JP3848438B2 - Method for manufacturing explosion-proof sealing plate for sealed battery - Google Patents

Method for manufacturing explosion-proof sealing plate for sealed battery Download PDF

Info

Publication number
JP3848438B2
JP3848438B2 JP18395597A JP18395597A JP3848438B2 JP 3848438 B2 JP3848438 B2 JP 3848438B2 JP 18395597 A JP18395597 A JP 18395597A JP 18395597 A JP18395597 A JP 18395597A JP 3848438 B2 JP3848438 B2 JP 3848438B2
Authority
JP
Japan
Prior art keywords
metal foil
foil valve
valve body
battery
sealing case
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP18395597A
Other languages
Japanese (ja)
Other versions
JPH1131491A (en
Inventor
廣樹 井上
兼人 増本
文夫 大尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP18395597A priority Critical patent/JP3848438B2/en
Publication of JPH1131491A publication Critical patent/JPH1131491A/en
Application granted granted Critical
Publication of JP3848438B2 publication Critical patent/JP3848438B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Connection Of Batteries Or Terminals (AREA)
  • Gas Exhaust Devices For Batteries (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、密閉型電池、特にリチウム二次電池などの高エネルギ密度を有する密閉型の非水電解液電池における電池ケースの開口部の封口に用いられ、電池内圧が設定値まで上昇した場合に通電電流を完全に遮断する機能を備えた密閉型電池用防爆封口板の製造方法に関するものである。
【0002】
【従来の技術】
近年、AV機器あるいはパソコンなどの電子機器のポータブル化、コードレス化が急速に進んでおり、特に時計やカメラなどの携帯型機器の駆動電源としては、高容量化した各種のアルカリ蓄電池やリチウム二次電池に代表される非水電解液(有機溶媒系電解液)二次電池が適しており、さらに、これら非水電解液二次電池は、高エネルギ密度で負荷特性の優れた密閉型とすることが促進されている。
【0003】
ところで、エネルギ密度の高い密閉型の非水電解液電池では、電池内部で発生するガスを対極で消費する、所謂ノイマン方式を採用できないため、過充電や過放電を避ける必要がある。ところが、充電器を含む関連機器の故障による過充電あるいは誤使用などによる外部短絡などが生じた場合には、電池内部の発電要素が化学反応を起こし、例えば、過充電や短絡などによる異常反応により電解液や活物質が分解し、その内部発熱に伴って電池内部に異常にガスが発生し、電池内圧が過大となる。このような問題の発生を未然に確実に防止するために、この種の電池には、電池内圧が設定値を超えたときに弁体を開いてガスを排出する防爆安全機構が従来から付加されている。さらに、非水電解液二次電池では、過充電状態となった場合に充電電流が流れ続けるため、電解液や活物質が分解し続けて急激に温度上昇するおそれもある。そこで、従来から、この種の電池には、電池内圧が所定値に上昇したのを検知することにより、ガスの排出に先立って通電電流を完全に遮断する確実な防爆安全機構が設けられている。
【0004】
このような防爆安全機構を備えた防爆封口板として、例えば、図5に示すような構成のものが提案されている。(特願平7-282762号)。この防爆封口板は、下部金属箔弁体1と上部金属箔弁体2とが、各々の周縁部間に絶縁ガスケット3を介在して重ね合わされるとともに、下部金属箔弁体1の上方へ向け湾曲状に膨出した平面視円形の凸状部1aと上部金属箔弁体2の下方へ向け湾曲状に膨出した平面視円形の凹状部2aとの各々の中央部位を互いに溶接した溶着部4のみを介して電気的に接続されている。通常時には、通電電流が極板(図示せず)、リード体7、金属ケース8および下部金属箔弁体1から溶着部4を介して上部金属箔弁体2、導電性スペーサ9および正極端子を兼ねる金属キャップ10に至る通電経路に流れ、電池として正常に機能する。
【0005】
そして、電池に異常事態が発生して電池内圧が上昇した場合には、その圧力が金属ケース8の通気口8aから下部金属箔弁体1の通気孔(図示せず)を介して上部金属箔弁体2に対し上方への押し上げ力として作用し、さらに、上部金属箔弁体2に溶着部4を介して連結された下部金属箔弁体1には、上部金属箔弁体2により引き上げ力が作用する。この電池内圧が、下部金属箔弁体1に平面視円形の薄肉に形成された易破断部11の破断強度により設定された所定値以上に上昇すると、易破断部11は、上部金属箔弁体2の凹状部2aが上方へ凸状に反転する応力により剪断力を受け、破断する。
【0006】
それにより、下部金属箔弁体1の凸状部1aにおける易破断部11により囲まれた部分がくり抜かれて上部金属箔弁体2と一体となって下部金属箔弁体1から離間し、上記通電経路が開放されて通電電流が遮断され、内部発熱の継続を防止する。また、何らかの原因により電池の内部温度が上昇し続けて電池内圧がさらに上昇した場合には、上部金属箔弁体2の平面視C字形状の薄肉部12が開裂し、ガスが金属キャップ10のガス排出孔13から電池の外部に排出される。
【0007】
【発明が解決しようとする課題】
ところで、上記のような防爆安全機構では、電流遮断を行うための電池内圧、つまり電流遮断圧力の設定が二次電池としての安全性を確保する上で特に重要となる。すなわち、電流遮断圧力をあまりにも高く設定すると、電池内圧の検知により電流を遮断しても、電池内部での化学反応が停止しなくなって異常発熱が継続し、逆に、電流遮断圧力をあまりにも低く設定すると、通常の使用条件である充電時の発熱において電流が遮断されてしまい、二次電池としての使用期間が短くなって不経済となる。したがって、二次電池としての使用性と安全性とを共に確保するためには、電池内圧の適当な圧力範囲内で確実、且つ安定に電流が遮断される必要がある。
【0008】
ここで、下部金属箔弁体1の易破断部11をその破断強度により設定された電池内圧で確実に破断させるためには、下部金属箔弁体1と上部金属箔弁体2とが溶着部4を介して確実、且つ安定に連結されていることが必須条件となる。この溶着部4の形成には、強固な溶着強度に形成できるレーザー溶接が一般的に用いられており、このレーザー溶接を行う場合には、両弁体1,2の凸状部1aおよび凹状部2aの各々の被溶接部位を互いに密着状態に安定に保持する必要がある。そこで、被溶接部位間に所要の接触状態を確保するために、両弁体1,2を押えピンなどの治具により両側から挟み付けて一定圧力で接触させるようにしている。
【0009】
しかしながら、治具により挟み込み過ぎると、凸状部1aまたは凹状部2a が異常に変形して被溶接部位間に隙間ができてしまい、レーザー光が照射される一方の部材から他方の部材への熱伝導が不十分となり、形成された溶着部4にはその溶着強度にばらつきが生じ、さらには溶接不良が発生することもある。この溶着部4の溶着強度のばらつきは、同じ電池内圧での上部金属箔弁体2による下部金属箔弁体1の引き上げ力のばらつき、つまり電流遮断圧力のばらつきとなり、電池内圧が易破断部11の破断強度で設定した所定値に達した時点で確実に電流を遮断することができなくなる。
【0010】
逆に、治具による挟み込みが少な過ぎると、凸状部1aと凹状部2aとの接触面積がレーザースポット径よりも小さくなって溶着強度が低下する。そのため、従来の密閉型防爆封口板は電流遮断圧力に高い信頼性を得ることができない。しかも、凸状部1aと凹状部2aとの接触面積が小さ過ぎる場合、レーザー光のエネルギー密度によってはレーザー照射部分に孔があき易くなり、特に、凹状部2aに孔があくと、上部金属箔弁体2による密閉性が確保できなくなり、電流遮断機能が得られない欠陥が生じる。
【0011】
また、図5は円筒形電池の封口に適用する防爆封口板を示してあり、両弁体1,2の凸状部1aおよび凹状部2aは、円形の開口部を有する電池ケースに対応していずれも平面視円形に形成されている。一方、角形電池では、その電池ケースが水平断面形状が細長いほぼ長方形状になっているから、この電池用の防爆封口板の金属ケースは、電池ケースに対応した細長いほぼ長方形状の水平断面形状、つまり開口部の長さ寸法が幅寸法に比し格段に大きい容器形状に形成される。
【0012】
そのため、この封口板の上部金属箔弁体に形成する平面視円形の凹状部は、その径が金属ケースの幅寸法に規制されて極めて小さくなる。これにより、凹状部の受圧面積が小さくなるのに伴って凹状部を反転させるのに必要な圧力が大きくなり、易破断部を、その破断強度により設定された電池内圧つまり設定された電流遮断圧力で破断させることができない問題がある。
【0013】
そこで本発明は、上述の問題点を解消し、上下の弁体を確実、且つ安定に溶接できる構成を備えて信頼性の高い電流遮断機能を得られ、さらには角形電池においても所定の電池内圧で確実に電流を破断できる密閉型防爆封口板の製造方法を提供することを目的とするものである。
【0019】
【課題を解決するための手段】
上記課題を解決するため、請求項1記載の発明の密閉型電池用防爆封口板の製造方法は、導電性および可撓性を有する上部および下部の両金属箔弁体を、各々の周縁部間に絶縁ガスケットを介在して重ね合わせた状態で金属製封口ケース内に挿入する工程と、前記両金属箔弁体を前記封口ケースに挿入する工程の以前または以後において、前記両金属箔弁体の各々の周縁部を一対の押え治具により前記絶縁ガスケット、さらには前記封口ケースを介して挟持固定する工程と、前記両金属箔弁体を挟持固定した状態において、一対のうちの少なくとも一方の先端部分が中央の平面部の周囲に湾曲部を有する形状となった一対の成形ピンを、前記封口ケースにおける上部開口部および底部の通気口をそれぞれ挿通させ、または挿通させずに互いに近接する方向に作動させることにより、前記両成形ピンで前記両金属箔弁体を同時にプレス成形加工して、前記両金属箔弁体にそれぞれ互いに密着状態に接触する凹状部および凸状部を成形加工する工程と、前記凹状部と前記凸状部との接触部分をレーザー溶接で溶接して接続部を形成する工程と、前記上部金属箔弁体上に導電性スペーサおよび金属キャップを順次重ね合わせたのちに、前記封口ケースの開口部を内方にかしめ加工する工程と、を有している。
【0020】
この製造方法では、上部金属箔弁体の凹状部または下部金属箔弁体の凸状部の少なくとも一方に、中央の平坦面の周囲から湾曲して斜め方向へ延びる断面逆台形状または断面台形状を容易に、且つ確実に成形加工することができ、両金属箔弁体の凹状部と凸状部の各々の中央部分に、レーザー溶接機から照射するレーザー光のスポット径よりも大きな面積を有し、且つ隙間なく弾力的に密着した接触面を安定に形成することができる。したがって、易破断部をその破断強度により設定された電池内圧で確実に破断させることができ、電流遮断圧力に高い信頼性を得られる密閉型電池用防爆封口板を容易に、且つ生産性良く製造することができる。
【0021】
また請求項2記載の発明の密閉型電池用防爆封口板の製造方法は、導電性および可撓性を有する上部および下部の両金属箔弁体を、各々の周縁部間に絶縁ガスケットを介在して重ね合わせた状態で金属製封口ケース内に挿入する工程と、前記両金属箔弁体を前記封口ケースに挿入する工程の以前または以後において、前記上部金属箔弁体に下方へ膨出する凹状部を、前記下部金属箔弁体に上方へ膨出する凸状部をそれぞれ成形加工して、前記凹状部と前記凸状部との各々の中央部位を接触させる工程と、前記封口ケースにおける上部開口部および底部の通気口をそれぞれ通じて加圧ガスを前記凹状部および前記凸状部に作用させて、前記凹状部と前記凸状部との接触面積を増大させる工程と、前記凹状部と前記凸状部との接触部分をレーザー溶接で溶接して接続部を形成する工程と、前記上部金属箔弁体上に導電性スペーサおよび金属キャップを順次重ね合わせたのちに、前記封口ケースの開口部を内方にかしめ加工する工程と、を有している。
【0022】
この製造方法では、両金属箔弁体に、各々の中央部位がそれぞれ互いに接触する凹状部と凸状部を予め成形加工したのちに、加圧ガスで両弁体を挟み付けるように作用させることにより、凹状部と凸状部とが隙間なく弾力的に密着する接触面を徐々に増大させるようにしたので、凹状部と凸状部との間にレーザー光のスポット径よりも大きな面積を有する接触面を極めて円滑に形成することができる。それにより、この製造方法においても、溶着強度にばらつきのない所要の接続部を歩留りよく形成して、易破断部をその破断強度により設定された電池内圧で確実に破断させることができ、電流遮断圧力に高い信頼性を得られる密閉型電池用防爆封口板を容易に、且つ生産性良く製造することができる。
【0023】
【発明の実施の形態】
以下、本発明の好ましい実施の形態について図面を参照しながら説明する。図1は本発明の一実施の形態に係る密閉型電池用防爆封口板を示す縦断面図、図2は図1のA−A線断面図である。この実施の形態では、角形の密閉型電池の開口部を封口するための封口板を例示してあり、したがって、図1は水平断面が細長い長方形状となる封口板の長さ方向に沿った切断線での縦断面図で、図2は幅方向に沿った切断線での縦断面図である。
【0024】
この防爆封口板は、可撓性および導電性を有する薄い上部金属箔弁体17と、この上部金属箔弁体17に対設された可撓性および導電性を有する薄い下部金属箔弁体18と、両弁体17,18の各々の周縁部間に介在された絶縁ガスケット19と、上部金属箔弁体17の周縁部の上面に重ね合わされた導電性スペーサ20と、この導電性スペーサ20上に載置され、複数の排気孔21aを有する金属キャップ21と、複数の通気口22aを有し、上記の各部材を積層状態で挿入させて保持するアルミニウム製の封口ケース22とを備えている。
【0025】
上部金属箔弁体17は、厚さが0.06mm、長さが27.3mm、幅が3.5 mmの細長い長方形のアルミニウム薄板からなり、その中央部に下方へ向け膨出した凹状部23と、この凹状部23の周囲にほぼC字形状の刻印を用いて形成された易破断性の薄肉部24とを有している。凹状部23は、上部金属箔弁体17の形状に対応した平面視長方形状に形成されており、例えば、図1に示す長さ寸法Lが20mm、図2に示す幅寸法Dが1mm、周縁部の下面からの突出長が0.36mmに設定されている。すなわち、凹状部23は、図1と図2との比較から明らかなように、長さ方向の縦断面形状が幅方向の縦断面形状よりも長くなっている。さらに、凹状部23は、下方に向け膨出した底部に平面視長方形状の平坦面23aを有し、且つ平坦面23aの周端部から湾曲して斜め上方へ向け延びる長さ方向の受圧面23Bおよび幅方向の受圧面23bとを有する形状に成形加工されている。
【0026】
したがって、凹状部23は、図1に示す長さ方向に沿った切断線での断面形状および図2に示す幅方向に沿った切断線での断面形状のいずれもがほぼ逆台形状になっている。
【0027】
一方、下部金属箔弁体18は、厚さが0.08mm、長さが27.8mm、幅が4mmの細長い長方形のアルミニウム薄板からなる。この下部金属箔弁体18における凹状部23との対向箇所には、上方へ向け膨出する凸状部27が設けられ、この凸状部27は、一対の切り込み線を1.8 mmの間隔で平行に幅方向に向け形成することにより、一辺が1.8 mmの正方形状になっている。さらに、凸状部27が幅方向において上方に向け凸状に膨出されていることにより、凸状部27の両側部には切り込み線による一対の通気孔28,28が設けられている。さらに、凸状部の両端部には、図2に示すように、所定の破断強度を有する薄肉に形成された一対の易破断部29が配設されている。両弁体17,18は、凹状部23の平坦面23aと凸状部27との接触部位を局部的にレーザー溶接することにより互いに溶着されてなる接続部Sのみを介して電気的導通状態に連結されている。また、両弁体17,18は、上記接続部Sが通気口22aに対向させて封口ケース22内に収納されている。
【0028】
上記封口板は、両弁体17,18が各々の周縁部間に絶縁ガスケット19を介在して重ね合わせた状態で封口ケース22内に挿入されたのちに、凹状部23の平坦面23aと凸状部27との接触部位を局部的にレーザー溶接して接続部Sが形成され、つぎに、導電性スペーサ20および金属キャップ21を封口ケース22内に順次挿入して上部金属箔弁体17上に重ね合わせた状態で封口ケース22の上部を内方にかしめ加工して組み立てられている。この封口ケース22のかしめ加工時に内方に屈曲される絶縁ガスケット19の上部は、封口ケース22と金属キャップ21との間に介在して、それらを絶縁する。この封口板は、封口ケース22に正極リード体(図示せず)を接続したのちに、図1に2点鎖線で示すように、周囲に絶縁ガスケット30を介在して、発電要素が収納されている電池ケース31の開口部に挿入され、電池ケース31の内方へ突出した環状の支持部32に支持される。そののちに、電池ケース31の上端部分が内方にかしめ加工されることにより、封口板が電池ケース31を密閉する。
【0029】
次に、上記密閉型電池用防爆封口板の作用について説明する。通電電流は、正極板(図示せず)、正極リード体、封口ケース22、下部金属箔弁体18から接続部Sを介して上部金属箔弁体17、導電性スペーサ20および金属キャップ21に至る通電経路に流れ、電池として正常に機能する。ところで、リチウム二次電池などでは、充電器の故障などによる無制御での過充電や短絡などが発生した場合、電池の安全許容電流を超え、電池内圧が上昇することが多い。この場合、さらに継続して電池に電流が流れると、電解液および活物質の分解などを伴いながら電池温度が急激に上昇して、過大量のガスあるいは蒸気を発生させるおそれがある。そこで、電池内圧を検知して通電電流を完全に遮断する防爆安全機能が作用する。
【0030】
すなわち、電池内圧は、封口ケース22の通気口22aから下部金属箔弁体18の一対の通気孔28,28を通じて凹状部23の受圧面23A,23aに押し上げ力として作用する。この電池内圧が下部金属箔弁体18の一対の易破断部29,29の各々の破断強度の和によって設定された所定値まで上昇すると、凹状部23が反転して上方へ向け凸状に変形し、それによって下部金属箔弁体18の凸状部27が引き上げられて易破断部29,29に剪断力が作用し、易破断部29,29が破断する。それにより、凸状部27は上部金属箔弁体17と一体となって下部金属箔弁体18から分離するため、接続部Sを通じてのみ導通していた両弁体17,18が離間して上記通電経路が遮断され、通電電流も遮断されて内部発熱の継続を防止する。ここで、上部金属箔弁体17の薄肉部24は易破断部29よりも高い破断強度に設定されており、上部金属箔弁体17は、電流遮断時にそのままの状態を維持して、電池ケース31内の電解液が漏れ出るのを防止するため、電解液が外部に漏出して電池使用機器を腐食するといったことが生じない。
【0031】
また、上記のように電流が遮断されても、何らかの原因により、電池の内部温度の上昇が止まらずに電池内圧が上昇し続けた場合には、大量のガスまたは蒸気が発生する。それにより、電池内圧が上部金属箔弁体17の薄肉部24の破断強度によって設定された所定値に達すると、その薄肉部24が開裂し、充満していたガスが金属キャップ21の排気孔21aから電池の外部に排出される。ここで、凸状部27は、上部金属箔弁体17におけるC字形状の薄肉部24で囲まれた部分よりも小さい形状であって、薄肉部24内に包含される相対位置で対設されている。したがって、離間して上部金属箔弁体17に付着している凸状部27は、上部金属箔弁体17における薄肉部24の破断により開口したガス排出孔を塞ぐことがなく、大量のガス発生時にも内部ガスを迅速に外部排出することができる。
【0032】
この防爆封口板は、両弁体17,18の凹状部23および凸状部27を確実、且つ安定に溶接して溶着強度にばらつきのない接続部Sを形成できる構成を備えている。すなわち、上部金属箔弁体17の凹状部23は、長さ方向に沿った切断線での断面形状および幅方向に沿った切断線での断面形状のいずれもがほぼ逆台形状に成形加工されて、底部に平坦面23aを有している。そのため、封口板の組み立てに際して、両金属箔弁体17,18が各々の周縁部間に絶縁ガスケット19を介在して重ね合わされたときに、下部金属箔弁体18における湾曲形状に上方に膨出する形状に成形加工された凸状部27は、その中央部分が平坦面23aに沿うように変形して平坦面23aに密着する。したがって、平坦面23aと凸状部27との間には、レーザー光のスポット径よりも大きな面積を有し、且つ隙間なく弾力的に密着した接触面が安定に形成されるから、この接触面にレーザー光を照射して相互に溶接することにより、溶着強度にばらつきのない所要の接続部Sを、溶接不良や穿孔の発生を防止して歩留りよく形成できる。
【0033】
また、上記防爆封口板は、この実施の形態のように角形電池に適用した場合において、上部金属箔弁体17の凹状部23を上方へ反転させるのに必要な圧力を低く設定でき、上述の溶着強度にばらつきのない接続部Sを有していることと合わせて、易破断部29の破断強度により設定した電流遮断圧力に高い信頼性を得られる。すなわち、上部金属箔弁体17の凹状部23は、細長い長方形状の開口部を有する角形電池に対応して、長さ方向の断面形状が幅方向の断面形状よりも格段に長い平面視長方形状を有しており、角形電池の幅寸法に対応した半径の平面視円形の凹状部とした従来封口板に比較して、長さ方向の断面形状が幅方向の断面形状に対し大きくなった分だけ長さ方向の受圧面23Bの面積が大きくなっている。それにより、上部金属箔弁体17の凹状部23を上方へ反転させるのに必要な圧力は受圧面23Bの面積が大きくなった分だけ低く設定できるから、凹状部23を、電池内圧が易破断部29の破断強度により設定した所定値に達した時点で確実に反転させることができる。
【0034】
つぎに、上記防爆封口板の製造方法について説明する。本発明の一実施の形態に係る製造方法は、接続部Sの形成に先立って両弁体17,18にそれぞれ凹状部23および凸状部27を成形加工する工程のみが従来方法と相違するだけである。すなわち、図3に示すように、一対の切り込み線および易破断部29を予め形成した下部金属箔弁体18、絶縁ガスケット19、薄肉部24を予め形成した上部金属箔弁体17を、封口ケース22内に順次挿入して、両弁体17,18を各々の周縁部間に絶縁ガスケット19を介在して重ね合わせる。
【0035】
つぎに、筒状の下部押え治具33および上部押え治具34をそれぞれ封口ケース22および上部金属箔弁体17の周縁部に圧接させて、両弁体17,18の各々の周縁部を絶縁ガスケット19を介在して挟持固定する。続いて、下部成形ピン37および上部成形ピン38を、矢印で示すように互いに近接する方向に作動させて、両弁体17,18に対し同時にプレス成形加工を行う。ここで、下部成形ピン37は先端部の幅方向断面形状がほぼ半球状になっており、上部成形ピン38は、先端の平面視長方形の平面部38aの周囲に湾曲部38bを有する形状になっている。また、下部成形ピン37は封口ケース22の通気口22aを挿通して下部金属箔弁体18を支障なくプレス加工する。
【0036】
したがって、上部金属箔弁体17には、上部成形ピン38による加圧により塑性変形されることにより、平面部38aにより平坦面23aが、且つ湾曲部38bにより平坦面23aの周囲が湾曲されて受圧面23B,23bがそれぞれ成形加工され、図1および図2に示した凹状部23が得られる。一方、下部金属箔弁体には、下部成形ピン37による加圧により塑性変形されて、凸状部27の中央部が凹状部23の平坦面23aに沿うよう変形されながら押し付けられ、幅方向において上方に向け凸状に膨出した凸状部27が成形加工されるとともに、凸状部27の膨出によって凸状部27の両側に一対の通気孔28,28が形成される。したがって、平坦面23Aと凸状部27との間には、レーザー光のスポット径よりも大きな面積を有し、且つ隙間なく弾力的に密着した接触面が安定に形成される。
【0037】
上述の凹状部23および凸状部27の成形加工が終了したならば、凹状部23と凸状部27の接触部分にレーザー溶接機からレーザー光を照射して接続部Sを形成する。このレーザー溶接に際しては、レーザー光を上方から上部金属箔弁体17に向け照射して溶接を行いながら、封口ケース22の通気口22aを通して下方からも溶接状態の良否を容易に識別することができるとともに、通気口22aが熱退避用空間として機能するので、安定した溶接加工を行え、溶着強度にばらつきのない所要の接続部Sを歩留りよく形成できる。なお、レーザー光を通気口22aを通じて下方から下部金属箔弁体18に向け照射して溶接を行うこともできる。また、接続部Sを形成したのちは、従来工法と同様に、導電性スペーサ20および金属キャップ21を封口ケース22内に順次挿入して上部金属箔弁体17上に重ね合わせ、その状態で封口ケース22の上部を内方にかしめ加工することにより、封口板が出来上がる。
【0038】
図4は本発明の他の実施の形態に係る密閉型電池用防爆封口板の製造方法における両弁体17,18にそれぞれ凹状部23および凸状部27を成形加工する工程を示す縦断面図である。この製造方法では、両弁体17,18を、その周縁部に絶縁ガスケット19を介在して重ね合わせた状態で封口ケース22内に挿入したのちに、両弁体17,18の各々の中央部位を押えピンなどの既存の治具により両側から挟み付けて互いに接触させ、図4に示すように、仮の凹状部23および凸状部27を予め成形加工する。
【0039】
つぎに、一対のガス吐出ノズル39,40を、それぞれ封口ケース22の通気口22aおよび封口ケース22の開口部に対向するよう配置するとともに、レーザー溶接機41を両弁体17,18の接触部位に向けて配置する。そして、両ノズル39,40からそれぞれ加圧ガスGを吐出させて凹状部23および凸状部27に対し互いに近接する方向に加圧し、その加圧状態においてレーザー溶接機41からレーザー光Rを照射して両弁体17,18の接触部位を相互にレーザー溶接し、接続部Sを形成する。この溶接時に、加圧ガスGによる挟み付け作用により凹状部23および凸状部27とが隙間なく弾力的に密着する接触面が円滑に増大していき、レーザー光のスポット径よりも大きな面積を有する接触面が形成され、その接触面にレーザー溶接が行われていく。それにより、溶着強度にばらつきのない所要の接続部Sを歩留りよく形成でき、図1および図2に示した防爆封口板を得られる。
【0042】
【発明の効果】
本発明の密閉型電池用防爆封口板の製造方法によれば、両金属箔弁体の凹状部と凸状部の各々の中央部分に、レーザー溶接機のレーザー光のスポット径よりも大きな面積を有し、且つ隙間なく弾力的に密着した接触面を安定に形成することができ、易破断部をその破断強度により設定された電池内圧で確実に破断させることができ、電流遮断圧力に高い信頼性を得られる密閉型電池用防爆封口板を容易に且つ生産性良く製造することができる。
【0043】
本発明の他の密閉型電池用防爆封口板の製造方法によれば、両金属箔弁体の各々の中央部位にそれぞれ互いに接触する凹状部と凸状部を成形したのちに、加圧ガスで両弁体を挟み付けるように作用させることにより、凹状部と凸状部とが隙間なく弾力的に密着する接触面を増大させるようにしたので、凹状部と凸状部との間にレーザー光のスポット径よりも大きな面積を有する接触面を極めて円滑に形成することができ、溶着強度にばらつきのない所要の接続部を歩留りよく形成して、易破断部をその破断強度により設定された電池内圧で確実に破断させることができ、電流遮断圧力に高い信頼性を得られる密閉型電池用防爆封口板を容易に、且つ生産性良く製造することができる。
【図面の簡単な説明】
【図1】本発明の一実施の形態に係る密閉型電池用防爆封口板を示す長さ方向の切断線により切断した縦断面図。
【図2】図1のA−A線断面図。
【図3】本発明の一実施の形態に係る密閉型電池用防爆封口板の製造方法の要部工程を示す縦断面図。
【図4】本発明の他の実施の形態に係る密閉型電池用防爆封口板の製造方法の要部工程を示す縦断面図。
【図5】従来の密閉型電池用防爆封口板の縦断面図。
【符号の説明】
17 上部金属箔弁体
18 下部金属箔弁体
19 絶縁ガスケット
20 導電性スペーサ
21 金属キャップ
22 封口ケース
22a 通気口
23 凹状部
23a 平坦面
23B,23b 受圧面
27 凸状部
29 易破断部
31 電池ケース
33 下部押え治具
34 上部押え治具
37 下部成形ピン
38 上部成形ピン
38a 平面部
38b 湾曲部
39,40 ガス吐出ノズル
41 レーザー溶接機
S 接続部
G 加圧ガス
[0001]
BACKGROUND OF THE INVENTION
  The present invention is used for sealing a battery case opening in a sealed non-aqueous electrolyte battery having a high energy density such as a sealed battery, particularly a lithium secondary battery, and the battery internal pressure rises to a set value. Explosion-proof seal for sealed batteries with a function to completely cut off the energizing currentPlankIt relates to a manufacturing method.
[0002]
[Prior art]
In recent years, electronic devices such as AV devices and personal computers are rapidly becoming portable and cordless. Especially, as a drive power source for portable devices such as watches and cameras, various types of alkaline storage batteries and lithium secondary batteries with high capacities are used. Non-aqueous electrolyte (organic solvent-based electrolyte) secondary batteries typified by batteries are suitable. Furthermore, these non-aqueous electrolyte secondary batteries should be sealed with high energy density and excellent load characteristics. Has been promoted.
[0003]
By the way, in a sealed nonaqueous electrolyte battery having a high energy density, a so-called Neumann method that consumes gas generated inside the battery as a counter electrode cannot be adopted, and it is necessary to avoid overcharge and overdischarge. However, when an external short circuit occurs due to overcharge or misuse due to failure of related equipment including a charger, the power generation element inside the battery causes a chemical reaction, for example, due to an abnormal reaction due to overcharge or short circuit. The electrolytic solution and the active material are decomposed, and gas is abnormally generated inside the battery as the internal heat is generated, so that the internal pressure of the battery becomes excessive. In order to prevent such problems from occurring in advance, this type of battery has conventionally been provided with an explosion-proof safety mechanism that opens the valve body and discharges gas when the internal pressure of the battery exceeds a set value. ing. Furthermore, in a non-aqueous electrolyte secondary battery, a charging current continues to flow in an overcharged state, so the electrolyte and active material may continue to decompose and the temperature may rise rapidly. Therefore, conventionally, this type of battery is provided with a reliable explosion-proof safety mechanism that completely cuts off the energization current prior to gas discharge by detecting that the internal pressure of the battery has increased to a predetermined value. .
[0004]
As an explosion-proof sealing plate provided with such an explosion-proof safety mechanism, for example, one having a configuration as shown in FIG. 5 has been proposed. (Japanese Patent Application No. 7-282762). In this explosion-proof sealing plate, the lower metal foil valve body 1 and the upper metal foil valve body 2 are overlapped with each other with an insulating gasket 3 interposed between the peripheral portions thereof, and upward of the lower metal foil valve body 1. A welded portion in which the central portions of the convex portion 1a having a circular shape in a plan view bulging in a curved shape and the concave portion 2a having a circular shape in a plan view bulging downwardly from the upper metal foil valve body 2 are welded to each other. Electrical connection is made only through 4. In normal times, the energizing current is connected to the electrode plate (not shown), the lead body 7, the metal case 8 and the lower metal foil valve body 1 through the welded portion 4 to the upper metal foil valve body 2, the conductive spacer 9 and the positive terminal. It flows in the energization path to the metal cap 10 that also serves as a battery and functions normally as a battery.
[0005]
When an abnormal situation occurs in the battery and the internal pressure of the battery rises, the pressure is transferred from the vent 8a of the metal case 8 through the vent hole (not shown) of the lower metal foil valve body 1 to the upper metal foil. The lower metal foil valve body 1 that acts as an upward pushing force on the valve body 2 and is connected to the upper metal foil valve body 2 via the welded portion 4 is further lifted by the upper metal foil valve body 2. Works. When the internal pressure of the battery rises above a predetermined value set by the breaking strength of the easily breakable portion 11 formed in the lower metal foil valve body 1 in a thin circular shape in plan view, the easily breakable portion 11 The two concave portions 2a receive a shearing force due to the stress that reverses the convex shape upward and break.
[0006]
Thereby, the portion surrounded by the easily breakable portion 11 in the convex portion 1a of the lower metal foil valve body 1 is hollowed out and separated from the lower metal foil valve body 1 integrally with the upper metal foil valve body 2, The energization path is opened and the energization current is interrupted to prevent the internal heat generation from continuing. Further, when the internal temperature of the battery continues to rise due to some cause and the internal pressure of the battery further increases, the thin-walled portion 12 having a C-shape in plan view of the upper metal foil valve element 2 is cleaved, and the gas flows into the metal cap 10. The gas is discharged from the gas discharge hole 13 to the outside of the battery.
[0007]
[Problems to be solved by the invention]
By the way, in the explosion-proof safety mechanism as described above, the setting of the battery internal pressure for interrupting the current, that is, the setting of the current interrupting pressure is particularly important for ensuring the safety of the secondary battery. In other words, if the current cutoff pressure is set too high, even if the current is cut off by detecting the battery internal pressure, the chemical reaction inside the battery will not stop and abnormal heat generation will continue. If it is set low, the current is cut off during heat generation during charging, which is a normal use condition, and the use period as a secondary battery is shortened, which is uneconomical. Therefore, in order to ensure both usability and safety as a secondary battery, it is necessary to interrupt the current reliably and stably within an appropriate pressure range of the battery internal pressure.
[0008]
Here, in order to reliably break the easily breakable portion 11 of the lower metal foil valve body 1 with the battery internal pressure set by the breaking strength, the lower metal foil valve body 1 and the upper metal foil valve body 2 are welded. It is an indispensable condition to be surely and stably connected via 4. For the formation of the welded portion 4, laser welding that can be formed with a strong welding strength is generally used. When this laser welding is performed, the convex portions 1 a and the concave portions of the valve bodies 1 and 2 are used. It is necessary to stably hold the welded portions of 2a in close contact with each other. Therefore, in order to ensure a required contact state between the parts to be welded, both valve bodies 1 and 2 are sandwiched from both sides by a jig such as a presser pin and are brought into contact at a constant pressure.
[0009]
However, if it is sandwiched too much by a jig, the convex portion 1a or the concave portion 2a is abnormally deformed to form a gap between the welded parts, and heat from one member irradiated with laser light to the other member Conduction becomes insufficient, the welded portion 4 formed has a variation in weld strength, and further, poor welding may occur. The variation in the welding strength of the welded portion 4 is a variation in the pulling force of the lower metal foil valve body 1 by the upper metal foil valve body 2 at the same battery internal pressure, that is, a variation in the current interrupting pressure. When the predetermined value set by the breaking strength is reached, the current cannot be reliably interrupted.
[0010]
On the other hand, when the pinching by the jig is too small, the contact area between the convex portion 1a and the concave portion 2a is smaller than the laser spot diameter and the welding strength is lowered. For this reason, the conventional sealed explosion-proof sealing plate cannot obtain high reliability in the current interrupting pressure. In addition, when the contact area between the convex portion 1a and the concave portion 2a is too small, depending on the energy density of the laser beam, it becomes easy to make a hole in the laser irradiation portion. In particular, if the concave portion 2a has a hole, the upper metal foil The sealability by the valve body 2 cannot be ensured, and a defect in which the current interruption function cannot be obtained occurs.
[0011]
FIG. 5 shows an explosion-proof sealing plate applied to the sealing of a cylindrical battery. The convex part 1a and the concave part 2a of both valve bodies 1 and 2 correspond to a battery case having a circular opening. Both are formed in a circular shape in plan view. On the other hand, in a rectangular battery, since the battery case has a substantially rectangular shape with a horizontal cross section, the metal case of the explosion-proof sealing plate for this battery has a long and substantially rectangular horizontal cross section shape corresponding to the battery case, That is, the length of the opening is formed in a container shape that is much larger than the width.
[0012]
Therefore, the concave portion having a circular shape in plan view formed on the upper metal foil valve body of the sealing plate is extremely small because the diameter thereof is regulated by the width dimension of the metal case. As a result, as the pressure receiving area of the concave portion decreases, the pressure required to invert the concave portion increases, and the easily breakable portion is set to the battery internal pressure set by its breaking strength, that is, the set current cutoff pressure. There is a problem that it cannot be broken.
[0013]
  Therefore, the present invention eliminates the above-mentioned problems, provides a structure capable of reliably and stably welding the upper and lower valve bodies, and provides a highly reliable current interruption function. Sealed explosion-proof sealing plate that can reliably break currentManufacturing methodIs intended to provide.
[0019]
[Means for Solving the Problems]
  In order to solve the above-mentioned problem, the claim 1The manufacturing method of the explosion-proof sealing plate for a sealed battery according to the invention is such that both upper and lower metal foil valve bodies having conductivity and flexibility are overlapped with each other with an insulating gasket interposed between the peripheral portions. Before or after the step of inserting into the metal sealing case and the step of inserting the both metal foil valve bodies into the sealing case, the peripheral edge of each of the metal foil valve bodies is a pair of holding jigs. In the state of sandwiching and fixing the insulating gasket and further through the sealing case, and in the state of sandwiching and fixing both the metal foil valve bodies, at least one tip portion of the pair has a curved portion around the central flat portion. By operating the pair of forming pins having the shape having the upper opening portion and the bottom vent hole in the sealing case in directions close to each other without being inserted, respectively, The both metal foil valve bodies are press-molded at the same time with both molding pins, and the concave portion and the convex portion that are in close contact with each other are molded into the two metal foil valve bodies; The step of welding the contact portion with the convex portion by laser welding to form a connection portion, and after sequentially superposing a conductive spacer and a metal cap on the upper metal foil valve body, the opening portion of the sealing case And inwardly caulking.
[0020]
  In this manufacturing method, at least one of the concave portion of the upper metal foil valve body or the convex portion of the lower metal foil valve body is a cross-section inverted trapezoid shape or a cross-section trapezoid shape that is curved from the periphery of the central flat surface and extends obliquely. Can be easily and reliably formed, and the center of each of the concave and convex portions of both metal foil valve bodies has an area larger than the spot diameter of the laser beam irradiated from the laser welding machine. In addition, it is possible to stably form a contact surface that is elastically in close contact with no gap. Therefore,The easily breakable portion can be reliably broken at the battery internal pressure set by its breaking strength, and high reliability can be obtained for the current breaking pressure.An explosion-proof sealing plate for a sealed battery can be manufactured easily and with high productivity.
[0021]
  The invention of claim 2The method for manufacturing an explosion-proof sealing plate for a sealed battery is a method in which both upper and lower metal foil valves having conductivity and flexibility are overlapped with an insulating gasket interposed between the peripheral portions. Before or after the step of inserting into the sealing case and the step of inserting both the metal foil valve bodies into the sealing case, the lower metal foil is provided with a concave portion that bulges downward in the upper metal foil valve body. Forming a convex portion that bulges upward in the valve body and bringing the central portions of the concave portion and the convex portion into contact with each other; and an upper opening and a bottom vent in the sealing case And increasing the contact area between the concave portion and the convex portion by applying pressurized gas to the concave portion and the convex portion, respectively, and contact between the concave portion and the convex portion. Weld the parts with laser welding to A step of forming, after which said upper metal Hakuben allowed on sequentially superimposed conductive spacer and a metal cap body, and a, a step of caulking the opening portion of the sealing case inward.
[0022]
  In this manufacturing method, after both the metal foil valve bodies are preliminarily molded with a concave portion and a convex portion whose central portions are in contact with each other, the two valve bodies are made to sandwich the valve bodies with pressurized gas. As a result, the contact surface where the concave portion and the convex portion are elastically in close contact with each other is gradually increased, so that the area between the concave portion and the convex portion is larger than the spot diameter of the laser beam. The contact surface can be formed very smoothly. As a result, even in this manufacturing method, it is possible to form a required connection portion having a uniform welding strength with a high yield.The easily breakable part can be reliably broken at the battery internal pressure set by its breaking strength, and high reliability can be obtained for the current breaking pressure.An explosion-proof sealing plate for a sealed battery can be manufactured easily and with high productivity.
[0023]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a longitudinal sectional view showing an explosion-proof sealing plate for a sealed battery according to an embodiment of the present invention, and FIG. 2 is a sectional view taken along line AA of FIG. In this embodiment, a sealing plate for sealing the opening of a rectangular sealed battery is illustrated, and therefore FIG. 1 is a cut along the length direction of the sealing plate whose horizontal cross section is an elongated rectangular shape. FIG. 2 is a longitudinal sectional view taken along a cutting line along the width direction.
[0024]
The explosion-proof sealing plate includes a thin upper metal foil valve body 17 having flexibility and conductivity, and a thin lower metal foil valve body 18 having flexibility and conductivity, which is opposed to the upper metal foil valve body 17. An insulating gasket 19 interposed between the peripheral portions of both valve bodies 17, 18, a conductive spacer 20 superimposed on the upper surface of the peripheral portion of the upper metal foil valve body 17, and the conductive spacer 20 And a metal cap 21 having a plurality of exhaust holes 21a, and a sealing case 22 made of aluminum having a plurality of vent holes 22a and holding each of the above members in a stacked state. .
[0025]
The upper metal foil valve body 17 is formed of an elongated rectangular aluminum thin plate having a thickness of 0.06 mm, a length of 27.3 mm, and a width of 3.5 mm, and a concave portion 23 bulging downward at the center thereof and the concave shape. An easily breakable thin-walled portion 24 formed by using a substantially C-shaped stamp around the portion 23. The concave portion 23 is formed in a rectangular shape in plan view corresponding to the shape of the upper metal foil valve body 17. For example, the length dimension L shown in FIG. 1 is 20 mm, the width dimension D shown in FIG. The protrusion length from the lower surface of the part is set to 0.36 mm. That is, as is clear from a comparison between FIG. 1 and FIG. 2, the concave portion 23 has a longitudinal cross-sectional shape that is longer than a longitudinal cross-sectional shape in the width direction. Further, the concave portion 23 has a flat surface 23a having a rectangular shape in plan view at the bottom bulging downward, and is a pressure-receiving surface in the length direction that curves from the peripheral end portion of the flat surface 23a and extends obliquely upward. 23B and the pressure receiving surface 23b in the width direction are molded into a shape.
[0026]
Accordingly, the concave portion 23 has a substantially inverted trapezoidal shape in both the cross-sectional shape along the cutting line along the length direction shown in FIG. 1 and the cross-sectional shape along the cutting line along the width direction shown in FIG. Yes.
[0027]
On the other hand, the lower metal foil valve body 18 is made of an elongated rectangular aluminum thin plate having a thickness of 0.08 mm, a length of 27.8 mm, and a width of 4 mm. A convex portion 27 bulging upward is provided at a location facing the concave portion 23 in the lower metal foil valve body 18, and the convex portion 27 has a pair of cut lines parallel to each other at an interval of 1.8 mm. By forming it in the width direction, it becomes a square shape with a side of 1.8 mm. Furthermore, since the convex part 27 bulges upward in the width direction, a pair of ventilation holes 28, 28 are formed on both sides of the convex part 27 by cut lines. Further, as shown in FIG. 2, a pair of easily breakable portions 29 formed in a thin wall having a predetermined breaking strength are disposed at both ends of the convex portion. Both valve bodies 17 and 18 are brought into an electrically conductive state only through a connection portion S that is welded to each other by locally laser-welding a contact portion between the flat surface 23 a of the concave portion 23 and the convex portion 27. It is connected. The valve bodies 17 and 18 are housed in the sealing case 22 with the connecting portion S facing the vent 22a.
[0028]
The sealing plate is inserted into the sealing case 22 in a state where the valve bodies 17 and 18 are overlapped with each other with an insulating gasket 19 interposed between the peripheral portions thereof, and then the flat surface 23a of the concave portion 23 and the convex surface 23a. The connecting portion S is formed by locally laser welding the contact portion with the shaped portion 27, and then the conductive spacer 20 and the metal cap 21 are sequentially inserted into the sealing case 22 and the upper metal foil valve body 17 is The upper part of the sealing case 22 is caulked inward in a state of being overlapped with each other. The upper portion of the insulating gasket 19 that is bent inward during the caulking process of the sealing case 22 is interposed between the sealing case 22 and the metal cap 21 to insulate them. In this sealing plate, after a positive electrode lead body (not shown) is connected to the sealing case 22, as shown by a two-dot chain line in FIG. The battery case 31 is inserted into an opening of the battery case 31 and supported by an annular support part 32 protruding inward of the battery case 31. After that, the upper end portion of the battery case 31 is caulked inward, so that the sealing plate seals the battery case 31.
[0029]
Next, the operation of the above-described sealed battery explosion-proof sealing plate will be described. The energization current reaches from the positive electrode plate (not shown), the positive electrode lead body, the sealing case 22 and the lower metal foil valve body 18 to the upper metal foil valve body 17, the conductive spacer 20 and the metal cap 21 through the connection portion S. It flows in the current path and functions normally as a battery. By the way, in the case of a lithium secondary battery or the like when an uncontrolled overcharge or short circuit occurs due to a failure of the charger, the battery allowable pressure is often exceeded and the battery internal pressure increases. In this case, if a current continues to flow through the battery, the battery temperature may rapidly increase with decomposition of the electrolyte and the active material, and an excessive amount of gas or vapor may be generated. Thus, an explosion-proof safety function that detects the internal pressure of the battery and completely cuts off the energized current acts.
[0030]
That is, the battery internal pressure acts as a pushing force from the vent 22 a of the sealing case 22 to the pressure receiving surfaces 23 A and 23 a of the concave portion 23 through the pair of vent holes 28 and 28 of the lower metal foil valve body 18. When the internal pressure of the battery rises to a predetermined value set by the sum of the breaking strengths of the pair of easily breakable portions 29, 29 of the lower metal foil valve body 18, the recessed portion 23 is reversed and deformed into a convex shape upward. Then, the convex portion 27 of the lower metal foil valve body 18 is pulled up, a shearing force acts on the easily breakable portions 29, 29, and the easily breakable portions 29, 29 are broken. Thereby, since the convex part 27 is integrated with the upper metal foil valve body 17 and separated from the lower metal foil valve body 18, both the valve bodies 17, 18 that are conducted only through the connection part S are separated from each other. The energization path is interrupted and the energization current is also interrupted to prevent continuation of internal heat generation. Here, the thin-walled portion 24 of the upper metal foil valve body 17 is set to have a higher rupture strength than the easily breakable portion 29, and the upper metal foil valve body 17 maintains the state as it is when the current is interrupted, so that the battery case In order to prevent the electrolytic solution in 31 from leaking out, it does not occur that the electrolytic solution leaks to the outside and corrodes the battery equipment.
[0031]
Even if the current is interrupted as described above, a large amount of gas or vapor is generated when the internal pressure of the battery continues to increase without stopping the increase in the internal temperature of the battery for some reason. Thereby, when the internal pressure of the battery reaches a predetermined value set by the breaking strength of the thin portion 24 of the upper metal foil valve body 17, the thin portion 24 is cleaved, and the filled gas is discharged from the exhaust hole 21 a of the metal cap 21. To the outside of the battery. Here, the convex portion 27 has a smaller shape than the portion surrounded by the C-shaped thin portion 24 in the upper metal foil valve body 17 and is opposed to the relative position included in the thin portion 24. ing. Therefore, the convex portion 27 that is separated and attached to the upper metal foil valve body 17 does not block the gas discharge hole that is opened due to the breakage of the thin portion 24 in the upper metal foil valve body 17, and a large amount of gas is generated. Sometimes internal gas can be quickly discharged outside.
[0032]
This explosion-proof sealing plate has a configuration that can reliably and stably weld the concave portions 23 and the convex portions 27 of both valve bodies 17 and 18 to form a connection portion S having no variation in welding strength. That is, the concave portion 23 of the upper metal foil valve body 17 is formed into a substantially inverted trapezoidal shape in both the cross-sectional shape along the cutting line along the length direction and the cross-sectional shape along the cutting line along the width direction. And a flat surface 23a at the bottom. Therefore, when the sealing plate is assembled, when the two metal foil valve bodies 17 and 18 are overlapped with each other with the insulating gasket 19 interposed between the peripheral portions, the lower metal foil valve body 18 bulges upward in a curved shape. The convex portion 27 molded into the shape to be deformed so that the central portion thereof is along the flat surface 23a and is in close contact with the flat surface 23a. Therefore, a contact surface having an area larger than the spot diameter of the laser beam and elastically adhering without a gap is stably formed between the flat surface 23a and the convex portion 27. By irradiating laser beams onto each other and welding them together, it is possible to form a required connection portion S having no variation in welding strength with good yield while preventing poor welding and occurrence of drilling.
[0033]
Further, when the explosion-proof sealing plate is applied to a prismatic battery as in this embodiment, the pressure required to reverse the concave portion 23 of the upper metal foil valve element 17 can be set low, In combination with the connection portion S having no variation in welding strength, high reliability can be obtained for the current interrupting pressure set by the breaking strength of the easily breakable portion 29. That is, the concave portion 23 of the upper metal foil valve body 17 corresponds to a rectangular battery having an elongated rectangular opening, and has a rectangular shape in plan view in which the cross-sectional shape in the length direction is much longer than the cross-sectional shape in the width direction. Compared to a conventional sealing plate having a circular concave portion with a radius corresponding to the width dimension of the rectangular battery, the cross-sectional shape in the length direction is larger than the cross-sectional shape in the width direction. Thus, the area of the pressure-receiving surface 23B in the length direction is increased. As a result, the pressure required to invert the concave portion 23 of the upper metal foil valve body 17 can be set lower as the area of the pressure receiving surface 23B becomes larger. When the predetermined value set by the breaking strength of the portion 29 is reached, it can be reliably reversed.
[0034]
Next, a method for manufacturing the explosion-proof sealing plate will be described. The manufacturing method according to an embodiment of the present invention is different from the conventional method only in the step of forming the concave portion 23 and the convex portion 27 on the valve bodies 17 and 18 prior to the formation of the connection portion S, respectively. It is. That is, as shown in FIG. 3, a lower metal foil valve body 18 in which a pair of cut lines and an easily breakable portion 29 are formed in advance, an insulating gasket 19, and an upper metal foil valve body 17 in which a thin portion 24 is formed in advance are sealed in a sealing case. 22 are sequentially inserted, and both valve bodies 17 and 18 are overlapped with each other with an insulating gasket 19 interposed between their peripheral portions.
[0035]
Next, the cylindrical lower presser jig 33 and the upper presser jig 34 are respectively brought into pressure contact with the peripheral portions of the sealing case 22 and the upper metal foil valve body 17 to insulate the peripheral portions of the valve bodies 17 and 18. The gasket 19 is interposed and fixed. Subsequently, the lower molding pin 37 and the upper molding pin 38 are actuated in directions close to each other as indicated by arrows, so that both the valve bodies 17 and 18 are press-molded simultaneously. Here, the lower molding pin 37 is substantially hemispherical in cross-sectional shape in the width direction at the tip portion, and the upper molding pin 38 has a curved portion 38b around a rectangular flat portion 38a in the plan view of the tip. ing. The lower molding pin 37 is inserted through the vent 22a of the sealing case 22 to press the lower metal foil valve body 18 without any trouble.
[0036]
Accordingly, the upper metal foil valve body 17 is plastically deformed by pressurization by the upper forming pin 38, whereby the flat surface 23a is curved by the flat portion 38a and the periphery of the flat surface 23a is curved by the curved portion 38b. The surfaces 23B and 23b are respectively molded to obtain the concave portion 23 shown in FIGS. On the other hand, the lower metal foil valve body is plastically deformed by pressurization with the lower molding pin 37, and the central portion of the convex portion 27 is pressed while being deformed along the flat surface 23a of the concave portion 23. The convex portion 27 bulging upward is formed and processed, and the bulge of the convex portion 27 forms a pair of vent holes 28, 28 on both sides of the convex portion 27. Therefore, between the flat surface 23A and the convex portion 27, a contact surface having an area larger than the spot diameter of the laser beam and elastically adhering without a gap is stably formed.
[0037]
When the above-described forming of the concave portion 23 and the convex portion 27 is completed, the connection portion S is formed by irradiating the contact portion between the concave portion 23 and the convex portion 27 with laser light from a laser welding machine. In this laser welding, it is possible to easily identify the quality of the welded state from below through the vent 22a of the sealing case 22 while performing welding by irradiating the upper metal foil valve body 17 with laser light from above. At the same time, since the air vent 22a functions as a space for heat escape, stable welding can be performed, and a required connecting portion S without variation in welding strength can be formed with high yield. In addition, welding can also be performed by irradiating the lower metal foil valve body 18 with laser light from below through the vent 22a. After forming the connection portion S, the conductive spacer 20 and the metal cap 21 are sequentially inserted into the sealing case 22 and overlapped on the upper metal foil valve body 17 in the same manner as in the conventional method, and the sealing is performed in this state. A sealing plate is completed by caulking the upper portion of the case 22 inward.
[0038]
FIG. 4 is a longitudinal sectional view showing a process of forming the concave portion 23 and the convex portion 27 on the valve bodies 17 and 18 in the method for manufacturing an explosion-proof sealing plate for a sealed battery according to another embodiment of the present invention. It is. In this manufacturing method, both the valve bodies 17 and 18 are inserted into the sealing case 22 in a state where the valve bodies 17 and 18 are overlapped with the peripheral edge portions of the valve bodies 17 and 18 interposed therebetween, and then the central portions of the both valve bodies 17 and 18 are inserted. Are clamped from both sides by an existing jig such as a presser pin and brought into contact with each other, and the temporary concave portion 23 and the convex portion 27 are preliminarily molded as shown in FIG.
[0039]
Next, a pair of gas discharge nozzles 39 and 40 are disposed so as to oppose the vent 22a of the sealing case 22 and the opening of the sealing case 22, respectively, and the laser welding machine 41 is contacted between the valve bodies 17 and 18. Place it toward the. Then, pressurized gas G is discharged from both nozzles 39 and 40 to pressurize the concave portion 23 and the convex portion 27 in directions close to each other, and laser light R is emitted from the laser welding machine 41 in the pressurized state. Then, the contact portions of both valve bodies 17 and 18 are laser welded to each other to form the connection portion S. At the time of this welding, the contact surface where the concave portion 23 and the convex portion 27 are elastically closely contacted with no gap by the sandwiching action by the pressurized gas G smoothly increases, and the area larger than the spot diameter of the laser beam is increased. A contact surface is formed, and laser welding is performed on the contact surface. Thereby, the required connection part S without variation in welding strength can be formed with good yield, and the explosion-proof sealing plate shown in FIGS. 1 and 2 can be obtained.
[0042]
【The invention's effect】
  According to the method of manufacturing an explosion-proof sealing plate for a sealed battery of the present invention, an area larger than the spot diameter of the laser beam of the laser welding machine is provided in the central part of each of the concave part and the convex part of both metal foil valve bodies. And can stably form a contact surface that is elastically adhered without gaps,The easily breakable portion can be reliably broken at the battery internal pressure set by its breaking strength, and high reliability can be obtained for the current breaking pressure.An explosion-proof sealing plate for a sealed battery can be easily manufactured with high productivity.
[0043]
  According to another method for manufacturing an explosion-proof sealing plate for a sealed battery of the present invention, after forming a concave portion and a convex portion that are in contact with each other at the central portion of each of the metal foil valve bodies, By acting so that both valve bodies are sandwiched, the contact surface where the concave portion and the convex portion are elastically closely contacted with no gap is increased, so the laser beam is interposed between the concave portion and the convex portion. The contact surface having an area larger than the spot diameter can be formed very smoothly, and a required connection portion having no variation in welding strength is formed with a high yield.The easily breakable portion can be reliably broken at the battery internal pressure set by its breaking strength, and high reliability can be obtained for the current breaking pressure.An explosion-proof sealing plate for a sealed battery can be manufactured easily and with high productivity.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view taken along a cutting line in a length direction showing an explosion-proof sealing plate for a sealed battery according to an embodiment of the present invention.
FIG. 2 is a cross-sectional view taken along line AA in FIG.
FIG. 3 is a longitudinal cross-sectional view showing main steps of a method for manufacturing an explosion-proof sealing plate for a sealed battery according to an embodiment of the present invention.
FIG. 4 is a longitudinal sectional view showing main steps of a method for manufacturing an explosion-proof sealing plate for a sealed battery according to another embodiment of the present invention.
FIG. 5 is a longitudinal sectional view of a conventional explosion-proof sealing plate for a sealed battery.
[Explanation of symbols]
17 Upper metal foil disc
18 Lower metal foil valve
19 Insulation gasket
20 Conductive spacer
21 Metal cap
22 Sealing case
22a Vent
23 Concave part
23a flat surface
23B, 23b Pressure receiving surface
27 Convex part
29 Easy break
31 Battery case
33 Lower presser jig
34 Upper presser jig
37 Lower molding pin
38 Upper molding pin
38a Plane part
38b Curved part
39, 40 Gas discharge nozzle
41 Laser welding machine
S connection
G Pressurized gas

Claims (2)

導電性および可撓性を有する上部および下部の両金属箔弁体を、各々の周縁部間に絶縁ガスケットを介在して重ね合わせた状態で金属製封口ケース内に挿入する工程と、
前記両金属箔弁体を前記封口ケースに挿入する工程の以前または以後において、前記両金属箔弁体の各々の周縁部を一対の押え治具により前記絶縁ガスケット、さらには前記封口ケースを介して挟持固定する工程と、
前記両金属箔弁体を挟持固定した状態において、一対のうちの少なくとも一方の先端部分が中央の平面部の周囲に湾曲部を有する形状となった一対の成形ピンを、前記封口ケースにおける上部開口部および底部の通気口をそれぞれ挿通させ、または挿通させずに互いに近接する方向に作動させることにより、前記両成形ピンで前記両金属箔弁体を同時にプレス成形加工して、前記両金属箔弁体にそれぞれ互いに密着状態に接触する凹状部および凸状部を成形加工する工程と、
前記凹状部と前記凸状部との接触部分をレーザー溶接で溶接して接続部を形成する工程と、
前記上部金属箔弁体上に導電性スペーサおよび金属キャップを順次重ね合わせたのちに、前記封口ケースの開口部を内方にかしめ加工する工程と、
を有する密閉型電池用防爆封口板の製造方法。
Inserting both conductive and flexible upper and lower metal foil valve bodies into a metal sealing case in a state of being overlapped with an insulating gasket interposed between the respective peripheral edges;
Before or after the step of inserting the two metal foil valve bodies into the sealing case, a peripheral edge of each of the two metal foil valve bodies is interposed between the insulating gasket and further the sealing case by a pair of holding jigs. Sandwiching and fixing, and
In a state in which both the metal foil valve bodies are sandwiched and fixed, a pair of forming pins in which at least one tip portion of the pair has a curved portion around a central flat portion is formed as an upper opening in the sealing case. The both metal foil valve bodies are simultaneously press-molded with the both molding pins by inserting the vents in the top and bottom portions or operating them in the directions close to each other without being inserted. Forming a concave portion and a convex portion that are in close contact with each other, respectively,
Forming a connection portion by welding a contact portion between the concave portion and the convex portion by laser welding;
A step of caulking the opening of the sealing case inward after sequentially superposing a conductive spacer and a metal cap on the upper metal foil valve body;
The manufacturing method of the explosion-proof sealing board for sealed batteries which has this.
導電性および可撓性を有する上部および下部の両金属箔弁体を、各々の周縁部間に絶縁ガスケットを介在して重ね合わせた状態で金属製封口ケース内に挿入する工程と、
前記両金属箔弁体を前記封口ケースに挿入する工程の以前または以後において、前記上部金属箔弁体に下方へ膨出する凹状部を、前記下部金属箔弁体に上方へ膨出する凸状部をそれぞれ成形加工して、前記凹状部と前記凸状部との各々の中央部位を接触させる工程と、
前記封口ケースにおける上部開口部および底部の通気口を通じて加圧ガスを前記凹状部および前記凸状部に作用させて、前記凹状部と前記凸状部との接触面積を増大させる工程と、
前記凹状部と前記凸状部との接触部分をレーザー溶接で溶接して接続部を形成する工程と、
前記上部金属箔弁体上に導電性スペーサおよび金属キャップを順次重ね合わせたのちに、前記封口ケースの開口部を内方にかしめ加工する工程と、
を有する密閉型電池用防爆封口板の製造方法。
Inserting both conductive and flexible upper and lower metal foil valve bodies into a metal sealing case in a state of being overlapped with an insulating gasket interposed between the respective peripheral edges;
Before or after the step of inserting the two metal foil valve bodies into the sealing case, a concave portion that bulges downward on the upper metal foil valve body, and a convex shape that bulges upward on the lower metal foil valve body. Forming each part, and contacting each central part of the concave part and the convex part;
Increasing the contact area between the concave portion and the convex portion by applying a pressurized gas to the concave portion and the convex portion through the upper opening and the bottom vent in the sealing case;
Forming a connection portion by welding a contact portion between the concave portion and the convex portion by laser welding;
A step of caulking the opening of the sealing case inward after sequentially superposing a conductive spacer and a metal cap on the upper metal foil valve body;
The manufacturing method of the explosion-proof sealing board for sealed batteries which has this.
JP18395597A 1997-07-09 1997-07-09 Method for manufacturing explosion-proof sealing plate for sealed battery Expired - Fee Related JP3848438B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18395597A JP3848438B2 (en) 1997-07-09 1997-07-09 Method for manufacturing explosion-proof sealing plate for sealed battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18395597A JP3848438B2 (en) 1997-07-09 1997-07-09 Method for manufacturing explosion-proof sealing plate for sealed battery

Publications (2)

Publication Number Publication Date
JPH1131491A JPH1131491A (en) 1999-02-02
JP3848438B2 true JP3848438B2 (en) 2006-11-22

Family

ID=16144749

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18395597A Expired - Fee Related JP3848438B2 (en) 1997-07-09 1997-07-09 Method for manufacturing explosion-proof sealing plate for sealed battery

Country Status (1)

Country Link
JP (1) JP3848438B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4590856B2 (en) * 2003-11-14 2010-12-01 新神戸電機株式会社 Sealed battery
JP2007027020A (en) * 2005-07-21 2007-02-01 Matsushita Electric Ind Co Ltd Sealed battery
JP5121278B2 (en) * 2007-03-30 2013-01-16 三洋電機株式会社 Sealed battery
KR101330612B1 (en) * 2007-08-27 2013-11-18 삼성에스디아이 주식회사 Rechargeabel battery
JP2009140870A (en) * 2007-12-10 2009-06-25 Sanyo Electric Co Ltd Terminal for sealed battery, and sealed battery
CN104641492B (en) 2012-09-28 2017-08-22 日立汽车系统株式会社 Rectangular secondary cell
JP2020024781A (en) * 2016-11-08 2020-02-13 株式会社日立製作所 Secondary battery system

Also Published As

Publication number Publication date
JPH1131491A (en) 1999-02-02

Similar Documents

Publication Publication Date Title
KR100324863B1 (en) Explosion-proof seal plate for enclosed type cell and production method thereof
JP5312312B2 (en) Cylindrical secondary battery with high charge / discharge rate
JP4596289B2 (en) Sealed battery
KR100364573B1 (en) Secondary battery and method of manufacturing same
US6376120B1 (en) Current cutoff mechanism for cell
JPH05343043A (en) Sealed battery
JPH09139196A (en) Cleavage type relief valve of sealed battery container
JP3853461B2 (en) Explosion-proof sealing plate for sealed battery and method for manufacturing the same
JP2000090911A (en) Electric circuit breaking mechanism of battery
JP4284712B2 (en) Explosion-proof sealing plate for sealed battery and sealed battery using the same
JP3848438B2 (en) Method for manufacturing explosion-proof sealing plate for sealed battery
CN114899557A (en) Secondary battery
CN110431689B (en) Secondary battery
CN110249453B (en) Secondary battery
JP3853460B2 (en) Explosion-proof sealing plate for sealed battery and method for manufacturing the same
JP3816637B2 (en) Explosion-proof sealed battery
WO2011118359A1 (en) Hermetic battery
WO2021181893A1 (en) Gas discharge valve of battery and battery
JP3322566B2 (en) Explosion-proof sealing plate for sealed batteries
JP4222820B2 (en) Manufacturing method of battery safety mechanism
KR19980702192A (en) Thin battery
JP3351392B2 (en) Sealed battery
JPH11238494A (en) Sealing device for sealed battery
KR101237289B1 (en) Safety vent and manufacturing method thereof and battery comprising it
JPH1021892A (en) Explosion-proof sealing plate for sealed battery and its manufacture

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060523

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060705

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060801

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060825

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090901

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100901

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees