A valve 32 and a spring 33 are sandwiched and built in so as to close a, thereby forming a case. At the other end of the valve 32, a hook-shaped latch 32a is provided at a portion penetrating the through hole 31a of the case 31, and a latch spring 34 is in contact with the outside of the latch 32 with its tip facing outward. When the pressure in the refrigerant container 20 reaches the set pressure, the valve 32 is pushed up against the force of the spring 33, the latch 32a rides on the latch spring 34 and is caught, and the valve 32 keeps the discharge port 30a open. The set pressure at which the valve opens can be freely set by changing the pressing force of the spring.

【0009】次に、本発明による非水電解液二次電池の
組み立て方法について説明する。先ず、正極1および負
極2にそれぞれ正極リード4、負極リード5をスポット
溶接または超音波溶接により取り付けておく。このと
き、電池容量の大きさにより取り付けるリードの数は増
減される。上記正極1、負極2をセパレータ3を介して
捲回し、巻終わり部はテープ等で止めて電極群15を作
る。有底二重円筒形容器の底部10c側から絶縁板12
b,電極群15,絶縁デスタント13の順に入れ、正極
リード4,負極リード5をそれぞれ束ねて纏めておく。
次に、絶縁板12aを上蓋11の裏側に重ね合わせ、正
極リード4,負極リード5を上蓋11の正極端子6,負
極端子7に溶接する。次に電池ケース10開口部から電
解液を注入し、上蓋11を溶接または加締めにより密封
する。最後に冷媒21が蜜封された冷媒容器20を電池
ケース10の内径部中空円筒10b内に挿入し、固定ネ
ジ24と押えブッシュ25で取り付ける。このように、
電池が完成した後に冷媒容器20を、電池ケースの内径
部中空円筒10b内に組み込むので作業性が良い。
Next, a method of assembling the non-aqueous electrolyte secondary battery according to the present invention will be described. First, the positive electrode lead 4 and the negative electrode lead 5 are attached to the positive electrode 1 and the negative electrode 2, respectively, by spot welding or ultrasonic welding. At this time, the number of leads to be attached is increased or decreased depending on the size of the battery capacity. The positive electrode 1 and the negative electrode 2 are wound with the separator 3 interposed therebetween, and the end of the winding is stopped with a tape or the like to form an electrode group 15. Insulating plate 12 from bottom 10c side of bottomed double cylindrical container
b, the electrode group 15 and the insulating distant 13 are placed in this order, and the positive electrode lead 4 and the negative electrode lead 5 are bundled and put together.
Next, the insulating plate 12 a is placed on the back side of the upper lid 11, and the positive electrode lead 4 and the negative electrode lead 5 are welded to the positive terminal 6 and the negative terminal 7 of the upper lid 11. Next, an electrolytic solution is injected from the opening of the battery case 10, and the upper lid 11 is sealed by welding or caulking. Finally, the refrigerant container 20 in which the refrigerant 21 is sealed is inserted into the hollow cylinder 10b of the inside diameter of the battery case 10 and attached with the fixing screw 24 and the holding bush 25. in this way,
After the battery is completed, the refrigerant container 20 is incorporated into the hollow cylinder 10b of the inner diameter portion of the battery case, so that workability is good.

【0010】次に、本発明による非水電解液二次電池の
作用について説明する。電池は充電回路の故障により設
定電圧以上に過充電されると、リチウムインターカレー
ションとしての電池反応以外の電解液を分解する化学反
応を起こし、電池を劣化させると共に電池の温度を上昇
させる。また、放電回路の故障により設定電圧以下に過
放電されると、負極にデントライト反応によりリチウム
金属が析出し、セパレータ3を突き破り、正・負極間短
絡を起こし、短絡電流が流れて異常温度になる。さら
に、通常の電池の使用温度範囲を越えた高温での使用
や、誤使用による外部短絡、何らかの原因による電池内
の内部短絡によっても、電池は発熱し異常温度となる。
非水電解液二次電池の温度が上昇すると、正極1,負極
2間にあるセパレータ3のフィルムが130℃〜150
℃で溶融し、フィルムの微多孔が閉じて正負電極間のリ
チウムイオンの移動を停止させるシャットダウン効果に
より電流を遮断する働きがある。しかしながら、セパレ
ータの材料であるポリエチレンフィルムやポリプロピレ
ンフィルムは、更なる温度上昇により溶融収縮し、正負
電極間の絶縁性が確保出来ずに、電極間短絡に至ってし
まう場合がある。電池内温度が150℃を越えると、電
極に使われている正極活物質が熱暴走を起こし、発煙・
発火・爆発に至る危険な温度領域となる。つまり、正極
活物質であるLiMn2O4,LiCoO2,LiNiO2等の結晶格子か
らの酸素脱離反応により急激な発熱を伴う。酸素脱離開
始温度は活物質の種類や各元素の構成比により異なるが
150℃〜400℃の範囲にある。電池が何らかの原因
により異常温度上昇すると、電池内の電解液は分解し、
また、電解液と正極,負極の活物質が化学反応を起こし
てガスを発生し、電池ケース内の圧力が急上昇する。電
池内の圧力が上昇して10Kg/cm2〜20Kg/c
m2になると、防爆弁9が開裂しガスを電池ケース外に
放出して、電池の爆発力を軽減する。しかし、防爆弁が
作動しても発煙・発火・爆発の危険性が無くなったわけ
ではない。爆発を防止する為には電池内温度を正極活物
質の酸素脱離開始温度以下に抑える必要がある。つま
り、ここが本発明の目的とするところであり、電池内の
温度に相当する冷媒容器20内の冷媒21の蒸気圧が、
正極活物質の酸素脱離開始温度以下の設定圧力に達する
と圧力弁機構22が継続開放し、冷媒21が電池の熱を
吸熱して大気中に蒸発気化することにより電池の温度上
昇を防止する。なお、圧力弁の作動下限圧力は、電池の
実用温度範囲での電池内温度上昇特性と電池の温度劣化
特性の関係から決定され、電極群15の温度で100℃
に相当する冷媒容器20内の冷媒21の蒸気圧とするの
が望ましい。圧力弁を継続的に開放させるのは、内蔵さ
れた冷媒を完全に蒸発させ、気化熱により電池の温度上
昇を確実に防止し、電池を熱暴走しない安全温度領域と
する為である。また、冷媒は大気中に蒸発気化されるの
で、電池から奪った熱は電池外に有効に排出され、冷却
効果は大きく、急速に電池の温度を下げる働きをする。
Next, the operation of the nonaqueous electrolyte secondary battery according to the present invention will be described. When the battery is overcharged to a voltage equal to or higher than the set voltage due to a failure in the charging circuit, a chemical reaction other than the battery reaction as lithium intercalation is performed to decompose the electrolytic solution, thereby deteriorating the battery and increasing the temperature of the battery. If the discharge circuit is overdischarged below the set voltage due to a failure of the discharge circuit, lithium metal precipitates on the negative electrode due to the dentite reaction, breaks through the separator 3 and causes a short circuit between the positive electrode and the negative electrode. Become. Furthermore, the battery also generates heat and becomes abnormal temperature due to use at a high temperature exceeding the normal use temperature range of the battery, external short-circuit due to misuse, and internal short-circuit in the battery for some reason.
When the temperature of the non-aqueous electrolyte secondary battery rises, the film of the separator 3 between the positive electrode 1 and the negative electrode 2 becomes 130 ° C. to 150 ° C.
It melts at a temperature of ° C. and acts to shut off the current by a shutdown effect that stops the movement of lithium ions between the positive and negative electrodes by closing the microporous film. However, a polyethylene film or a polypropylene film, which is a material of the separator, melts and shrinks due to a further rise in temperature, and may not be able to secure insulation between the positive and negative electrodes, resulting in a short circuit between the electrodes. If the temperature inside the battery exceeds 150 ° C, the positive electrode active material used for the electrodes will cause thermal runaway, causing smoke and
It is a dangerous temperature range that leads to ignition and explosion. That is, rapid heat generation is caused by an oxygen desorption reaction from a crystal lattice of the positive electrode active material such as LiMn2O4, LiCoO2, and LiNiO2. The oxygen desorption start temperature varies depending on the type of the active material and the composition ratio of each element, but is in the range of 150 ° C to 400 ° C. If the battery abnormally rises in temperature for some reason, the electrolyte in the battery will decompose,
In addition, the electrolytic solution and the active materials of the positive electrode and the negative electrode cause a chemical reaction to generate gas, and the pressure in the battery case rapidly rises. The pressure inside the battery rises and 10kg / cm2 ~ 20kg / c
When the pressure reaches m2, the explosion-proof valve 9 ruptures and discharges gas out of the battery case to reduce the explosive power of the battery. However, the activation of the explosion-proof valve does not eliminate the danger of smoking, ignition and explosion. In order to prevent explosion, it is necessary to keep the temperature inside the battery below the temperature at which oxygen desorption of the positive electrode active material starts. That is, this is the object of the present invention, and the vapor pressure of the refrigerant 21 in the refrigerant container 20 corresponding to the temperature in the battery is:
When the pressure reaches a set pressure equal to or lower than the oxygen desorption start temperature of the positive electrode active material, the pressure valve mechanism 22 is continuously opened, and the refrigerant 21 absorbs the heat of the battery and evaporates into the atmosphere to prevent the battery temperature from rising. . The operating lower limit pressure of the pressure valve is determined from the relationship between the battery temperature rise characteristic and the battery temperature deterioration characteristic in the practical temperature range of the battery.
Is desirably set to the vapor pressure of the refrigerant 21 in the refrigerant container 20 corresponding to The reason why the pressure valve is continuously opened is to completely evaporate the built-in refrigerant, reliably prevent the temperature of the battery from rising due to heat of vaporization, and set the battery in a safe temperature range where thermal runaway does not occur. In addition, since the refrigerant is evaporated and vaporized into the atmosphere, the heat taken from the battery is effectively discharged to the outside of the battery, the cooling effect is large, and the temperature of the battery is rapidly lowered.

【0011】[0011]

【発明の効果】以上説明したように、本発明では 、正
極および負極をセパレータを介して対向させて捲回した
電極群と非水電解液からなる発電要素を、有底二重円筒
形容器と上蓋からなる電池ケースに密封収納した電池に
おいて、電極群の巻芯部となる中空円筒内に、冷媒を封
入した金属の冷媒容器を設置し、冷媒容器内の圧力が設
定値を越えると冷媒容器の密封が継続開放され、冷媒が
大気中に完全に蒸発するようにしたものであるから、異
常温度上昇時の温度応答性が良く、気化熱により電池の
温度上昇を防止し、電池の安全性を確実に保護できるも
のである。また、電池完成後に冷媒容器を電池ケースの
内径部中空円筒内に外から直接取り付けられるので、電
池組立の作業性が改善され、安価な非水電解液二次電池
が提供できる。
As described above, according to the present invention, a power generating element composed of a non-aqueous electrolyte and an electrode group in which a positive electrode and a negative electrode are wound opposite to each other with a separator interposed therebetween is used as a bottomed double cylindrical container. In a battery sealed in a battery case consisting of an upper lid, a metal refrigerant container containing a refrigerant is installed in a hollow cylinder serving as a core portion of an electrode group, and when the pressure in the refrigerant container exceeds a set value, the refrigerant container The seal is continuously opened to allow the refrigerant to completely evaporate into the atmosphere, providing good temperature responsiveness when the temperature rises abnormally, preventing the battery temperature from rising due to heat of vaporization, and ensuring battery safety. Can be reliably protected. Further, since the refrigerant container is directly attached to the inside of the hollow cylindrical portion of the battery case from the outside after the battery is completed, the workability of battery assembly is improved, and an inexpensive non-aqueous electrolyte secondary battery can be provided.

【0012】さらに、冷媒量を電池サイズに応じた熱容
量分封入することができると共に、圧力弁機構の設定圧
力を自由に設定出来るので、各種用途に応じた安全性の
高い非水電解液二次電池が得られる。
Further, since the amount of the refrigerant can be sealed by the heat capacity corresponding to the battery size, and the set pressure of the pressure valve mechanism can be freely set, a highly safe non-aqueous electrolyte secondary battery suitable for various uses is provided. A battery is obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の非水電解液二次電池の一実施例を示す
構造断面図である。
FIG. 1 is a structural sectional view showing one embodiment of a non-aqueous electrolyte secondary battery of the present invention.

【図2】本発明の非水電解液二次電池の圧力弁機構の一
実施例を示す構造断面図である。
FIG. 2 is a structural sectional view showing one embodiment of a pressure valve mechanism of the nonaqueous electrolyte secondary battery of the present invention.

【図3】本発明の非水電解液二次電池の圧力弁機構の他
の一実施例を示す構造断面図である。
FIG. 3 is a structural sectional view showing another embodiment of the pressure valve mechanism of the nonaqueous electrolyte secondary battery of the present invention.

【符号の説明】[Explanation of symbols]

1 ‥‥ 正極、 1a ‥‥ 正極集電体、 1b ‥‥ 正極合剤、 2 ‥‥ 負極、 2a ‥‥ 負極集電体、 2b ‥‥ 負極合剤、 3 ‥‥ セパレータ 4 ‥‥ 正極リード 5 ‥‥ 負極リード 6 ‥‥ 正極端子 7 ‥‥ 負極端子 8 ‥‥ ハーメチクシール 9 ‥‥ 防爆弁 10 ‥‥ 電池ケース 10a ‥‥ 外径部円筒 10b ‥‥ 内径部中空円筒 10c ‥‥ 容器底部 11 ‥‥ 上蓋 12a,12b ‥‥ 絶縁板 13 ‥‥ 絶縁デスタント 15 ‥‥ 電極群 16 ‥‥ 電極群上部空間 20 ‥‥ 冷媒容器 21 ‥‥ 冷媒 22 ‥‥ 圧力弁機構 23 ‥‥ ガスケット 24 ‥‥ 固定ネジ 25 ‥‥ 押えブッシュ 26 ‥‥ 圧力弁 26a ‥‥ 弱点部 27 ‥‥ 保護キャップ 27a ‥‥ ガス抜き穴 30 ‥‥ シール板 30a ‥‥ 吐出口 31 ‥‥ ケース 31a ‥‥ 貫通穴 32 ‥‥ 弁 32a ‥‥ ラッチ 33 ‥‥ バネ 34 ‥‥ ラッチバネ DESCRIPTION OF SYMBOLS 1 ‥‥ Positive electrode, 1a ‥‥ Positive electrode collector, 1b ‥‥ Positive electrode mixture, 2 ‥‥ Negative electrode, 2a 負極 Negative electrode collector, 2b ‥‥ Negative electrode mixture, 3 セ パ レ ー タ Separator 4 正極 Positive electrode lead 5 ‥‥ Negative electrode lead 6 正極 Positive electrode terminal 7 ‥‥ Negative electrode terminal 8 ハ ー Hermetic seal 9 爆 Explosion-proof valve 10 ‥‥ Battery case 10 a ‥‥ Outer diameter cylinder 10 b ‥‥ Inner diameter hollow cylinder 10 c ‥‥ Container bottom 11 ‥‥ Upper lids 12a, 12b 絶 縁 Insulating plate 13 絶 縁 Insulating distant 15 ‥‥ Electrode group 16 ‥‥ Electrode upper space 20 ‥‥ Refrigerant container 21 冷媒 Refrigerant 22 ‥‥ Pressure valve mechanism 23 ガ ス Gasket 24 固定 Fixing screw 25 ‥‥ Presser bush 26 ‥‥ Pressure valve 26 a ‥‥ Weak point 27 ‥‥ Protective cap 27 a ‥‥ Gas vent hole 30 シ ー ル Seal plate 30 a ‥‥ Discharge port 31 ‥‥ Scan 31a ‥‥ through hole 32 ‥‥ valve 32a ‥‥ latch 33 ‥‥ spring 34 ‥‥ a latch spring

───────────────────────────────────────────────────── フロントページの続き (72)発明者 佐藤 耕一 栃木県下都賀郡大平町大字富田800番地株 式会社日立製作所冷熱事業部内 (72)発明者 坂入 美千子 栃木県下都賀郡大平町大字富田800番地株 式会社日立製作所冷熱事業部内 ──────────────────────────────────────────────────の Continuing on the front page (72) Inventor Koichi Sato 800, Tomita, Ohira-cho, Ohira-cho, Shimotsuga-gun, Tochigi Prefecture Inside the Cooling and Cooling Division, Hitachi, Ltd. (72) Michiko Sakairi 800, Tomita-Oita, Ohira-cho, Shimotsuga-gun, Tochigi Hitachi, Ltd.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】正極および負極をセパレータを介して対向
させ、渦巻き状に捲回した電極群と非水電解液からなる
発電要素を、電池ケース内に密封収納した電池におい
て、電極群の巻芯部となる中空円筒内に、冷媒を封入し
た冷媒容器を設置し、冷媒容器内の圧力が設定値を越え
ると冷媒容器の密封が開放され、冷媒が大気中に蒸発す
ることを特徴とする非水電解液二次電池。
1. A battery in which a positive electrode and a negative electrode are opposed to each other with a separator interposed therebetween, and a power generation element composed of a spirally wound electrode group and a non-aqueous electrolyte is hermetically housed in a battery case. A refrigerant container in which a refrigerant is sealed is installed in a hollow cylinder serving as a part, and when the pressure in the refrigerant container exceeds a set value, the sealing of the refrigerant container is opened, and the refrigerant evaporates to the atmosphere. Water electrolyte secondary battery.
【請求項2】電極群と非水電解液からなる発電要素を、
内径部中空円筒と外径部円筒を有する有底二重円筒形の
容器からなる電池ケースに密封収納したことを特徴とす
る請求項1記載の非水電解液二次電池。
2. A power generating element comprising an electrode group and a non-aqueous electrolyte,
2. The non-aqueous electrolyte secondary battery according to claim 1, wherein the battery case is sealed in a battery case comprising a bottomed double cylindrical container having an inner diameter hollow cylinder and an outer diameter cylinder.
【請求項3】冷媒容器が設定圧力を越えると密封を継続
的に開放する圧力弁機構を備えたことを特徴とする請求
項1記載の非水電解液二次電池。
3. The non-aqueous electrolyte secondary battery according to claim 1, further comprising a pressure valve mechanism for continuously opening the seal when the refrigerant container exceeds a set pressure.
【請求項4】冷媒容器の開放する設定圧力を下限値は電
極群温度100℃以上、上限値は正極活物質の酸素脱離
開始温度以下の電池ケース内温度に相当する冷媒の蒸気
圧としたことを特徴とする請求項1記載の非水電解液二
次電池。
4. The set pressure at which the refrigerant container is opened is a vapor pressure of a refrigerant corresponding to a temperature in a battery case equal to or lower than an electrode group temperature of 100 ° C. or lower and an oxygen desorption starting temperature of a positive electrode active material as a lower limit. The non-aqueous electrolyte secondary battery according to claim 1, wherein:
【請求項5】冷媒容器がステンレス、アルミニウム、
鉄、銅等の金属材料からなる請求項1記載の非水電解液
二次電池。
5. The refrigerant container is made of stainless steel, aluminum,
The non-aqueous electrolyte secondary battery according to claim 1, comprising a metal material such as iron and copper.
【請求項6】冷媒が不燃性ガスの冷却媒体溶液である請
求項1記載の非水電解液二次電池。
6. The non-aqueous electrolyte secondary battery according to claim 1, wherein the refrigerant is a solution of a nonflammable gas in a cooling medium.
JP3882597A 1997-02-24 1997-02-24 Nonaqueous electrolytic secondary battery Pending JPH10241733A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3882597A JPH10241733A (en) 1997-02-24 1997-02-24 Nonaqueous electrolytic secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3882597A JPH10241733A (en) 1997-02-24 1997-02-24 Nonaqueous electrolytic secondary battery

Publications (1)

Publication Number Publication Date
JPH10241733A true JPH10241733A (en) 1998-09-11

Family

ID=12536028

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3882597A Pending JPH10241733A (en) 1997-02-24 1997-02-24 Nonaqueous electrolytic secondary battery

Country Status (1)

Country Link
JP (1) JPH10241733A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100670521B1 (en) 2005-04-11 2007-01-16 삼성에스디아이 주식회사 Li Secondary Battery
WO2008050736A1 (en) * 2006-10-27 2008-05-02 Toyota Jidosha Kabushiki Kaisha Electricity storage device and cooling system
WO2009088619A1 (en) * 2008-01-04 2009-07-16 3M Innovative Properties Company Thermal management of electrochemical cells
JP2010507898A (en) * 2006-10-23 2010-03-11 エルジー・ケム・リミテッド Electrochemical element with excellent safety
KR100993705B1 (en) 2006-08-25 2010-11-10 주식회사 엘지화학 Structure for electrochemical device to improve safety and electrochemical device comprising the same
JP2013062207A (en) * 2011-09-15 2013-04-04 Nissan Motor Co Ltd Secondary battery cooling device
JP2013118154A (en) * 2011-12-05 2013-06-13 Toyota Industries Corp Secondary battery, vehicle, and power storage device
JP2017526108A (en) * 2014-06-27 2017-09-07 ツェントゥルム フューア ゾンネンエネルギー−ウント ヴァッサーシュトッフ−フォルシュング バーデン−ヴァルテムベルク ゲマインニュッツィヒ シュティフトゥング Controlled discharge of energy storage using redox shuttle additives.
DE102017219553A1 (en) * 2017-11-03 2019-05-09 Lithium Energy and Power GmbH & Co. KG Security element, battery cell and propagation protection element
JP2020514956A (en) * 2017-11-06 2020-05-21 恵州億緯▲リ▼能股▲フン▼有限公司Eve Energy Co., Ltd. Safe and high energy USB rechargeable battery

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100670521B1 (en) 2005-04-11 2007-01-16 삼성에스디아이 주식회사 Li Secondary Battery
KR100993705B1 (en) 2006-08-25 2010-11-10 주식회사 엘지화학 Structure for electrochemical device to improve safety and electrochemical device comprising the same
US9178252B2 (en) 2006-08-25 2015-11-03 Lg Chem, Ltd. Structure for electrochemical device to improve safety and electrochemical device comprising the same
US9070955B2 (en) 2006-08-25 2015-06-30 Lg Chem, Ltd. Structure for electrochemical device to improve safety and electrochemical device comprising the same
JP2010507898A (en) * 2006-10-23 2010-03-11 エルジー・ケム・リミテッド Electrochemical element with excellent safety
US8187739B2 (en) 2006-10-27 2012-05-29 Toyota Jidosha Kabushiki Kaihsa Power storage apparatus and cooling system
JP2008108648A (en) * 2006-10-27 2008-05-08 Toyota Motor Corp Battery device and cooling system
WO2008050736A1 (en) * 2006-10-27 2008-05-02 Toyota Jidosha Kabushiki Kaisha Electricity storage device and cooling system
WO2009088619A1 (en) * 2008-01-04 2009-07-16 3M Innovative Properties Company Thermal management of electrochemical cells
JP2013062207A (en) * 2011-09-15 2013-04-04 Nissan Motor Co Ltd Secondary battery cooling device
JP2013118154A (en) * 2011-12-05 2013-06-13 Toyota Industries Corp Secondary battery, vehicle, and power storage device
JP2017526108A (en) * 2014-06-27 2017-09-07 ツェントゥルム フューア ゾンネンエネルギー−ウント ヴァッサーシュトッフ−フォルシュング バーデン−ヴァルテムベルク ゲマインニュッツィヒ シュティフトゥング Controlled discharge of energy storage using redox shuttle additives.
DE102017219553A1 (en) * 2017-11-03 2019-05-09 Lithium Energy and Power GmbH & Co. KG Security element, battery cell and propagation protection element
JP2020514956A (en) * 2017-11-06 2020-05-21 恵州億緯▲リ▼能股▲フン▼有限公司Eve Energy Co., Ltd. Safe and high energy USB rechargeable battery

Similar Documents

Publication Publication Date Title
US6045939A (en) Lithium secondary battery having thermal switch
JP4336461B2 (en) Lithium secondary battery
JP4802188B2 (en) Electrochemical element having electrode lead with built-in protective element
JPH10326610A (en) Non-aqueous electrolyte secondary battery
JP2954147B1 (en) Explosion-proof secondary battery
JPH1140203A (en) Secondary battery
JP2000182598A (en) Nonaqueous electrolyte secondary battery and electrothermal relay for battery
WO2010125755A1 (en) Assembled sealing body and battery using same
JPH10241738A (en) Nonaqueous electrolytic secondary battery
JPH117931A (en) Secondary battery
JPH10241733A (en) Nonaqueous electrolytic secondary battery
JP2004362956A (en) Secondary battery
JP2000021386A (en) Battery
JPH10214613A (en) Nonaqueous electrolyte secondary battery and assembled battery using the same
JPH1140204A (en) Secondary battery
JPH10241739A (en) Nonaqueous electrolytic secondary battery
JPH10233237A (en) Nonaqueous electrolyte secondary battery
JP4169470B2 (en) Sealed battery
JPH10261400A (en) Nonaqueous electrolyte secondary battery
JPH117932A (en) Secondary battery
JP2000021366A (en) Secondary battery
JP2000208132A (en) Nonaqueous electrolyte secondary battery and battery thermal relay
JP4688305B2 (en) Non-aqueous secondary battery
JP2002245991A (en) Non-aqueous secondary battery
JP2001266812A (en) Nonaqueous secondary battery