JP4284712B2 - Explosion-proof sealing plate for sealed battery and sealed battery using the same - Google Patents

Explosion-proof sealing plate for sealed battery and sealed battery using the same Download PDF

Info

Publication number
JP4284712B2
JP4284712B2 JP05778898A JP5778898A JP4284712B2 JP 4284712 B2 JP4284712 B2 JP 4284712B2 JP 05778898 A JP05778898 A JP 05778898A JP 5778898 A JP5778898 A JP 5778898A JP 4284712 B2 JP4284712 B2 JP 4284712B2
Authority
JP
Japan
Prior art keywords
metal foil
thickness
bulging
welded
bulging portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP05778898A
Other languages
Japanese (ja)
Other versions
JPH11260334A (en
Inventor
哲哉 村上
兼人 増本
克彦 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP05778898A priority Critical patent/JP4284712B2/en
Publication of JPH11260334A publication Critical patent/JPH11260334A/en
Application granted granted Critical
Publication of JP4284712B2 publication Critical patent/JP4284712B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Connection Of Batteries Or Terminals (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Gas Exhaust Devices For Batteries (AREA)
  • Secondary Cells (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、密閉型電池、特にリチウム二次電池などの高エネルギー密度を有する電池の封口に用いる密閉型電池用防爆封口板およびそれを用いた密閉型電池に関するものである。
【0002】
【従来の技術】
近年、AV機器あるいはパソコンなどの電子機器のポータブル化,コードレス化(携帯型)が急速に進んでおり、これらの駆動用電源としては、高容量化した各種のアルカリ蓄電池やリチウム二次電池に代表される非水電解液二次電池が適しており、さらにこれら非水電解液二次電池は、高エネルギー密度で負荷特性の優れた密閉型の電池とすることが要望されている。
【0003】
ところで、エネルギー密度の高い密閉型電池は、充電器を含む機器が故障したり、過充電したり、あるいは誤使用したりした場合、化学反応などにより電池内部に異常にガスが発生し、電池の内圧が増大して電池が破壊されるなどの危険な状態になる。このように電池内にガスが蓄積して内圧が増大した状態にならないようにするために、電池の内圧が設定値を超えた時には弁体を開いてガスを電池外部へ放出して内圧を減少させる防爆安全装置が封口板に付加されている。さらに、非水電解液二次電池の場合には、内圧が上昇すると急激に温度が上昇して発火の危険性もあるため、内部圧力を検知することにより、ガスの排出に先立って通電電流を確実に遮断する電流遮断機構が封口板に設けられている(例えば、特開平9−129195号公報参照)。
【0004】
その通電電流を遮断する防爆安全機構について、図5を参照して説明する。
中央部分に下方に突出させる膨出部1aを形成し、この膨出部1aにC字形状の薄肉部からなる易破断部1bを形成した上部金属箔1と、前記易破断部1bよりも径の小さい円形の薄肉部からなる易破断部2bを周縁に形成した膨出部2aを中央部分に上方に突出させて形成した下部金属箔2とを、これら易破断部1b,2bを形成した膨出部1a,2aを同心状に対向させて重ね合わせ、上部金属箔1と下部金属箔2との周縁部分にリング状の絶縁ガスケット3を介在させ、金属ケース4の周縁をキャップ5の周縁に締結して固定し、上部金属箔1と下部金属箔2との中央部の膨出部1a,2aをレーザー溶接により、互いに溶接した電流遮断機構を備えた防爆封口板を形成している。そして、上部金属箔1と下部金属箔2とは弾性を保持した状態で固定されている。
【0005】
この防爆封口板は、上部金属箔1および下部金属箔2が、中央部に形成した膨出部1a,2aにおける溶接部Sのみを介して電気的に接続しており、電流を遮断する圧力は、刻印手段により形成されている易破断部1b,2bの破断強度に依存して設定されている。すなわち、電池内部のガス圧力が所定値まで上昇した時には、金属ケース4に設けた通気孔6より防爆封口板内にガスが流入し、その圧力で下部金属箔2の易破断部2bが破断され、下部金属箔2の膨出部2aは、上部金属箔1に溶接されているので、上部金属箔1がその保持している弾性およびガス圧により上方へ反転すると下部金属箔2から分離され、上部金属箔1と下部金属箔2との間で通電電流が遮断される(図9参照)。
【0006】
ガスによる電池の内圧がさらに上昇した場合には、上部金属箔1の易破断部1aが破断されるので、ガスはこの破断された部分よりキャップ5に設けた通気孔7を経て外部へ排出される。
【0007】
【発明が解決しようとする課題】
従来の防爆安全機構を備えた防爆封口板においては、中央部分が下方に突出する膨出部1aを形成した上部金属箔1と、中央部分が上方に突出する膨出部2aを形成した下部金属箔2との周縁部分に、リング状の絶縁ガスケット3を介在させて積重固定した場合、上部金属箔1の膨出部1aの突出寸法および下部金属箔2の膨出部2aの突出寸法の合計の寸法と、リング状の絶縁ガスケット3の厚みとの差(以下、当接寸法と記す)によって、レーザーによる溶接部Sの状態に異なる影響が生じることが解明された。
【0008】
上部金属箔1の膨出部1aと下部金属箔2の膨出部2aとの面密着性を確保して溶接部Sの安定性を図るために、上部金属箔1と下部金属箔2とにおける当接寸法を大きく設定しすぎた場合、図6に示すように、レーザーにより溶接した後の溶接部Sの中央部分mにおける肉厚が、正常な状態の肉厚(図8参照)に比べ、極端に薄くなるという現象が発生する。
【0009】
このように、溶接部Sの肉厚が薄くなると、目視,検査機などでは見分けられないような、小さなピンホールが発生する惧れがあり、ピンホールが発生した状態の防爆封口板を用いて密閉型電池、特にリチウム二次電池のような有機電解質を備えた電池を組み立てた場合、徐々に電池内の電解液が電池外部に漏れ、使用機器を腐食して破損したり、人体に電解液が付着して危険が生じたりする惧れがあった。
【0010】
一方、上部金属箔1と下部金属箔2とにおける当接寸法を小さく設定しすぎた場合は、図7に示すように、レーザー照射を行った溶接部Sの周囲部nの肉厚が正常な状態の肉厚(図8参照)に比べ、極端に薄くなるという現象が発生する。
【0011】
このように肉厚が薄い部分が発生すると、上部金属箔1と下部金属箔2とにおける溶接部Sの引張強度が、下部金属箔2における易破断部2bの引張強度より小さい状態で防爆封口板を形成し電池に組み込んだ場合、以下に説明するように、通電電流の遮断がし難くなるという問題点があった。
【0012】
電池内部に発生したガスによる内圧の上昇によって下部金属箔2に圧力が加わり、下部金属箔2の易破断部2bの一部が破断して上部金属箔1に圧力が加わるようになる。そして、上部金属箔1には上方への変形応力が働き、溶接部Sを支点にして下部金属箔2の膨出部2aを上方に引っ張り、下部金属箔2より分離させようとする際、溶接部Sの部分に引張強度の弱い薄肉部があると、この部分の一部が中途半端に破断して上部金属箔1が上方へ変形した後において、正常な場合(図9参照)と異なった状態になる(図10参照)。
【0013】
すなわち、溶接部Sの一部が破断した破断片aにより、上部金属箔1と下部金属箔2とは接続された状態になっている。下部金属箔2の易破断部2bは、溶接部Sを支点にして上部金属箔1が上方へ変形する時に引っ張られて破断されるのであるが、支点となる溶接部Sの一部が中途半端に破断されるために、易破断部2bの一部が破断した状態にあっても、膨出部2aは下部金属箔2からは完全に分離されていない状態となる。したがって、上部金属箔1が電池内のガス圧力によって上方へ変形した状態においても、上部金属箔1と下部金属箔2とは破断片aにより依然として電気的に導通した状態になっている(図10参照)。
【0014】
この状態で、さらに電池内のガス圧力が上昇すると、上部金属箔1の易破断部1bが開裂して電池内のガスを通気孔7より排出し、そのガス圧により溶接部Sが完全に下部金属箔2より破断して分離され、上部金属箔1と下部金属箔2との電気的導通が遮断される。しかし、このような遮断状態となる動作圧力は異常に高い値であるので、密閉型電池、特にリチウムイオン二次電池のような密閉型電池を過充電したような場合において、電池内のガス圧力がこのような高い圧力になった場合には、電流遮断のタイミングはすでに遅れた状態にあり、電池温度が異常に上昇している状態になっている。そこで、結果的には電流を遮断した状態になったとしても、電池温度は熱暴走領域に達しておるので、急激に温度上昇して好ましくない状態になる場合があるという問題点があった。
【0015】
そこで本発明は、上部金属箔と下部金属箔との溶接部に、易破断部よりも引張強度が弱い薄肉部が形成されることによる課題を解決することができる安定した溶接状態を確保する方法、ならびにピンホールが無く、耐漏液に優れ、かつ所定の電池内圧により確実に電流を遮断する防爆封口板およびそれを用いた密閉型電池を提供することを目的としている。
【0016】
【課題を解決するための手段】
本発明は、上記の課題を達成するために、絶縁ガスケットを介して上下に配し、中央部を溶接して電気的に道通させた上部金属箔および下部金属箔には、電池の内部圧力が所定値に上昇した時に破断する易破断部をそれぞれ設け、溶接する中央部には突出する膨出部をそれぞれ設け、これら膨出部の突出寸法とガスケットの厚み寸法との差を所定の範囲にすることとし、また膨出部をレーザーにより溶接する場合は、厚みが大きい方の金属箔にレーザーを照射することとしている。
【0017】
そして、このようにすることにより、溶接部分には易破断部よりも引張強度が弱い薄肉部が形成されなくなり、電池内部が所定の圧力になった時には、易破断部が破断されるようになるので、上部金属箔と下部金属箔との結合を分離して電流を確実に遮断することができる。
【0018】
【発明の実施の形態】
本発明における密閉型電池用防爆封口板は、中央部に下方へ突出した膨出部を設け、この膨出部に切り込み、薄肉などの易破断部を形成した板状の厚さ0.15mmの上部金属箔、および中央部に上方へ突出して前記上部金属箔の膨出部に当接する膨出部を設け、この膨出部に切り込み、薄肉などの易破断部を形成した板状の厚さ0.10mmの下部金属箔の周縁部に絶縁ガスケットを介在させ、前記の当接する膨出部を溶接して電気的に結合した電流遮断機構を有するものであり、双方の膨出部の突出寸法の合計寸法が絶縁ガスケットの厚みよりも大きく、双方の膨出部の突出寸法の合計寸法と絶縁ガスケットの肉厚寸法との差が、0.05mm以上で0.30mm以下の範囲になるようにしたものである。
【0019】
このように、上部金属箔の下方に突出する膨出部の突出寸法と下部金属箔の上方に突出する膨出部の突出寸法との合計寸法と、リング状の絶縁ガスケットの厚み寸法との差(以下、当接寸法と記す)が、0.05mm以上で0.30mm以下になるようにすると、膨出部の間を溶接した場合、その溶接部の中央部分の肉厚が極端に薄くなったり、あるいは溶接部の周囲の金属厚みが極端に薄くなったりして易破断部よりも先行して破断されることがなくなる。
【0020】
双方の膨出部を当接して電流遮断機構を形成する状態では、上部金属箔と下部金属箔との内、剛性の弱い方の金属箔が変形し、その剛性が弱い方の金属箔に応力が残留した状態となっている。このような状態で上部金属箔と下部金属箔との膨出部を溶接するためにレーザーを照射すると、上部金属箔と下部金属箔との膨出部間の密着性および密着面積が十分に確保されている場合、上部金属箔,下部金属箔の溶接部の熱伝導性が良くなるので、溶接部の中央部分を中心に金属が溶融され、さらに、その熱によって溶接部の周囲の金属も軟化される。この際、応力が残留している剛性の弱い方の金属箔が、残留応力を解放する方向に変形し、膨出部のレーザーを照射した部分よりやや外側の部分で膨出部間に隙間が発生し、この隙間に溶融した金属が流れ込み、溶接部の中央部分の金属厚みが、溶接部の外周部の金属厚みよりも薄くなるという現象が発生する(図6参照)。
【0021】
この現象は、当接寸法の大きさによって程度が異なり、当接寸法が0.35mm、特に0.30mmより大きくなると顕著に現れ、その部分にピンホールが発生し易くなる。そこで、当接寸法の上限値としては0.30mmが適切である。
【0022】
一方、当接寸法が0.03mm、特に0.05mmより小さくなると、上部金属箔および下部金属箔の膨出部が良好に当接し難くなって十分な密着状態が得られなく、レーザーを照射する溶接部の一部、もしくはレーザーを照射する溶接部近傍における膨出部間に隙間が生じ易くなる。このような状態で、上部金属箔および下部金属箔の膨出部を溶接するためにレーザーを照射すると、上部金属箔および下部金属箔の膨出部間の熱伝導性が悪くなるため、膨出部の中央部分の狭い面積部分の金属のみが溶融することになり、またレーザーを照射した部分の周縁部における金属にも溶融が起こり、これら溶融した金属が膨出部の間の隙間、またはレーザーを照射した部分の近傍に形成された上部金属箔と下部金属箔との間の隙間に流れ込んで、レーザーを照射した溶接部の周囲の金属厚みが薄くなるという現象が発生する(図7参照)。
【0023】
この現象は、上部金属箔および下部金属箔の膨出部の形状によっても程度が異なるが、当接寸法が0.03mm、特に0.05mmより小さくなると顕著に現れ、最悪の場合には金属厚みが薄くなった部分に穴開きが発生する場合があるので、当接寸法の下限値としては0.05mmが適切なものとなる。
【0024】
以上のことから、当接寸法は0.05mm以上,0.30mm以下になるように設定することによって、安定したレーザー溶接状態を得ることが可能となる。
【0025】
また、上部金属箔および下部金属箔の膨出部を当接してレーザーにより溶接する場合、上部金属箔および下部金属箔の中で厚みが大きい方の金属箔にレーザーを照射するものである。このようにしてレーザーを照射することにより、当接寸法により発生する薄肉部の形成を緩和することができる。
【0026】
当接寸法が小さい場合、レーザーを照射した部分の周囲において肉厚が薄くなる現象が発生するが、レーザーを照射する側の金属箔の厚みが大きい場合、厚みが薄い方の金属箔にレーザーを照射した場合に比べ、薄肉化した周縁部以外の残りの部分の金属厚みは厚くすることができる。
【0027】
一方、金属材質によって異なる場合もあるが、一般的には金属箔の厚みが厚くると剛性も強くなるので、当接寸法が大きい場合、厚みが薄い方、すなわち剛性が弱い方の金属箔が変形し、この金属箔に応力が残留した状態となる。そして応力が残留している厚みが薄い方の金属箔にレーザーを照射した場合、残留応力が存在する金属箔に、直接熱による熱処理効果が強く現れるため、軟化の度合いが大きくなり、残留応力の影響で変形する変形量も大きくなって溶接部の金属の肉厚はより薄くなる。
【0028】
これに対し、肉厚が厚い方、すなわち剛性が強い方の金属箔にレーザーを照射した場合、残留応力が存在する肉厚の薄い方、すなわち剛性の弱い方の金属箔は熱伝導による間接的な熱によってのみ熱処理されることになるので、軟化の度合いは小さく、溶接部の金属厚みは肉厚が薄い方の金属箔にレーザーを照射した場合に比べて厚くすることができる。
【0029】
このように、上部金属箔および下部金属箔の中央に形成した膨出部を当接してレーザー溶接する場合、肉厚が厚い方の金属箔にレーザーを照射することによって、より安定したレーザー溶接状態を確保することが可能となる。
【0030】
さらに、中央部に下方へ突出した膨出部を設け、この膨出部に切り込み、薄肉などの易破断部を形成した板状の厚さ0.15mmの上部金属箔、および中央部に上方へ突出して前記上部金属箔の膨出部に当接する膨出部を設け、この膨出部に切り込み、薄肉などの易破断部を形成した板状の厚さ0.10mmの下部金属箔の周縁部に絶縁ガスケットを介在させ、前記の当接する膨出部を溶接して電気的に結合し、前記双方の膨出部の突出寸法の合計寸法が前記絶縁ガスケットの厚みよりも大きく、前記双方の膨出部の突出寸法の合計寸法と前記絶縁ガスケットの肉厚寸法との差を0.05mm以上で0.30mm以下の範囲にした電流遮断機構を、通気孔を有する金属ケースとキャップとの間に収納し、これら金属ケースとキャッフとの周縁部により前記電流遮断機構の周縁部を締着した防爆封口板により、発電要素を内蔵した電池ケースの開口端を密封口にしたものである。
【0031】
そして、電池内部に発生したガスは、金属ケースの通気孔より防爆封口板内に入り、そのガス圧が所定値以上になると下部金属箔に設けた易破断部が破断され、上部金属箔の弾性とガス圧力とによって膨出部の一部が下部金属箔より分離されるので、上部金属箔と下部金属箔との電気的に結合は遮断される。その結果、密閉型電池の正極端子、例えばキャップと負極端子、例えば電池ケースとの間に流れる電流が遮断されてガスの発生が抑制されるので、防爆機能を発揮することができる。
【0032】
【実施例】
以下、本発明の実施例について、図1〜図4を参照しながら説明する。
【0033】
図1は、本発明の実施例における密閉型電池用防爆封口板の縦断面図を示し、密閉型電池用防爆封口板は、可撓性を有する円板状の薄い上部金属箔8と、この上部金属箔8と中央部において当接させて溶接した下部金属箔9と、これら上部金属箔8と下部金属箔9との周縁部の間に介在させたリング状の絶縁ガスケット10と、上部金属箔8の周縁部の上面に載置したリング状のPTC素子11とを有する電流遮断機構を備えている。この電流遮断機構が、PTC素子11上に載置され、4個の通気孔12を有する円板状の金属キャップ13と、4個の通気孔14を有するアルミニウム製の金属ケース15とにより挟持され、金属ケース15の端部を、金属キャップ13の周縁部に折曲締結することにより密閉型電池用防爆封口板を形成している。
【0034】
上部金属箔8は、厚さ0.15mmで外径が12.7mmの可撓性を有するアルミニウム円盤により形成し、中央部分が下方に向けて湾曲形状に突出した膨出部16と、この膨出部16の中央部分に、外径4.0mmのC字型形状の刻印を用いて形成したC字形状の薄肉部からなる易破断部17とを有している。
【0035】
下部金属箔9は、厚さ0.10mmで外径が13.5mmの可撓性を有するアルミニウム円盤により形成し、中央部分が上方に向けて湾曲形状に突出した膨出部18と、この膨出部18の中央部分に、外径3.0mmのO字型形状の刻印を用いて形成したO字形状の薄肉部からなる易破断部19とを有している。さらに、上部金属箔8と下部金属箔9とを電気的に導通結合させるために、上部金属箔8および下部金属箔9における膨出部16,18の中央部分をレーザーにより溶接して結合部20を形成している。
【0036】
上部金属箔8と下部金属箔9との周縁部の間に介在させる絶縁ガスケット10は、底面部中央を円状に切欠した皿形状をし、厚みが0.40mmで周縁部の断面形状は略L字型となっている。また、上部金属箔8の中央部分に形成した下方に向けて湾曲形状に突出させた膨出部16の突出寸法(高さ)は0.40mmとし、下部金属箔9の中央部分に形成した上方に向けて湾曲形状に突出させた膨出部18の突出寸法(高さ)は、表1に示すように設定した。上部金属箔8の膨出部16と下部金属箔9の膨出部18とを当接し、電気的な結合部20を形成するには、上部金型Pおよび下部金型Qからなる溶接治具を使用して、上部金属箔8,下部金属箔9およびその周縁部間に介在させた絶縁ガスケット10を固定し、当接した膨出部16,18にレーザー溶接機Rによりレーザを照射して溶接部Sを設けることにより形成している(図2参照)。
【0037】
なお、上部金属箔8と下部金属箔9との電気的に導通を得るための結合部20をレーザー溶接による溶接部Sにより形成する場合、レーザーを照射する面による影響を確認するために、以下に説明する2種類の方法で確認を行った。
【0038】
その一つは、上部金属箔8と下部金属箔9の中で肉厚が薄い方、すなわち剛性が弱い方の下部金属箔9の面にレーザーを照射して溶接部Sを形成する方法(図2(a)参照)であり、他は肉厚が厚い方、すなわち剛性が強い方の上部金属箔8の面にレーザーを照射して溶接部Sを形成する方法である(図2(b)参照)。
【0039】
下部金属箔9の膨出部18の突出寸法、この下部金属箔9,上部金属箔8および絶縁ガスケット10を溶接治具に固定した際の当接寸法ならびに上部金属箔8の膨出部16と下部金属箔9の膨出部18とをレーザーにより溶接した場合の溶接体(試験対象)の記号とは表1に示す通りである。なお、絶縁ガスケット10の肉厚と上部金属箔8の肉厚とを0.40mmと同じ厚さにして、当接寸法は下部金属箔9の肉厚と同じになるようにしている。
【0040】
【表1】

Figure 0004284712
【0041】
下部金属箔9にレーザーを照射した場合の溶接部Sの引張強度(g)と下部金属箔9の易破断部19の引張強度(g)とは表2および図3に示す通りである。
【0042】
【表2】
Figure 0004284712
【0043】
上部金属箔8にレーザーを照射した場合の溶接部Sの引張強度(g)は表3および図4に示す通りである。
【0044】
【表3】
Figure 0004284712
【0045】
また、図1に示す防爆封口板を構成した場合において、電流を遮断する動作圧力が、異常値(異常に高い動作圧力)を示した割合は表4の通りである。
【0046】
【表4】
Figure 0004284712
【0047】
次に、防爆封口板が備えている電流遮断機構の動作形態について図1を参照して説明する。
【0048】
電池内部に発生したガスにより内圧が上昇すると、金属ケース15の通気孔14を経由して下部金属箔9に圧力が加わり、上方へ変形する応力が働き、ついで下部金属箔9の易破断部19の一部が破断し、ガスは絶縁ガスケット10を介して積重された上部金属箔8と下部金属箔9で挟まれた空間に流入して上部金属箔8にガス圧力を加えるので、上部金属箔8には上方へ変形する応力が働くようになる。そして、上部金属箔8はガスの圧力による応力で上方へ変形しようとする際、結合部20を支点にして一部が破断されている易破断部19の内側部分を上方に引っ張り、易破断部19をくり抜いて下部金属箔9から分離させるような力を作用させる。
【0049】
この場合、正常な状態で電流が遮断されるためには、つまり結合部20が中途半端に破断することなく(図10参照)、正常に電流を遮断するように動作させるためには(図9参照)、結合部20の引張強度が、下部金属箔9の易破断部19の引張強度よりも大きい必要がある。
【0050】
図3および表2より、溶接体Aおよび溶接体Bの場合、下部金属箔9の易破断部19の引張強度分布の上部と、溶接体Aおよび溶接体Bの引張強度分布の下部とが重なり合っている。つまり、下部金属箔9の易破断部19の引張強度が、溶接体Aおよび溶接体Bの引張強度よりも大きくなる場合が存在することになる。このような場合、結合部20が中途半端に破断して、電流遮断に異常な動作圧力を示すことになり、表4からもこのことがわかる。
【0051】
溶接体C〜溶接体Gの場合は、下部金属箔9の易破断部19の引張強度分布の上部と溶接体C〜溶接体Gの引張強度分布の下部とが重なり合わないために、下部金属箔9の易破断部19の引張強度が溶接体C〜溶接体Gの引張強度よりも大きくなる場合は存在しなくなる。
【0052】
以上から、下部金属箔9にレーザーを照射する場合、当接寸法、すなわち上部金属箔8の中央部分を下方に突出させた膨出部16の突出寸法および下部金属箔9の中央部分を上方に突出させた膨出部18の突出寸法の合計寸法と、絶縁ガスケット10の肉厚との差は、0.05mm以上に設定することが好ましく、結合部20が中途半端に破断して電流遮断に異常な動作圧力を示すことがなく、常に安定した電流遮断機構を形成することが可能になる。
【0053】
また、図4および表3より、溶接体Hの場合、下部金属箔9の易破断部19の引張強度分布の上部と、溶接体Hの引張強度分布の下部とが重なり合っている。つまり、下部金属箔9の易破断部19の引張強度が溶接体Hの引張強度よりも大きくなる場合が存在することになる。このような場合、結合部20が中途半端に破断して電流遮断に異常な動作圧力を示すことになり、表4からもこのことがわかる。
【0054】
溶接体I〜溶接体Nの場合は、下部金属箔9の易破断部19の引張強度分布の上部と溶接体I〜溶接体Nの引張強度分布の下部とが重なり合わないために、下部金属箔9の易破断部19の引張強度が溶接体I〜溶接体Nの引張強度よりも大きくなる場合は存在しなくなる。
【0055】
以上から、上部金属箔8にレーザーを照射する場合、当接寸法、すなわち上部金属箔8の中央部分を下方に突出させた膨出部16の突出寸法および下部金属箔9の中央部分を上方に突出させた膨出部18の突出寸法の合計寸法と、絶縁ガスケット10の肉厚との差は、0.03mm以上に設定することが好ましいといえる。上部金属箔8および下部金属箔9の中で肉厚が厚い方の金属箔にレーザーを照射するのが有利になるのは、レーザーを照射して薄肉化した周縁部の残りの部分の金属厚みが、肉厚が薄い方の金属箔にレーザーを照射した場合よりも厚くなることに起因し、当接寸法の下限値を小さくすることができる。
【0056】
次に、各溶接体A〜Nについて、目視および検査機では判別不可能なレベルのピンホールの有無を確認するために、各溶接体A〜Nを用いて図1に示すような電流遮断機構を備えた防爆封口板を構成し、密閉型円筒形リチウム二次電池に組み込んでその耐漏液性の確認を行った。
【0057】
密閉型円筒形リチウム二次電池としては、金属箔集電体にLiCoO2 を主成分とするペーストを塗布,乾燥した後、短冊状に切断した正極板と、カーボンをペースト状にして金属箔集電体に塗布,乾燥した後、短冊状に切断した負極板とをフィルム状セパレーターを介して巻回した発電要素および有機電解液を電池ケースの内部に内蔵させたものである。なお、電池ケースの開口部に設けた環状段部には防爆封口板を絶縁ガスケットを介して嵌合させ、前記ケースの開口端を金型で内方に折り曲げて、前記ケースの開口部を密封口している。防爆封口板の金属ケース15には、発電要素の一方の極板のリード片を溶接して電気的に接続し、他方の極板のリード片は電池ケースの底部内面に溶接して電気的に接続している。
【0058】
各溶接体A〜Nを用いた電流遮断機構を有する防爆封口板を組み込んだ密閉型円筒形リチウム二次電池を各500個作成し、85℃の雰囲気で2週間放置し、その耐漏液性を漏液発生個数で調べた結果は表5に示す通りである。
【0059】
【表5】
Figure 0004284712
【0060】
この表5より、溶接体A〜溶接体Eを用いた防爆封口板を組み込んだリチウム二次電池の場合は漏液の発生が認められないのに対し、溶接体Fと溶接体Gを用いた防爆封口板を組み込んだリチウム二次電池の場合には漏液が発生していることがわかる。
【0061】
以上から、下部金属箔9にレーザーを照射する場合、当接寸法、すなわち上部金属箔8の中央部分を下方に突出させた膨出部16の突出寸法および下部金属箔9の中央部分を上方に突出させた膨出部18の突出寸法の合計寸法と、絶縁ガスケット10の肉厚との差は0.30mm以下に設定することが好ましく、ピンホールが発生することなく、耐漏液性に優れた安定した防爆封口板を得ることが可能になる。
【0062】
また、溶接体H〜溶接体Mを用いた防爆封口板を組み込んだリチウム二次電池の場合は漏液の発生が認められないのに対し、溶接体Nを用いた防爆封口板を組み込んだリチウム二次電池の場合には漏液が発生していることがわかる。
【0063】
以上から、上部金属箔8にレーザーを照射する場合、当接寸法、すなわち上部金属箔8の中央部分を下方に突出させた膨出部16の突出寸法および下部金属箔9の中央部分を上方に突出させた膨出部18の突出寸法の合計寸法と、絶縁ガスケット10の肉厚との差は0.35mm以下に設定することが好ましいといえる。肉厚が厚い方、すなわち剛性が強い方の金属箔にレーザーを照射した場合、残留応力が存在している肉厚の薄い方、すなわち剛性の弱い方の金属箔には、熱伝導による間接的な熱が加わるのみであるので、溶接部周囲が軟化する度合いは小さいものとなる。このため、下部金属箔9の残留応力を解放しようとする力によって下部金属箔9が変形する度合は小さく、レーザーを照射した上部金属箔8と下部金属箔9との間に形成される隙間は、下部金属箔9にレーザーを照射する場合に比べて小さくなり、中央部分において溶融した金属が上記隙間へ流れ込むことも抑制され、中央部分の金属厚みが厚くなることに起因し、当接寸法の上限値を大きくすることができる。
【0064】
以上のことから、上部金属箔8の中央部分を下方に突出させた膨出部16の突出寸法および下部金属箔9の中央部分を上方に突出させた膨出部18の突出寸法の合計寸法と、絶縁ガスケット10の肉厚との差、すなわち当接寸法は0.03mm以上,0.35mm以下、好ましくは、0.05mm以上,0.30mm以下に設定することが適切であり、結合部20が中途半端に破断して電流遮断に異常な動作圧力を示すこともなく、常に安定した電流遮断機構を形成することが可能となり、さらにレーザーを照射して溶接した結合部20にピンホールが発生することがなく、耐漏液性に優れた密閉型電池を提供することが可能となる。
【0065】
なお、上部金属箔8と下部金属箔9とをレーザーにより溶接する場合、肉厚が厚い方の金属箔にレーザーを照射して溶接すると、当接寸法の下限値を0.03mmに、上限値を0.35mmに拡大して設定することができ、より広い範囲で当接寸法を設定することが可能となり、さらに安定した電流遮断機構および耐漏液性を確保することが可能となる。
【0066】
【発明の効果】
本発明は、以上説明したような形態で実施され、以下に記載されるような効果を奏する。
【0067】
上部金属箔の中央部分を下方に突出させた膨出部の突出寸法および下部金属箔の中央部分を上方に突出させた膨出部の突出寸法の合計寸法と、絶縁ガスケットの肉厚との差を所定の値にコントロールして溶接することにより、また上部金属箔および下部金属箔の内、肉厚が厚い方の金属箔にレーザーを照射して溶接することによって、常に安定した電流遮断機構,耐漏液特性を有する密閉型電池用防爆封口板を得ることが可能となり、この防爆封口板を組み込んだ密閉型電池は、耐漏液特性に優れ、内部ガス圧力の増加によっても安全なものとなる。
【図面の簡単な説明】
【図1】 本発明の実施例における電流遮断機構を有する防爆封口板の縦断面図
【図2】 同電流遮断機構を形成するレーザー溶接治具の説明図
【図3】 同電流遮断機構における結合部の引張強度分布図
【図4】 同電流遮断機構における結合部の引張強度分布図
【図5】 従来における電流遮断機構を有する防爆封口板の断面図
【図6】 電流遮断機構における溶接部の説明模式図
【図7】 電流遮断機構における溶接部の説明模式図
【図8】 電流遮断機構における溶接部の説明模式図
【図9】 同電流遮断機構を有する防爆封口板の動作形態を説明する断面図
【図10】 同電流遮断機構を有する防爆封口板の動作形態を説明する断面図
【符号の説明】
8 上部金属箔
9 下部金属箔
10 絶縁ガスケット
12,14 通気孔
13 金属キャップ
15 金属ケース
16,18 膨出部
17,19 易破断部
20 結合部[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an explosion-proof sealing for a sealed battery used for sealing a sealed battery, particularly a battery having a high energy density such as a lithium secondary battery. Plate And a sealed battery using the same.
[0002]
[Prior art]
In recent years, electronic devices such as AV equipment and personal computers are rapidly becoming portable and cordless (portable), and these drive power supplies are represented by various types of alkaline storage batteries and lithium secondary batteries with higher capacities. The non-aqueous electrolyte secondary batteries are suitable, and these non-aqueous electrolyte secondary batteries are required to be sealed batteries with high energy density and excellent load characteristics.
[0003]
By the way, in a sealed battery with high energy density, when a device including a charger fails, is overcharged, or is misused, gas is abnormally generated inside the battery due to a chemical reaction, etc. The internal pressure increases, resulting in a dangerous state such as destruction of the battery. In order to prevent the gas from accumulating in the battery and increasing the internal pressure in this way, when the internal pressure of the battery exceeds the set value, the valve body is opened to release the gas to the outside of the battery to reduce the internal pressure. An explosion-proof safety device is attached to the sealing plate. Furthermore, in the case of a non-aqueous electrolyte secondary battery, if the internal pressure rises, the temperature suddenly rises and there is a danger of ignition.Therefore, by detecting the internal pressure, the energizing current is increased prior to gas discharge. A current interrupting mechanism for reliably interrupting is provided in the sealing plate (see, for example, JP-A-9-129195).
[0004]
An explosion-proof safety mechanism that cuts off the energization current will be described with reference to FIG.
An upper metal foil 1 in which a bulging portion 1a that protrudes downward at the center portion is formed, and an easily breakable portion 1b formed of a C-shaped thin portion is formed on the bulged portion 1a, and the diameter is larger than the easily breakable portion 1b. The lower metal foil 2 formed by projecting the bulging portion 2a formed of a small thin thin portion of the circular shape at the periphery to the center portion and the bulging portion 2b formed of the rupture portions 1b and 2b. The projecting portions 1 a and 2 a are concentrically opposed to each other, and a ring-shaped insulating gasket 3 is interposed between the peripheral portions of the upper metal foil 1 and the lower metal foil 2, and the peripheral edge of the metal case 4 is the peripheral edge of the cap 5. An explosion-proof sealing plate having a current blocking mechanism is formed by fastening and fixing, and welding the bulging portions 1a and 2a at the center of the upper metal foil 1 and the lower metal foil 2 to each other by laser welding. The upper metal foil 1 and the lower metal foil 2 are fixed in a state where elasticity is maintained.
[0005]
In this explosion-proof sealing plate, the upper metal foil 1 and the lower metal foil 2 are electrically connected only through the welded portion S in the bulging portions 1a and 2a formed in the center portion, and the pressure for blocking the current is These are set depending on the breaking strength of the easily breakable portions 1b, 2b formed by the marking means. That is, when the gas pressure inside the battery rises to a predetermined value, the gas flows into the explosion-proof sealing plate from the vent hole 6 provided in the metal case 4, and the easily breakable portion 2b of the lower metal foil 2 is broken by the pressure. Since the bulging portion 2a of the lower metal foil 2 is welded to the upper metal foil 1, the upper metal foil 1 is separated from the lower metal foil 2 when inverted by the elasticity and gas pressure held by the upper metal foil 1, An energization current is interrupted between the upper metal foil 1 and the lower metal foil 2 (see FIG. 9).
[0006]
When the internal pressure of the battery due to the gas further increases, the easily breakable portion 1a of the upper metal foil 1 is broken, so that the gas is discharged from the broken portion to the outside through the vent hole 7 provided in the cap 5. The
[0007]
[Problems to be solved by the invention]
In an explosion-proof sealing plate provided with a conventional explosion-proof safety mechanism, an upper metal foil 1 having a bulging portion 1a whose central portion protrudes downward, and a lower metal having a bulging portion 2a whose central portion protrudes upward. When the ring-shaped insulating gasket 3 is interposed and fixed to the periphery of the foil 2, the protruding dimension of the bulging part 1a of the upper metal foil 1 and the protruding dimension of the bulging part 2a of the lower metal foil 2 are set. It has been clarified that a difference between the total dimension and the thickness of the ring-shaped insulating gasket 3 (hereinafter referred to as a contact dimension) causes different effects on the state of the welded part S by the laser.
[0008]
In order to ensure the surface adhesion between the bulging portion 1a of the upper metal foil 1 and the bulging portion 2a of the lower metal foil 2 and to stabilize the welded portion S, the upper metal foil 1 and the lower metal foil 2 When the contact dimension is set too large, as shown in FIG. 6, the thickness at the central portion m of the welded portion S after welding by laser is larger than the thickness in the normal state (see FIG. 8). The phenomenon that it becomes extremely thin occurs.
[0009]
As described above, when the thickness of the welded portion S is reduced, there is a possibility that a small pinhole that cannot be distinguished by visual inspection or an inspection machine may occur, and the explosion-proof sealing plate in a state where the pinhole is generated is used. When assembling a sealed battery, especially a battery with an organic electrolyte such as a lithium secondary battery, the electrolyte in the battery gradually leaks to the outside of the battery, corrodes the equipment used, and is There was a risk of danger due to adhesion.
[0010]
On the other hand, when the contact dimension between the upper metal foil 1 and the lower metal foil 2 is set too small, as shown in FIG. 7, the thickness of the peripheral portion n of the welded portion S subjected to laser irradiation is normal. Compared to the thickness of the state (see FIG. 8), a phenomenon that it becomes extremely thin occurs.
[0011]
When such a thin portion is generated, the explosion-proof sealing plate is in a state where the tensile strength of the welded portion S in the upper metal foil 1 and the lower metal foil 2 is smaller than the tensile strength of the easily breakable portion 2b in the lower metal foil 2. When it is formed and incorporated in a battery, there is a problem that it becomes difficult to cut off the energized current as described below.
[0012]
A pressure is applied to the lower metal foil 2 due to an increase in the internal pressure due to the gas generated inside the battery, and a part of the easily breakable portion 2b of the lower metal foil 2 is broken to apply pressure to the upper metal foil 1. When the upper metal foil 1 is subjected to upward deformation stress, the bulging portion 2a of the lower metal foil 2 is pulled upward with the welded portion S as a fulcrum, and the welding is performed when the upper metal foil 1 is separated from the lower metal foil 2. When there was a thin part with a weak tensile strength in the part S, a part of this part was broken halfway, and after the upper metal foil 1 was deformed upward, it was different from the normal case (see FIG. 9). (See FIG. 10).
[0013]
That is, the upper metal foil 1 and the lower metal foil 2 are connected by the broken piece a in which a part of the weld S is broken. The easily breakable portion 2b of the lower metal foil 2 is pulled and broken when the upper metal foil 1 is deformed upward with the welded portion S as a fulcrum, but a part of the welded portion S serving as the fulcrum is halfway. Therefore, the bulging portion 2a is not completely separated from the lower metal foil 2 even when a part of the easily breakable portion 2b is broken. Therefore, even when the upper metal foil 1 is deformed upward by the gas pressure in the battery, the upper metal foil 1 and the lower metal foil 2 are still electrically connected by the fracture piece a (FIG. 10). reference).
[0014]
In this state, when the gas pressure in the battery further increases, the easily breakable portion 1b of the upper metal foil 1 is cleaved to discharge the gas in the battery from the vent hole 7, and the weld S is completely lowered by the gas pressure. The metal foil 2 is broken and separated, and the electrical conduction between the upper metal foil 1 and the lower metal foil 2 is interrupted. However, since the operating pressure at which such a shut-off state is reached is an abnormally high value, the gas pressure in the battery when a sealed battery, particularly a sealed battery such as a lithium ion secondary battery, is overcharged. However, when such a high pressure is reached, the timing of current interruption has already been delayed, and the battery temperature has abnormally increased. As a result, even if the current is cut off, the battery temperature has reached the thermal runaway region, so that there has been a problem that the temperature may rise rapidly and become unfavorable.
[0015]
Therefore, the present invention provides a method for ensuring a stable welded state that can solve the problem caused by forming a thin-walled portion having a lower tensile strength than an easily breakable portion at the welded portion between the upper metal foil and the lower metal foil. Another object of the present invention is to provide an explosion-proof sealing plate that has no pinhole, is excellent in leakage resistance, and that reliably cuts off current by a predetermined battery internal pressure, and a sealed battery using the same.
[0016]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides an upper metal foil and a lower metal foil that are arranged vertically via an insulating gasket and are electrically routed by welding the central portion thereof. An easy-to-break part that breaks when the temperature rises to a predetermined value is provided, and a protruding bulge part is provided at the center part to be welded, and the difference between the protruding dimension of the bulged part and the thickness dimension of the gasket is within a predetermined range. In addition, when the bulging portion is welded with a laser, the metal foil having a larger thickness is irradiated with the laser.
[0017]
By doing so, a thin portion having a lower tensile strength than the easily breakable portion is not formed in the welded portion, and the easily breakable portion is broken when the inside of the battery is at a predetermined pressure. Therefore, it is possible to reliably cut off the current by separating the coupling between the upper metal foil and the lower metal foil.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
The explosion-proof sealing plate for a sealed battery according to the present invention has a plate-like shape in which a bulging portion protruding downward is provided at the central portion, cut into the bulging portion, and an easily ruptured portion such as a thin wall is formed. 0.15mm thick An upper metal foil, and a bulging portion that protrudes upward at the center portion and abuts against the bulging portion of the upper metal foil, is cut into the bulging portion, and is formed into a plate-like shape having an easily breakable portion such as a thin wall 0.10mm thick An insulating gasket is interposed at the peripheral edge of the lower metal foil, and the current cut-off mechanism is formed by welding and electrically connecting the bulging portions that come into contact with each other. The total projecting dimension of both bulges is larger than the thickness of the insulation gasket. The difference between the total projecting dimension of the bulge and the wall thickness of the insulating gasket is , 0 . The range is from 05 mm to 0.30 mm.
[0019]
Thus, the difference between the total dimension of the protruding dimension of the bulging part protruding downward from the upper metal foil and the protruding dimension of the protruding part protruding above the lower metal foil and the thickness dimension of the ring-shaped insulating gasket (Hereinafter referred to as contact dimension) , 0 . If it is set to be not less than 05 mm and not more than 0.30 mm, the thickness of the central portion of the welded portion becomes extremely thin when the gap between the bulged portions is welded, or the metal thickness around the welded portion is extremely small. It becomes thin and does not break before the easily breakable portion.
[0020]
In the state where both bulges are in contact with each other to form a current interrupting mechanism, the lower metal foil of the upper metal foil and the lower metal foil is deformed, and stress is applied to the metal foil with the lower rigidity. Remains. In this state, when laser is irradiated to weld the bulging part of the upper metal foil and the lower metal foil, sufficient adhesion and adhesion area between the bulging parts of the upper metal foil and the lower metal foil are ensured. In this case, the heat conductivity of the welded part of the upper metal foil and the lower metal foil is improved, so that the metal is melted around the central part of the welded part, and the metal around the welded part is also softened by the heat. Is done. At this time, the less rigid metal foil with residual stress deforms in the direction to release the residual stress, and there is a gap between the bulges at the part slightly outside the part irradiated with the laser at the bulge part. The melted metal flows into the gap, and the metal thickness at the central portion of the welded portion becomes thinner than the metal thickness at the outer peripheral portion of the welded portion (see FIG. 6).
[0021]
The degree of this phenomenon varies depending on the size of the contact dimension. When the contact dimension is greater than 0.35 mm, particularly greater than 0.30 mm, the phenomenon appears prominently, and pinholes are likely to occur in that portion. Therefore, as the upper limit of the contact dimension Is 0 . 30 mm is appropriate.
[0022]
On the other hand, when the contact dimension is 0.03 mm, particularly smaller than 0.05 mm, the bulging portions of the upper metal foil and the lower metal foil are difficult to contact satisfactorily and a sufficient adhesion state cannot be obtained, and laser irradiation is performed. A gap is likely to be generated between a part of the welded part or a bulging part in the vicinity of the welded part irradiated with laser. In this state, if the laser is irradiated to weld the bulges of the upper metal foil and the lower metal foil, the thermal conductivity between the bulges of the upper metal foil and the lower metal foil deteriorates. Only the metal in the narrow area part of the central part of the part melts, and the metal in the peripheral part of the part irradiated with the laser also melts, and the melted metal becomes a gap between the bulging parts or the laser. Flows into the gap between the upper metal foil and the lower metal foil formed in the vicinity of the irradiated portion, resulting in a phenomenon that the metal thickness around the welded portion irradiated with the laser is reduced (see FIG. 7). .
[0023]
This phenomenon varies depending on the shape of the bulging portion of the upper metal foil and the lower metal foil, but it appears prominently when the contact dimension is 0.03 mm, particularly smaller than 0.05 mm, and in the worst case the metal thickness As a hole may occur in the thinned part, the lower limit of the contact dimension Is 0 . 05mm is appropriate.
[0024]
From the above, contact dimensions Is 0 . A stable laser welding state can be obtained by setting it to be not less than 05 mm and not more than 0.30 mm.
[0025]
When the bulging portions of the upper metal foil and the lower metal foil are brought into contact with each other and welded by laser, the metal foil having the larger thickness among the upper metal foil and the lower metal foil is irradiated with laser. By irradiating the laser in this way, the formation of the thin portion caused by the contact size can be mitigated.
[0026]
When the contact size is small, a phenomenon occurs in which the thickness decreases around the area irradiated with the laser, but when the thickness of the metal foil on the laser irradiation side is large, the laser is applied to the metal foil with the smaller thickness. Compared to the case of irradiation, the metal thickness of the remaining part other than the thinned peripheral part can be increased.
[0027]
On the other hand, it may vary depending on the metal material, but generally the thickness of the metal foil is thick. Na Then, since the rigidity is increased, when the contact dimension is large, the metal foil having a smaller thickness, that is, the rigidity having a lower rigidity is deformed, and stress remains in the metal foil. When a thin metal foil with residual stress is irradiated with laser, the heat treatment effect by direct heat appears strongly on the metal foil with residual stress, so the degree of softening increases and the residual stress is reduced. The amount of deformation that deforms due to the influence increases, and the metal thickness of the welded portion becomes thinner.
[0028]
On the other hand, when a metal foil with a thicker wall, that is, a metal foil with higher rigidity, is irradiated with laser, the metal foil with a smaller wall thickness with residual stress, that is, a metal foil with lower rigidity, is indirectly heated. Therefore, the degree of softening is small, and the metal thickness of the welded portion can be made thicker than when the thin metal foil is irradiated with laser.
[0029]
In this way, when laser welding is performed by contacting the bulging part formed at the center of the upper metal foil and the lower metal foil, a more stable laser welding state is achieved by irradiating the thick metal foil with laser. Can be secured.
[0030]
Furthermore, a bulging portion protruding downward is provided at the center, and a plate-like shape is formed by cutting into the bulging portion and forming an easily breakable portion such as a thin wall. Above thickness 0.15mm A plate-like metal foil, and a bulge that protrudes upward at the center and abuts against the bulge of the upper metal foil, cut into this bulge, and formed into an easily breakable part such as a thin wall 0.10mm thick An insulating gasket is interposed at the peripheral edge of the lower metal foil, and the bulging portion that abuts is welded and electrically coupled, The total dimension of the projecting dimensions of both of the bulging portions is larger than the thickness of the insulating gasket, The difference between the total projecting dimension of the two bulging parts and the thickness of the insulating gasket is 0.05 mm or more 0.30 An explosion-proof sealing plate in which a current interrupting mechanism with a range of mm or less is accommodated between a metal case having a vent and a cap, and the peripheral part of the current interrupting mechanism is fastened by the peripheral part of the metal case and the cuff Thus, the open end of the battery case containing the power generation element is used as a sealing port.
[0031]
The gas generated inside the battery enters the explosion-proof sealing plate through the vent of the metal case, and when the gas pressure exceeds a predetermined value, the easily breakable portion provided in the lower metal foil is broken, and the elasticity of the upper metal foil Since part of the bulging portion is separated from the lower metal foil by the gas pressure, the electrical coupling between the upper metal foil and the lower metal foil is interrupted. As a result, since the current flowing between the positive electrode terminal of the sealed battery, for example, the cap and the negative electrode terminal, for example, the battery case is cut off and the generation of gas is suppressed, the explosion-proof function can be exhibited.
[0032]
【Example】
Hereinafter, embodiments of the present invention will be described with reference to FIGS.
[0033]
FIG. 1 shows a longitudinal sectional view of an explosion-proof sealing plate for a sealed battery according to an embodiment of the present invention. The explosion-proof sealing plate for a sealed battery has a disk-shaped thin upper metal foil 8 having flexibility, and A lower metal foil 9 welded in contact with the upper metal foil 8 at the center, a ring-shaped insulating gasket 10 interposed between the peripheral edges of the upper metal foil 8 and the lower metal foil 9, and an upper metal A current interruption mechanism having a ring-shaped PTC element 11 placed on the upper surface of the peripheral edge of the foil 8 is provided. This current interruption mechanism is mounted on the PTC element 11 and is sandwiched between a disk-shaped metal cap 13 having four vent holes 12 and an aluminum metal case 15 having four vent holes 14. The end portion of the metal case 15 is bent and fastened to the peripheral portion of the metal cap 13 to form an explosion-proof sealing plate for a sealed battery.
[0034]
The upper metal foil 8 is formed of a flexible aluminum disk having a thickness of 0.15 mm and an outer diameter of 12.7 mm, and a bulging portion 16 having a central portion protruding downward and a curved shape. An easily breakable portion 17 formed of a C-shaped thin portion formed using a C-shaped stamp having an outer diameter of 4.0 mm is provided at the center portion of the protruding portion 16.
[0035]
The lower metal foil 9 is formed of a flexible aluminum disk having a thickness of 0.10 mm and an outer diameter of 13.5 mm, and a bulging portion 18 whose central portion protrudes upward in a curved shape, and this bulging portion. An easily breakable portion 19 made of an O-shaped thin portion formed by using an O-shaped stamp with an outer diameter of 3.0 mm is provided at the central portion of the protruding portion 18. Further, in order to electrically connect the upper metal foil 8 and the lower metal foil 9, the central portions of the bulging portions 16 and 18 in the upper metal foil 8 and the lower metal foil 9 are welded by laser to join the joint portion 20. Is forming.
[0036]
The insulating gasket 10 interposed between the peripheral portions of the upper metal foil 8 and the lower metal foil 9 has a dish shape in which the center of the bottom surface portion is cut out in a circular shape, has a thickness of 0.40 mm, and has a substantially cross-sectional shape at the peripheral portion. It is L-shaped. In addition, the protruding dimension (height) of the bulging portion 16 formed in a curved shape toward the lower portion formed in the central portion of the upper metal foil 8 is 0.40 mm, and the upper portion formed in the central portion of the lower metal foil 9 The projecting dimension (height) of the bulging portion 18 projecting in a curved shape toward is set as shown in Table 1. In order to contact the bulging portion 16 of the upper metal foil 8 and the bulging portion 18 of the lower metal foil 9 to form an electrical coupling portion 20, a welding jig comprising an upper mold P and a lower mold Q is used. Are used to fix the upper metal foil 8, the lower metal foil 9 and the insulating gasket 10 interposed between the peripheral metal foils, and irradiate the abutting bulges 16 and 18 with laser by a laser welding machine R. It forms by providing the welding part S (refer FIG. 2).
[0037]
In addition, in order to confirm the influence by the surface which irradiates a laser, when forming the coupling | bond part 20 for obtaining electrical continuity with the upper metal foil 8 and the lower metal foil 9 by the welding part S by laser welding, Confirmation was carried out by two kinds of methods described in the above.
[0038]
One of them is a method of forming a welded portion S by irradiating a laser on the surface of the lower metal foil 9 having the smaller thickness among the upper metal foil 8 and the lower metal foil 9, that is, the one having lower rigidity (see FIG. 2 (a)), and the other is a method in which the welded portion S is formed by irradiating a laser on the surface of the upper metal foil 8 which is thicker, that is, the one having higher rigidity (FIG. 2 (b)). reference).
[0039]
The protruding dimension of the bulging portion 18 of the lower metal foil 9, the contact dimension when the lower metal foil 9, the upper metal foil 8 and the insulating gasket 10 are fixed to a welding jig, and the bulging portion 16 of the upper metal foil 8 Table 1 shows symbols of the welded body (test object) when the bulging portion 18 of the lower metal foil 9 is welded by laser. The thickness of the insulating gasket 10 and the thickness of the upper metal foil 8 are set to the same thickness as 0.40 mm so that the contact dimension is the same as the thickness of the lower metal foil 9.
[0040]
[Table 1]
Figure 0004284712
[0041]
The tensile strength (g) of the welded portion S and the tensile strength (g) of the easily breakable portion 19 of the lower metal foil 9 when the lower metal foil 9 is irradiated with laser are as shown in Table 2 and FIG.
[0042]
[Table 2]
Figure 0004284712
[0043]
The tensile strength (g) of the weld S when the upper metal foil 8 is irradiated with laser is as shown in Table 3 and FIG.
[0044]
[Table 3]
Figure 0004284712
[0045]
In addition, when the explosion-proof sealing plate shown in FIG. 1 is configured, the ratio of the operating pressure at which the current is cut off to an abnormal value (abnormally high operating pressure) is shown in Table 4.
[0046]
[Table 4]
Figure 0004284712
[0047]
Next, the operation mode of the current interruption mechanism provided in the explosion-proof sealing plate will be described with reference to FIG.
[0048]
When the internal pressure rises due to the gas generated inside the battery, pressure is applied to the lower metal foil 9 via the vent hole 14 of the metal case 15, and a stress that deforms upward acts, and then the easily breakable portion 19 of the lower metal foil 9. Is broken, and gas flows into the space between the upper metal foil 8 and the lower metal foil 9 stacked via the insulating gasket 10 to apply gas pressure to the upper metal foil 8. The foil 8 is subjected to a stress that deforms upward. When the upper metal foil 8 is to be deformed upward by the stress due to the gas pressure, the inner portion of the easily breakable portion 19 that is partially broken with the joint portion 20 as a fulcrum is pulled upward, and the easily breakable portion A force is applied so that 19 is cut out and separated from the lower metal foil 9.
[0049]
In this case, in order to cut off the current in a normal state, that is, without causing the coupling portion 20 to break halfway (see FIG. 10), to operate normally to cut off the current (see FIG. 9). Reference), the tensile strength of the joint portion 20 needs to be larger than the tensile strength of the easily breakable portion 19 of the lower metal foil 9.
[0050]
3 and Table 2, in the case of welded body A and welded body B, the upper part of the tensile strength distribution of easily breakable part 19 of lower metal foil 9 overlaps the lower part of the tensile strength distribution of welded body A and welded body B. ing. That is, there is a case where the tensile strength of the easily breakable portion 19 of the lower metal foil 9 is larger than the tensile strength of the welded body A and the welded body B. In such a case, the coupling portion 20 is broken halfway and exhibits an abnormal operating pressure for current interruption.
[0051]
In the case of the welded body C to the welded body G, the upper part of the tensile strength distribution of the easily breakable portion 19 of the lower metal foil 9 and the lower part of the tensile strength distribution of the welded body C to the welded body G do not overlap. When the tensile strength of the easily breakable portion 19 of the foil 9 is greater than the tensile strength of the welded bodies C to G, it does not exist.
[0052]
From the above, when irradiating the lower metal foil 9 with a laser, the contact dimension, that is, the protruding dimension of the bulging portion 16 that protrudes the central portion of the upper metal foil 8 downward, and the central portion of the lower metal foil 9 upward. The difference between the total protruding dimension of the protruding bulged part 18 and the thickness of the insulating gasket 10 is preferably set to 0.05 mm or more, and the coupling part 20 is broken halfway to interrupt current. An abnormal operating pressure is not exhibited, and a stable current interrupting mechanism can be formed at all times.
[0053]
4 and Table 3, in the case of the welded body H, the upper part of the tensile strength distribution of the easily breakable portion 19 of the lower metal foil 9 and the lower part of the tensile strength distribution of the welded body H overlap. That is, there is a case where the tensile strength of the easily breakable portion 19 of the lower metal foil 9 is larger than the tensile strength of the welded body H. In such a case, the coupling portion 20 is broken halfway and exhibits an abnormal operating pressure for current interruption.
[0054]
In the case of welded body I to welded body N, the upper part of the tensile strength distribution of the easily breakable portion 19 of the lower metal foil 9 and the lower part of the tensile strength distribution of the welded body I to welded body N do not overlap. When the tensile strength of the easily breakable portion 19 of the foil 9 is greater than the tensile strength of the welded bodies I to N, it does not exist.
[0055]
From the above, when irradiating the upper metal foil 8 with laser, the contact dimension, that is, the protruding dimension of the bulging portion 16 that protrudes the central portion of the upper metal foil 8 downward, and the central portion of the lower metal foil 9 upward. It can be said that it is preferable to set the difference between the total protruding dimension of the protruding bulged portion 18 and the thickness of the insulating gasket 10 to 0.03 mm or more. Of the upper metal foil 8 and the lower metal foil 9, it is advantageous to irradiate the metal foil having the larger thickness with the metal thickness of the remaining portion of the peripheral portion thinned by irradiating the laser. However, the lower limit value of the contact dimension can be reduced due to the fact that the metal foil having a smaller thickness is thicker than when the laser is irradiated.
[0056]
Next, for each welded body A to N, in order to confirm the presence or absence of pinholes at a level that cannot be discerned by visual inspection and an inspection machine, a current interruption mechanism as shown in FIG. 1 is used using each welded body A to N. An explosion-proof sealing plate provided with the above was constructed and incorporated in a sealed cylindrical lithium secondary battery, and its leakage resistance was confirmed.
[0057]
As a sealed cylindrical lithium secondary battery, a metal foil current collector with LiCoO 2 A positive electrode plate that has been coated and dried after being coated with a paste, and a negative electrode plate that has been cut into strips after carbon is pasted and applied to a metal foil current collector. A power generating element and an organic electrolyte wound through a cylindrical separator are built in a battery case. An explosion-proof sealing plate is fitted to the annular step provided at the opening of the battery case via an insulating gasket, and the opening end of the case is bent inward by a mold to seal the opening of the case. Speaking. The lead case of one electrode plate of the power generation element is welded and electrically connected to the metal case 15 of the explosion-proof sealing plate, and the lead piece of the other electrode plate is welded and electrically connected to the bottom inner surface of the battery case. Connected.
[0058]
500 sealed cylindrical lithium secondary batteries each incorporating an explosion-proof sealing plate having a current interruption mechanism using each welded body A to N were prepared, and left for 2 weeks in an atmosphere of 85 ° C. The results of examining the number of leaked liquids are as shown in Table 5.
[0059]
[Table 5]
Figure 0004284712
[0060]
According to Table 5, in the case of a lithium secondary battery incorporating an explosion-proof sealing plate using welded bodies A to E, no occurrence of liquid leakage was observed, but welded body F and welded body G were used. In the case of a lithium secondary battery incorporating an explosion-proof sealing plate, it can be seen that liquid leakage has occurred.
[0061]
From the above, when irradiating the lower metal foil 9 with a laser, the contact dimension, that is, the protruding dimension of the bulging portion 16 that protrudes the central portion of the upper metal foil 8 downward, and the central portion of the lower metal foil 9 upward. The difference between the total protruding dimension of the protruding bulged portion 18 and the thickness of the insulating gasket 10 is preferably set to 0.30 mm or less, and no pinhole is generated and the liquid leakage resistance is excellent. A stable explosion-proof sealing plate can be obtained.
[0062]
In the case of a lithium secondary battery incorporating an explosion-proof sealing plate using welded bodies H to M, no leakage was observed, whereas lithium incorporating an explosion-proof sealing plate using welded body N In the case of the secondary battery, it can be seen that leakage occurs.
[0063]
From the above, when irradiating the upper metal foil 8 with laser, the contact dimension, that is, the protruding dimension of the bulging portion 16 that protrudes the central portion of the upper metal foil 8 downward, and the central portion of the lower metal foil 9 upward. It can be said that it is preferable to set the difference between the total protruding dimension of the protruding bulged portion 18 and the thickness of the insulating gasket 10 to 0.35 mm or less. When a metal foil with a large thickness, that is, a metal foil with higher rigidity, is irradiated with laser, a thin metal foil with a residual stress, that is, a metal foil with a lower rigidity, is indirectly exposed to heat conduction. Since only heat is applied, the degree of softening around the welded portion is small. For this reason, the degree to which the lower metal foil 9 is deformed by the force for releasing the residual stress of the lower metal foil 9 is small, and the gap formed between the upper metal foil 8 and the lower metal foil 9 irradiated with the laser is not The lower metal foil 9 is smaller than the case of irradiating a laser, and the molten metal in the central portion is also prevented from flowing into the gap, and the thickness of the metal in the central portion is increased. The upper limit can be increased.
[0064]
From the above, the total dimension of the projecting dimension of the bulging part 16 projecting the central part of the upper metal foil 8 downward and the projecting dimension of the bulging part 18 projecting the central part of the lower metal foil 9 upward, The difference between the thickness of the insulating gasket 10, that is, the contact dimension is 0.03 mm or more and 0.35 mm or less, preferably 0.05 mm or more and 0.30 mm or less. However, it is possible to form a stable current interrupting mechanism without any abnormal operating pressure for current interrupting due to breakage halfway, and further, a pinhole is generated in the joint 20 welded by laser irradiation Therefore, it is possible to provide a sealed battery having excellent leakage resistance.
[0065]
When the upper metal foil 8 and the lower metal foil 9 are welded by laser, when the metal foil having a larger thickness is welded by laser irradiation, the lower limit value of the contact dimension is set to 0.03 mm and the upper limit value is set. Can be set to be expanded to 0.35 mm, the contact dimension can be set in a wider range, and a stable current interrupting mechanism and liquid leakage resistance can be ensured.
[0066]
【The invention's effect】
The present invention is implemented in the form as described above, and has the following effects.
[0067]
Difference between the total thickness of the protruding dimension of the bulging part with the central part of the upper metal foil protruding downward and the protruding dimension of the protruding part with the central part of the lower metal foil protruding upward, and the thickness of the insulating gasket Is controlled to a predetermined value and welding is performed by irradiating laser on the thicker metal foil of the upper metal foil and lower metal foil. It becomes possible to obtain an explosion-proof sealing plate for a sealed battery having leakage resistance, and the sealed battery incorporating the explosion-proof sealing plate has excellent leakage resistance and can be made safe even when the internal gas pressure increases.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view of an explosion-proof sealing plate having a current interruption mechanism in an embodiment of the present invention.
FIG. 2 is an explanatory diagram of a laser welding jig that forms the same current interruption mechanism.
[Fig. 3] Tensile strength distribution diagram of joints in the same current interruption mechanism
[Fig. 4] Tensile strength distribution diagram of the joint in the same current interruption mechanism
FIG. 5 is a sectional view of a conventional explosion-proof sealing plate having a current interruption mechanism.
FIG. 6 is an explanatory schematic diagram of a welded portion in a current interrupt mechanism.
FIG. 7 is an explanatory schematic diagram of a welded portion in a current interrupt mechanism.
FIG. 8 is an explanatory schematic diagram of a welded portion in a current interrupt mechanism.
FIG. 9 is a cross-sectional view illustrating the operation mode of an explosion-proof sealing plate having the same current interruption mechanism
FIG. 10 is a cross-sectional view illustrating the operation mode of an explosion-proof sealing plate having the same current interruption mechanism
[Explanation of symbols]
8 Upper metal foil
9 Lower metal foil
10 Insulating gasket
12,14 Vent
13 Metal cap
15 Metal case
16, 18 bulge
17, 19 Easy break
20 joints

Claims (2)

中央部に下方へ突出した膨出部を設け、この膨出部に易破断部を形成した板状の厚さ0.15mmの上部金属箔、および中央部に上方へ突出して前記上部金属箔の膨出部に当接する膨出部を設け、この膨出部に易破断部を形成した板状の厚さ0.10mmの下部金属箔の周縁部に絶縁ガスケットを介在させ、前記の当接する膨出部を溶接して電気的に結合した電流遮断機構を有し、前記双方の膨出部の突出寸法の合計寸法が前記絶縁ガスケットの厚みよりも大きく、前記双方の膨出部の突出寸法の合計寸法と前記絶縁ガスケットの肉厚寸法との差が、0.05mm以上で0.30mm以下の範囲にある密閉型電池用防爆封口板。A bulging portion projecting downward is provided at the central portion, and an upper metal foil having a plate-like thickness of 0.15 mm in which an easily breakable portion is formed at the bulging portion, and an upper metal foil projecting upward at the central portion. A bulging portion that abuts the bulging portion is provided, and an insulating gasket is interposed on the peripheral portion of the lower metal foil having a plate-like thickness of 0.10 mm in which an easily breakable portion is formed in the bulging portion, and the abutting bulging portion described above. A current interrupting mechanism in which the protruding portions are welded and electrically coupled, and the total dimension of the protruding dimensions of both of the protruding portions is larger than the thickness of the insulating gasket ; An explosion-proof sealing plate for a sealed battery, wherein a difference between a total dimension and a thickness dimension of the insulating gasket is in a range of 0.05 mm to 0.30 mm. 中央部に下方へ突出した膨出部を設け、この膨出部に易破断部を形成した板状の厚さ0.15mmの上部金属箔、および中央部に上方へ突出して前記上部金属箔の膨出部に当接する膨出部を設け、この膨出部に易破断部を形成した板状の厚さ0.10mmの下部金属箔の周縁部に絶縁ガスケットを介在させ、前記の当接する膨出部を溶接して電気的に接合し、前記双方の膨出部の突出寸法の合計寸法が前記絶縁ガスケットの厚みよりも大きく、前記双方の膨出部の突出寸法の合計寸法と前記絶縁ガスケットの肉厚寸法との差を0.05mm以上で0.30mm以下の範囲にした電流遮断機構を、通気孔を有する金属ケースとキャップとの間に収納し、これら金属ケースとキャップとの周縁部により前記電流遮断機構の周縁部を締着した防爆封口板により、発電要素を内蔵した電池ケースの開口端を密封口した密閉型電池。A bulging portion projecting downward is provided at the central portion, and an upper metal foil having a plate-like thickness of 0.15 mm in which an easily breakable portion is formed at the bulging portion, and an upper metal foil projecting upward at the central portion. A bulging portion that abuts the bulging portion is provided, and an insulating gasket is interposed on the peripheral portion of the lower metal foil having a plate-like thickness of 0.10 mm in which an easily breakable portion is formed in the bulging portion, and the abutting bulging portion described above. The protruding portion is welded and electrically joined, and the total dimension of the projecting dimensions of both of the bulging sections is larger than the thickness of the insulating gasket, and the total dimension of the projecting dimensions of the both bulging sections and the insulating gasket A current interrupting mechanism having a difference from the wall thickness of 0.05 mm to 0.30 mm is housed between a metal case having a vent and a cap, and Explosion-proof with the periphery of the current interrupting mechanism fastened by the periphery The mouth plate, sealed battery open end was sealed mouth of the battery case with a built-in power generating element.
JP05778898A 1998-03-10 1998-03-10 Explosion-proof sealing plate for sealed battery and sealed battery using the same Expired - Fee Related JP4284712B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05778898A JP4284712B2 (en) 1998-03-10 1998-03-10 Explosion-proof sealing plate for sealed battery and sealed battery using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05778898A JP4284712B2 (en) 1998-03-10 1998-03-10 Explosion-proof sealing plate for sealed battery and sealed battery using the same

Publications (2)

Publication Number Publication Date
JPH11260334A JPH11260334A (en) 1999-09-24
JP4284712B2 true JP4284712B2 (en) 2009-06-24

Family

ID=13065632

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05778898A Expired - Fee Related JP4284712B2 (en) 1998-03-10 1998-03-10 Explosion-proof sealing plate for sealed battery and sealed battery using the same

Country Status (1)

Country Link
JP (1) JP4284712B2 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3845283B2 (en) * 2001-09-11 2006-11-15 本田技研工業株式会社 Laser welding jig for electrode winding body and current collector plate in cylindrical electric double layer capacitor
US7687189B2 (en) 2004-04-28 2010-03-30 Eveready Battery Company, Inc. Housing for a sealed electrochemical battery cell
US7833647B2 (en) 2004-04-28 2010-11-16 Eveready Battery Company, Inc. Closure vent seal and assembly
JP2006351512A (en) * 2005-05-16 2006-12-28 Matsushita Electric Ind Co Ltd Sealed secondary battery and its manufacturing method
KR100947989B1 (en) * 2007-11-06 2010-03-18 삼성에스디아이 주식회사 Secondary battery and manufacturing method thereof
US8147999B2 (en) 2008-06-11 2012-04-03 Eveready Battery Company, Inc. Closure assembly with low vapor transmission for electrochemical cell
JP2012513098A (en) * 2008-12-19 2012-06-07 ボストン−パワー,インコーポレイテッド Modular CID assembly for lithium ion batteries
US8383255B2 (en) 2009-02-24 2013-02-26 Eveready Battery Company, Inc. Closure assembly for electrochemical cells
US20130309529A1 (en) * 2011-03-09 2013-11-21 Panasonic Corporation Cylindrical battery
JP6260095B2 (en) * 2013-03-25 2018-01-17 株式会社豊田自動織機 Power storage device and secondary battery
KR101634764B1 (en) * 2013-09-24 2016-06-29 주식회사 엘지화학 Cap Assembly Comprising Safety Member Having Protrusion Part being formed for Preventing Leak Path and Lithium Secondary Battery Comprising The Same
JPWO2016143287A1 (en) * 2015-03-06 2017-12-28 三洋電機株式会社 Sealed battery
US10403872B2 (en) 2015-03-27 2019-09-03 Sanyo Electric Co., Ltd. Cylindrical batteries
CN113228376A (en) * 2018-12-28 2021-08-06 三洋电机株式会社 Cylindrical battery

Also Published As

Publication number Publication date
JPH11260334A (en) 1999-09-24

Similar Documents

Publication Publication Date Title
KR100324863B1 (en) Explosion-proof seal plate for enclosed type cell and production method thereof
JP4284712B2 (en) Explosion-proof sealing plate for sealed battery and sealed battery using the same
JP6022696B2 (en) Secondary battery and manufacturing method thereof
JP5592020B2 (en) Cap assembly and secondary battery using the same
JP4596289B2 (en) Sealed battery
JP5551781B2 (en) Double sealed cap assembly and cylindrical secondary battery including the same
JP2003178745A (en) Secondary battery equipped with thermoprotector
JP2006147564A (en) Lithium secondary battery
JP4009016B2 (en) Square battery cap assembly
JPH10284035A (en) Explosion proof sealing plate for sealed battery and its manufacture
KR20170012138A (en) Cap assembly for a secondary battery and the battery
JP3848438B2 (en) Method for manufacturing explosion-proof sealing plate for sealed battery
JP3579206B2 (en) Sealed storage battery
JP3599967B2 (en) Sealed battery
JPH10284034A (en) Explosion proof sealing plate for sealed battery and its manufacture
JP2004103369A (en) Flat square battery and its manufacturing method
JP2000323114A (en) Sealed battery
KR20120054873A (en) Secondary battery and method for manufacturing the same
JP3816637B2 (en) Explosion-proof sealed battery
JP3322566B2 (en) Explosion-proof sealing plate for sealed batteries
KR20130034284A (en) Current interrupting device and secondary battery using the same
JP3639414B2 (en) Sealed battery
JP3754794B2 (en) Temperature fuse and temperature fuse mounting structure for secondary battery
JPH11111254A (en) Sealed battery
JP3378147B2 (en) Method of manufacturing explosion-proof sealing plate for sealed battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050304

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050413

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050627

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070507

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090303

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090316

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120403

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120403

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130403

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees