JP4431225B2 - Cylindrical battery - Google Patents

Cylindrical battery Download PDF

Info

Publication number
JP4431225B2
JP4431225B2 JP24319899A JP24319899A JP4431225B2 JP 4431225 B2 JP4431225 B2 JP 4431225B2 JP 24319899 A JP24319899 A JP 24319899A JP 24319899 A JP24319899 A JP 24319899A JP 4431225 B2 JP4431225 B2 JP 4431225B2
Authority
JP
Japan
Prior art keywords
diaphragm
cylindrical
terminal plate
convex portion
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP24319899A
Other languages
Japanese (ja)
Other versions
JP2001068083A (en
Inventor
裕之 中田
千洋 村田
廣彦 太田
修一 荒栄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Corp
Original Assignee
FDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FDK Corp filed Critical FDK Corp
Priority to JP24319899A priority Critical patent/JP4431225B2/en
Publication of JP2001068083A publication Critical patent/JP2001068083A/en
Application granted granted Critical
Publication of JP4431225B2 publication Critical patent/JP4431225B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【0001】
【発明の属する技術分野】
この発明は、例えばスパイラル形電極を有するリチウム電池のような円筒形電池に関し、とくに、電池の内圧が所定値以上になったときに内圧を解放して安全を確保する防爆構造に関する。
【0002】
【従来の技術】
従来の円筒形電池の防爆構造の一例を図1に示しす。この構造では、有底円筒形の金属缶10に発電要素50を収容し、金属缶10の開口部内側にガスケット20を介してほぼ円盤形の封口体30をビーディング部10bまで嵌め込み、金属缶10の開口端部10aを内側にかしめることで缶10内部を密閉している。封口体30はリード板40を介して発電要素50の一方の電極に接続されて一方の端子を構成し、金属缶10が他方の端子を構成する。
【0003】
封口体30は、端子板31と樹脂パッキン32とダイアフラム33と皿状金属板34との4つの部品から構成される。端子板31はプレス加工品で、その中央部に外方に膨出した円筒状凸部31aを有している。円筒状凸部31aの頂部下面には、ダイアフラム33に対向して下向きに切り刃31cが突出形成されている。この切り刃31cは、その頂部表面を例えばV字状に切り裂いて下方に折り曲げて形成され、この切り裂き部31dは後述するガス抜き孔として機能する。この切り裂き部31dとは別に、円筒状凸部31aの側部には2つのガス抜き孔31bが貫通形成されている。樹脂パッキン32は、ポリプロピレンまたはポリエチレンからなり、中央透孔32aのある円環状の部品である。ダイアフラム33は、アルミニウムシートの両面をポリプロピレンで被覆したラミネートフィルムからなる円形の部品である。皿状金属板34はプレス加工品で、中央窪み部34cに窓孔34aが形成されていて、その外径寸法は端子板31よりも大きくなっている。これら4つの部品31,32,33,34は順次重ねられて、皿状金属板34の外周部34bを端子板31の外縁部にかしめることで一体化されている。
【0004】
封口体30は、電池内部の圧力が所定値以上になったときに、この圧力を安全に解放するための防爆機構として機能する。すなわち電池内部の圧力が上昇すると、その圧力を受けてダイアフラム33が伸展して上方に膨出する。その膨出変形量が大きくなると、ダイアフラム33が切り刃31cに当接して破断され、ガス抜き孔31b,31dを通じて電池内のガスが速やかに外部に放出され、危険な状態を回避できる。
【0005】
樹脂パッキン32は、電池内部の電解液の漏洩を防止するために、端子板31とダイアフラム33との間に挟み込まれ、この間の漏液路を遮断する機能を有している。ダイアフラム33は端子板31の円筒状凸部31aの内側に沿って上方に膨出するように設計されているため、樹脂パッキン32の中央透孔32aの内径は、ダイアフラム33の防爆動作に影響を与えないように、端子板31の円筒状凸部31aの内径と同等かそれよりも若干大きく形成されていた。
【0006】
【発明が解決しようとする課題】
前述した防爆構造において最も必要とされることは、電池の誤使用などにより電池の内圧が異常に上昇したときに、電池の内圧を外部に放出して電池の安全性を確保するという点である。そこで、電池を短絡して意図的に電池の内圧を上昇させて、ダイアフラム33が所定の内圧で破断するかどうかを確認する試験を行っている。本試験のダイアフラム33が破断するまでの時間及びダイアフラム33の破断状態については前述した樹脂パッキン32の中央透孔32aの内径と端子板31の円筒状凸部31aの内径との関係で定まる。この要件を▲1▼とする。
【0007】
一方、この防爆構造に必要とされる他の要件に電池の内圧が所定値に達していないときにダイアフラム33が破断してはならないことがある。ダイアフラム33が一旦破断してしまうと内部の電解液が漏れ出て電池として二度と使用できなくなるからである。ところが、従来の電池を70〜80℃程度の高温環境下に置いて長期間にわたり保存すると、ダイアフラム33が破断することがあった。ダイアフラム33の厚さや材質、それに切り刃の長さなどを変えても、充分に満足し得る特性を得ることはできなかった。
【0008】
そこで、本発明者らはその原因について追求した結果、長時間70〜80℃の高温環境下にさらされた場合、PP−Al−PPの3層にて構成されるダイアフラム33のPP層が軟化し膨張し易くなるためAl層と伸びの差異が生じる。ある程度時間が経過したところでAl層がその膨張に追従しきれず両面PP層の内部で破断する。Al層の破断により伸び強度を失ったダイアフラム33はその後も膨張を続け切刃31cに接触し破断に至る。この要件を▲2▼とする。
【0009】
更に、ダイアフラム33が膨出する過程で円筒状凸部31aの根元部に接触して損傷されて破断されたり、膨出したダイアフラム33がガス抜き孔31bを塞ぐ虞があることも判明した。
【0010】
この発明は、このような問題点に鑑みてなされたもので、その目的は、▲1▼に示した特性を維持し所望の防爆性能を確実に達成すると共に▲2▼のように高温環境下で長期間にわたり保存されても誤作動をすることのない円筒形電池の防爆構造を提供することにある。
【0011】
【課題を解決するための手段】
そこでこの発明では、有底円筒形の金属缶に発電要素を収納し、この金属缶の開口部内側にガスケットを介して封口体を嵌め込み、この金属缶の開口端部を内側にかしめることで缶内部を密閉する円筒形電池において、
前記封口体は、中央に円筒状凸部を有する端子板と、この端子板の下面に配設された中央透孔を有する樹脂パッキンと、この樹脂パッキンの下面に配設された円形ダイアフラムと、このダイアフラムの下面に配設されてその外周部分が前記端子板の外周部にかしめられてなる中央窓孔を有する皿状金属板とから構成され、
前記ダイアフラムは、アルミニウムシートの両面をポリプロピレンで被覆したラミネートフィルムからなり、
前記端子板の前記円筒状凸部には、ガス抜き孔が形成されているとともに、当該凸部の頂部下面に切り刃が下方に突出形成され、
前記樹脂パッキンの前記中央透孔は、前記端子板の前記円筒状凸部と同心の円形に形成されると共にその内径が前記円筒状凸部の内径の50%〜80%の範囲内に形成されてなる円筒形電池としている。
【0012】
【発明の実施の形態】
この発明を適用した防爆構造の一例を図2に示している。図1の従来構造と比較して、前記樹脂パッキン33の前記中央透孔33aの寸法のみが異なり、その他は前記の従来例と同じ構成であるので、同一構成部分についての説明は省略する。
【0013】
この実施形態の電池は、外径約25.5mm、総高約49mmの単2形のスパイラル形リチウム電池で、その封口体30の外径は23.6mm、端子板31および皿状金属板34の厚さは夫々0.5mmと0.3mm、ダイアフラム33の厚さは0.15mm(PP-Al-PP:60-30-60[μm])、樹脂パッキン32の厚さは0.3mmである。
【0014】
この発明の特徴は、樹脂パッキン32の中央透孔32aの内径が、端子板31の円筒状凸部31aの内径の50%〜80%の範囲内にあるという点である。中央透孔32aの内径がこのように従来よりも小さく設定されていことにより次の3つの効果を達成する。
(1)ダイアフラム33の膨脹を適切に抑制することで、ダイアフラム33が所定の内圧に達しない場合には切り刃31cに到達しない。
(2)ダイアフラム33が膨出して円筒状凸部31aの根元部に接触するのを防止する。
(3)ダイアフラム33が膨出したときにガス抜き孔31bを塞ぐ可能性を排除する。
樹脂パッキン32の中央透孔32aの内径をあまり小さくすると、電池内圧が所定の圧力に達したときにもダイアフラム33の上方への膨出が樹脂パッキンによって阻害されるから、パッキンの中央透孔の内径は端子板の円筒状凸部の内径の50%以上とすることである。
【0015】
この発明の効果を確認するために、樹脂パッキン32の中央透孔32aの内径(直径)Bを種々に変えた9種類の電池を各30個製作して試験した。端子板31の円筒状凸部31aの内径(直径)Aは共に10mm、中央透孔32aの内径(直径)Bは2mmから10mmまで1mm間隔で変えて9種作成した。これらを60℃、70℃、80℃の各温度下で保存して、保存開始から100日経過後のダイアフラム33の破断状態を調べ表1に示した。なお、中央透孔32aの内径(直径)Bが10mmのものは比較のために示した従来例に該当する。
【0016】
この結果、中央透孔32aの内径Bが2mm〜8mmの7種の電池には、どの温度においてもダイアフラム33が破断された形跡は見られなかった。内径Bが9mm、10mmの電池では、70℃及び80℃にてダイアフラム33の破断が確認された。
【0017】
【表1】

Figure 0004431225
【0018】
また、前述の短絡試験を上記9種類の電池について実施した。この試験で、中央透孔32aの内径(直径)Bが2mm,3mmのダイアフラム33は破断せず、図3のように電池の容量がなくなったところで電流が減少し電池の表面温度も降下した。その時の電池表面最高温度は約130℃を示した。一方、従来例である内径Bが10mmのものは図3に示すように短絡後3分〜3分30秒でダイアフラム33は破断し、電池表面最高温度も約100℃前後であった。また、Bが5〜9mmのものは10mmのものとほぼ同様の挙動を示した。Bが4mmのものは10mmのものに比べ1分程遅れてダイアフラム33が破断し、電池表面最高温度もダイアフラム33が破断しない時と同じ約130℃を示した。
【0019】
すなわち、この発明においては、樹脂パッキン32の中央透孔32aの内径を外側端子板31の円筒状凸部31aの内径よりも前記のように小さくしているので、ダイアフラム33の膨出部が樹脂パッキン32の中央透孔32aによって制限され、前述した従来構造のものよりダイアフラム33が膨出しにくくなっている。その結果、前記の高温保存下においてダイアフラム33が破断することがなくなっている。また、電池が急激に昇温・昇圧する短絡試験では、樹脂パッキン32自体が温度による影響を受けているがその時間は極めて短いため、従来のB=10mmのものとほぼ同じ時間内でダイアフラム33が破断している。
【0020】
以上のことから、樹脂パッキン32の中央透孔32aの内径を端子板31の円筒状凸部31aの内径に対し50%〜80%の範囲に形成するのが適切であった。
【0021】
【発明の効果】
樹脂パッキンの中央透孔の内径を端子板の円筒状凸部の内径の50%〜80%に設定することで、電池が70〜80℃の環境下で長期間にわたり保存されたときにおいても、ダイアフラムと切り刃との間隔を保って誤作動を防止することができる。また、ダイアフラムが膨出する過程で端子板の円筒状凸部の根元部に接触して損傷されることがない。また、ダイアフラムの膨出部がガス抜き孔を塞ぐ虞もない。しかも、電池内の圧力が所定値まで上昇したときにはダイアフラムが所定量膨張して切り刃と接触し、確実な防爆性能が得られる。
【図面の簡単な説明】
【図1】従来の円筒形電池の封口部の構造を詳細に示した部分断面図である。
【図2】本発明に係る円筒形電池の封口部の構造を詳細に示した部分断面図である。
【図3】本発明と従来の電池の短絡試験の結果を示すグラフである。
【符号の説明】
10 金属缶
20 ガスケット
30 封口体
31 端子板
31a 円筒状凸部
31b,31d ガス抜き孔
32 樹脂パッキン
32a 中央透孔
33 ダイアフラム
33a 中央窓孔
34 皿状金属板
50 発電要素[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a cylindrical battery such as a lithium battery having a spiral electrode, and more particularly to an explosion-proof structure that ensures safety by releasing the internal pressure when the internal pressure of the battery reaches a predetermined value or more.
[0002]
[Prior art]
An example of a conventional cylindrical battery explosion-proof structure is shown in FIG. In this structure, the power generation element 50 is accommodated in the bottomed cylindrical metal can 10, and the substantially disc-shaped sealing body 30 is fitted to the beading portion 10 b via the gasket 20 inside the opening of the metal can 10, The inside of the can 10 is sealed by caulking the 10 open end portions 10a inside. The sealing body 30 is connected to one electrode of the power generation element 50 via the lead plate 40 to constitute one terminal, and the metal can 10 constitutes the other terminal.
[0003]
The sealing body 30 is composed of four parts including a terminal plate 31, a resin packing 32, a diaphragm 33, and a dish-shaped metal plate 34. The terminal plate 31 is a press-processed product, and has a cylindrical convex portion 31a bulging outward at the center. On the lower surface of the top of the cylindrical convex portion 31a, a cutting blade 31c is formed so as to protrude downward facing the diaphragm 33. The cutting blade 31c is formed by cutting the top surface into, for example, a V shape and bending it downward, and the cutting portion 31d functions as a gas vent hole to be described later. Apart from the tearing portion 31d, two gas vent holes 31b are formed through the side of the cylindrical convex portion 31a. The resin packing 32 is an annular component made of polypropylene or polyethylene and having a central through hole 32a. The diaphragm 33 is a circular component made of a laminate film in which both surfaces of an aluminum sheet are covered with polypropylene. The dish-shaped metal plate 34 is a press-processed product, and a window hole 34 a is formed in the central recess 34 c, and the outer diameter thereof is larger than that of the terminal plate 31. These four parts 31, 32, 33, and 34 are sequentially stacked and integrated by caulking the outer peripheral portion 34 b of the dish-shaped metal plate 34 to the outer edge portion of the terminal plate 31.
[0004]
The sealing body 30 functions as an explosion-proof mechanism for safely releasing the pressure when the pressure inside the battery becomes a predetermined value or more. That is, when the pressure inside the battery rises, the diaphragm 33 is expanded under the pressure and bulges upward. When the amount of bulging deformation increases, the diaphragm 33 comes into contact with the cutting blade 31c and is broken, and the gas in the battery is quickly released to the outside through the gas vent holes 31b and 31d, thereby avoiding a dangerous state.
[0005]
The resin packing 32 is sandwiched between the terminal plate 31 and the diaphragm 33 in order to prevent leakage of the electrolytic solution inside the battery, and has a function of blocking the leakage path therebetween. Since the diaphragm 33 is designed to bulge upward along the inside of the cylindrical convex portion 31 a of the terminal plate 31, the inner diameter of the central through hole 32 a of the resin packing 32 affects the explosion-proof operation of the diaphragm 33. In order not to give it, it was formed to be equal to or slightly larger than the inner diameter of the cylindrical convex portion 31a of the terminal plate 31.
[0006]
[Problems to be solved by the invention]
What is most needed in the above-described explosion-proof structure is that when the internal pressure of the battery rises abnormally due to misuse of the battery or the like, the internal pressure of the battery is released to the outside to ensure the safety of the battery. . Therefore, a test is performed to check whether the diaphragm 33 breaks at a predetermined internal pressure by intentionally increasing the internal pressure of the battery by short-circuiting the battery. The time until the diaphragm 33 in this test breaks and the state of breakage of the diaphragm 33 are determined by the relationship between the inner diameter of the central through hole 32a of the resin packing 32 and the inner diameter of the cylindrical protrusion 31a of the terminal plate 31 described above. This requirement is set as (1).
[0007]
On the other hand, the diaphragm 33 may not break when the internal pressure of the battery does not reach a predetermined value as another requirement required for this explosion-proof structure. This is because once the diaphragm 33 is broken, the internal electrolyte leaks and cannot be used again as a battery. However, when a conventional battery is placed in a high temperature environment of about 70 to 80 ° C. and stored for a long time, the diaphragm 33 may break. Even if the thickness and material of the diaphragm 33 and the length of the cutting blade were changed, sufficiently satisfactory characteristics could not be obtained.
[0008]
Therefore, as a result of pursuing the cause, the present inventors have softened the PP layer of the diaphragm 33 composed of three layers of PP-Al-PP when exposed to a high temperature environment of 70 to 80 ° C. for a long time. Then, since it becomes easy to expand, a difference in elongation from the Al layer occurs. When a certain amount of time has passed, the Al layer cannot follow the expansion and breaks inside the double-sided PP layer. The diaphragm 33, which has lost its elongation strength due to the breakage of the Al layer, continues to expand and contacts the cutting edge 31c until it breaks. This requirement is set as (2).
[0009]
Further, it has also been found that there is a possibility that the diaphragm 33 may be damaged by being brought into contact with the root portion of the cylindrical convex portion 31a in the process of bulging, or the bulged diaphragm 33 may block the gas vent hole 31b.
[0010]
The present invention has been made in view of such problems. The object of the present invention is to maintain the characteristics shown in (1) and surely achieve the desired explosion-proof performance, and in a high-temperature environment as shown in (2). It is an object of the present invention to provide a cylindrical battery explosion-proof structure that does not malfunction even when stored for a long period of time.
[0011]
[Means for Solving the Problems]
Therefore, in the present invention, the power generation element is housed in a bottomed cylindrical metal can, a sealing body is fitted through the gasket inside the opening of the metal can, and the opening end of the metal can is caulked inside. In the cylindrical battery that seals the inside of the can,
The sealing body includes a terminal plate having a cylindrical convex portion at the center, a resin packing having a central through hole disposed on the lower surface of the terminal plate, a circular diaphragm disposed on the lower surface of the resin packing, It is composed of a plate-like metal plate having a central window hole disposed on the lower surface of the diaphragm and caulked on the outer periphery of the terminal plate,
The diaphragm is made of a laminate film in which both sides of an aluminum sheet are covered with polypropylene,
Said cylindrical protrusion of said terminal plate, with a gas vent hole is formed, the blade cutting the top lower surface of the convex portion formed to project downward,
The central through hole of the resin packing is formed in a circular shape concentric with the cylindrical convex portion of the terminal plate and has an inner diameter in a range of 50% to 80% of the inner diameter of the cylindrical convex portion. This is a cylindrical battery.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
An example of an explosion-proof structure to which the present invention is applied is shown in FIG. Compared with the conventional structure of FIG. 1, only the size of the central through-hole 33a of the resin packing 33 is different, and the others are the same as those in the conventional example, and therefore, the description of the same components is omitted.
[0013]
The battery of this embodiment is a single-type spiral lithium battery having an outer diameter of about 25.5 mm and a total height of about 49 mm. The outer diameter of the sealing body 30 is 23.6 mm, the terminal plate 31 and the plate-shaped metal plate 34. Are 0.5 mm and 0.3 mm, respectively, the diaphragm 33 is 0.15 mm (PP-Al-PP: 60-30-60 [μm]), and the resin packing 32 is 0.3 mm thick. is there.
[0014]
A feature of the present invention is that the inner diameter of the central through hole 32a of the resin packing 32 is in the range of 50% to 80% of the inner diameter of the cylindrical convex portion 31a of the terminal plate 31. The inner diameter of the central through hole 32a is set to be smaller than the conventional one, thereby achieving the following three effects.
(1) By appropriately suppressing the expansion of the diaphragm 33, when the diaphragm 33 does not reach a predetermined internal pressure, it does not reach the cutting blade 31c.
(2) The diaphragm 33 is prevented from bulging out and coming into contact with the root portion of the cylindrical convex portion 31a.
(3) The possibility of closing the gas vent hole 31b when the diaphragm 33 swells is eliminated.
If the inner diameter of the central through hole 32a of the resin packing 32 is made too small, the upward expansion of the diaphragm 33 is inhibited by the resin packing even when the internal pressure of the battery reaches a predetermined pressure. The inner diameter is 50% or more of the inner diameter of the cylindrical convex portion of the terminal plate.
[0015]
In order to confirm the effect of the present invention, 30 batteries of nine types each having different inner diameters (diameters) B of the central through holes 32a of the resin packing 32 were manufactured and tested. The inner diameter (diameter) A of the cylindrical convex portion 31a of the terminal plate 31 was 10 mm, and the inner diameter (diameter) B of the central through hole 32a was changed from 2 mm to 10 mm at intervals of 1 mm. These were stored at temperatures of 60 ° C., 70 ° C., and 80 ° C., and the fracture state of the diaphragm 33 after 100 days from the start of the storage was examined and shown in Table 1. A case where the inner diameter (diameter) B of the central through hole 32a is 10 mm corresponds to the conventional example shown for comparison.
[0016]
As a result, there was no evidence that the diaphragm 33 was broken at any temperature in the seven types of batteries having the inner diameter B of the central through hole 32a of 2 mm to 8 mm. In the batteries having an inner diameter B of 9 mm and 10 mm, the diaphragm 33 was confirmed to be broken at 70 ° C. and 80 ° C.
[0017]
[Table 1]
Figure 0004431225
[0018]
Moreover, the above-mentioned short circuit test was implemented about the said 9 types of battery. In this test, the diaphragm 33 whose inner diameter (diameter) B of the central through hole 32a was 2 mm or 3 mm was not broken, and when the battery capacity was lost as shown in FIG. 3, the current decreased and the surface temperature of the battery also decreased. The maximum battery surface temperature at that time was about 130 ° C. On the other hand, in the conventional example having an inner diameter B of 10 mm, the diaphragm 33 was broken 3 minutes to 3 minutes 30 seconds after the short circuit as shown in FIG. 3, and the battery surface maximum temperature was about 100 ° C. Further, when B was 5 to 9 mm, the behavior was almost the same as that of 10 mm. When B was 4 mm, diaphragm 33 broke after about 1 minute compared with 10 mm, and the battery surface maximum temperature was about 130 ° C., the same as when diaphragm 33 was not broken.
[0019]
That is, in this invention, since the inner diameter of the central through hole 32a of the resin packing 32 is made smaller than the inner diameter of the cylindrical convex portion 31a of the outer terminal plate 31, the bulging portion of the diaphragm 33 is made of resin. The diaphragm 33 is limited by the central through hole 32a of the packing 32, and the diaphragm 33 is more difficult to bulge than the conventional structure described above. As a result, the diaphragm 33 is not broken under the high temperature storage. Further, in the short-circuit test in which the temperature of the battery is rapidly increased / decreased, the resin packing 32 itself is affected by the temperature, but the time is extremely short. Therefore, the diaphragm 33 is within the same time as the conventional B = 10 mm. Is broken.
[0020]
From the above, it is appropriate to form the inner diameter of the central through hole 32a of the resin packing 32 in the range of 50% to 80% with respect to the inner diameter of the cylindrical convex portion 31a of the terminal plate 31.
[0021]
【The invention's effect】
Even when the battery is stored for a long time in an environment of 70 to 80 ° C. by setting the inner diameter of the central through hole of the resin packing to 50% to 80% of the inner diameter of the cylindrical convex portion of the terminal plate, It is possible to prevent malfunctions by keeping the distance between the diaphragm and the cutting blade. Further, the diaphragm does not come into contact with the base portion of the cylindrical convex portion of the terminal plate in the process of swelling. Further, there is no possibility that the bulging portion of the diaphragm blocks the gas vent hole. Moreover, when the pressure in the battery rises to a predetermined value, the diaphragm expands by a predetermined amount and comes into contact with the cutting blade, so that reliable explosion-proof performance is obtained.
[Brief description of the drawings]
FIG. 1 is a partial cross-sectional view showing in detail the structure of a sealing portion of a conventional cylindrical battery.
FIG. 2 is a partial cross-sectional view showing in detail a structure of a sealing portion of a cylindrical battery according to the present invention.
FIG. 3 is a graph showing the results of a short circuit test of the present invention and a conventional battery.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Metal can 20 Gasket 30 Sealing body 31 Terminal board 31a Cylindrical convex part 31b, 31d Gas vent hole 32 Resin packing 32a Central through-hole 33 Diaphragm 33a Central window hole 34 Dish-shaped metal plate 50 Power generation element

Claims (1)

有底円筒形の金属缶に発電要素を収納し、この金属缶の開口部内側にガスケットを介して封口体を嵌め込み、この金属缶の開口端部を内側にかしめることで缶内部を密閉する円筒形電池において、
前記封口体は、中央に円筒状凸部を有する端子板と、この端子板の下面に配設された中央透孔を有する樹脂パッキンと、この樹脂パッキンの下面に配設された円形ダイアフラムと、このダイアフラムの下面に配設されてその外周部分が前記端子板の外周部にかしめられてなる中央窓孔を有する皿状金属板とから構成され、
前記ダイアフラムは、アルミニウムシートの両面をポリプロピレンで被覆したラミネートフィルムからなり、
前記端子板の前記円筒状凸部には、ガス抜き孔が形成されているとともに、当該凸部の頂部下面に切り刃が下方に突出形成され、
前記樹脂パッキンの前記中央透孔は、前記端子板の前記円筒状凸部と同心の円形に形成されると共にその内径が前記円筒状凸部の内径の50%〜80%の範囲内に形成されてなることを特徴とする円筒形電池。
A power generation element is housed in a cylindrical metal can with a bottom, a sealing body is fitted inside the opening of this metal can via a gasket, and the inside of the can is sealed by caulking the opening end of the metal can inside. In cylindrical batteries,
The sealing body includes a terminal plate having a cylindrical convex portion at the center, a resin packing having a central through hole disposed on the lower surface of the terminal plate, a circular diaphragm disposed on the lower surface of the resin packing, It is composed of a plate-like metal plate having a central window hole disposed on the lower surface of the diaphragm and caulked on the outer periphery of the terminal plate,
The diaphragm is made of a laminate film in which both sides of an aluminum sheet are covered with polypropylene,
Said cylindrical protrusion of said terminal plate, with a gas vent hole is formed, the blade cutting the top lower surface of the convex portion formed to project downward,
The central through hole of the resin packing is formed in a circular shape concentric with the cylindrical convex portion of the terminal plate and has an inner diameter in a range of 50% to 80% of the inner diameter of the cylindrical convex portion. A cylindrical battery characterized by comprising:
JP24319899A 1999-08-30 1999-08-30 Cylindrical battery Expired - Lifetime JP4431225B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24319899A JP4431225B2 (en) 1999-08-30 1999-08-30 Cylindrical battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24319899A JP4431225B2 (en) 1999-08-30 1999-08-30 Cylindrical battery

Publications (2)

Publication Number Publication Date
JP2001068083A JP2001068083A (en) 2001-03-16
JP4431225B2 true JP4431225B2 (en) 2010-03-10

Family

ID=17100301

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24319899A Expired - Lifetime JP4431225B2 (en) 1999-08-30 1999-08-30 Cylindrical battery

Country Status (1)

Country Link
JP (1) JP4431225B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180028768A (en) * 2016-09-09 2018-03-19 주식회사 엘지화학 Cap assembly for secondary battery

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4688605B2 (en) * 2005-08-05 2011-05-25 日立ビークルエナジー株式会社 Cylindrical secondary battery
US11145942B2 (en) * 2016-03-25 2021-10-12 Sanyo Electric Co., Ltd. Cylindrical battery
JPWO2021210276A1 (en) * 2020-04-17 2021-10-21

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180028768A (en) * 2016-09-09 2018-03-19 주식회사 엘지화학 Cap assembly for secondary battery
KR102217442B1 (en) 2016-09-09 2021-02-22 주식회사 엘지화학 Cap assembly for secondary battery

Also Published As

Publication number Publication date
JP2001068083A (en) 2001-03-16

Similar Documents

Publication Publication Date Title
KR100324863B1 (en) Explosion-proof seal plate for enclosed type cell and production method thereof
JP4284712B2 (en) Explosion-proof sealing plate for sealed battery and sealed battery using the same
JP4431225B2 (en) Cylindrical battery
JP3667835B2 (en) Sealed storage battery
JPH10247483A (en) Safety structure of sealed battery
JPH09115498A (en) Sealed storage battery
JP3579206B2 (en) Sealed storage battery
JPH0917416A (en) Battery having explosion-proof function
JPS6372062A (en) Explosion-proof type battery
JP3884766B2 (en) Flat nonaqueous electrolyte battery
JP3380693B2 (en) Method of manufacturing explosion-proof sealing plate for battery
JPS60200456A (en) Enclosed type cylindrical alkaline storage battery
KR100378020B1 (en) Li-ION BATTERY USING SAFETY VENT OF POLYOLEFIN RESIN
JPH0650940Y2 (en) Explosion-proof lithium battery
JP4631245B2 (en) Square battery
JPH04206451A (en) Nonaqueous electrolyte battery
JPH07288121A (en) Sealing structure of explosion-proof battery
JPH0927310A (en) Sealed storage battery
JPH06325742A (en) Safety valve device of sealed battery
JP2007287625A (en) Sealed battery and its manufacturing method
JPH02304861A (en) Hermetically sealed alkaline storage battery
JPH10162800A (en) Alkaline manganese battery
JP2002083578A (en) Safety valve device for sealed container and sealed battery using the same
JPH0731501Y2 (en) Explosion-proof lithium battery
JPH065273A (en) Manufacture of safety device and its sealing plate of cylindrical battery

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040917

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090811

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091009

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20091009

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20091009

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091124

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091221

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121225

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4431225

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121225

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131225

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R255 Notification that request for automated payment was rejected

Free format text: JAPANESE INTERMEDIATE CODE: R2525

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term