JP3853461B2 - Explosion-proof sealing plate for sealed battery and method for manufacturing the same - Google Patents

Explosion-proof sealing plate for sealed battery and method for manufacturing the same Download PDF

Info

Publication number
JP3853461B2
JP3853461B2 JP08384097A JP8384097A JP3853461B2 JP 3853461 B2 JP3853461 B2 JP 3853461B2 JP 08384097 A JP08384097 A JP 08384097A JP 8384097 A JP8384097 A JP 8384097A JP 3853461 B2 JP3853461 B2 JP 3853461B2
Authority
JP
Japan
Prior art keywords
metal foil
valve body
foil valve
explosion
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP08384097A
Other languages
Japanese (ja)
Other versions
JPH10284035A (en
Inventor
義高 松政
秀幸 小林
兼人 増本
文夫 大尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP08384097A priority Critical patent/JP3853461B2/en
Publication of JPH10284035A publication Critical patent/JPH10284035A/en
Application granted granted Critical
Publication of JP3853461B2 publication Critical patent/JP3853461B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Sealing Battery Cases Or Jackets (AREA)
  • Gas Exhaust Devices For Batteries (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、密閉型電池、特にリチウム二次電池などの高エネルギ密度を有する密閉型の非水電解液電池の封口に用いられる密閉型電池用防爆封口板およびその製造方法に関するものである。
【0002】
【従来の技術】
近年、AV機器あるいはパソコンなどの電子機器のポータブル化、コードレス化が急速に進んでおり、これら携帯機器の駆動電源としては、高容量化した各種のアルカリ蓄電池やリチウム二次電池に代表される非水電解液(有機溶媒系電解液)二次電池が適しており、さらに、これら非水電解液二次電池は、高エネルギ密度で負荷特性の優れた密閉型とすることが促進されている。
【0003】
ところで、エネルギ密度の高い密閉型の非水電解液電池では、電池内部で発生するガスを対極で消費する、所謂ノイマン方式を採用できないため、過充電や過放電を避ける必要がある。ところが、充電器を含む機器の故障や過充電あるいは誤使用などが生じた場合には、電池内部の発電要素が化学反応を起こし、例えば、過充電や短絡などによる異常反応により電解液や活物質が分解し、それに伴って電池内部に異常にガスが発生し、電池内圧が過大となる。このような問題の発生を未然に確実に防止するために、この種の電池には、電池内圧が設定値を超えたときに弁体を開いてガスを排出する防爆安全装置が従来から付加されている。
【0004】
さらに、非水電解液二次電池では、過充電状態となった場合に充電電流が流れ続けるため、電解液や活物質が分解し続けて急激に温度上昇するおそれもある。そこで、この種の電池には、電池内圧が所定値に上昇したのを検知することにより、ガスの排出に先立って通電電流を完全に遮断する確実な防爆安全機構が設けられている。
【0005】
このような防爆安全機構としては、例えば図8に示す構成のものが知られている(特開平6-215747号公報参照)。この防爆安全機構は、上部の弁体1と通気孔3を有する端子板2とが各々の周縁部の間に絶縁ガスケット10を介在して積み重ねられ、弁体1と端子板2とは、各々の中央部の溶着部4を通じてのみ導電状態になっている。通常時には、通電電流が極板(図示せず)、リード体(図示せず)、金属ケース7および端子板2から溶着部4を介して弁体1、PTC素子8および金属キャップ9に流れ、電池として機能する。そして、電池内圧が所定値まで上昇した場合には、この電池内圧を金属ケース7の通気孔5および端子板2の通気孔3を通じて受ける弁体1が内圧作用方向(図の上方)へ変形する応力によって、弁体1が端子板2の溶着部4から剥離し、通電電流を遮断する。
【0006】
ところで、上記の防爆安全機構では、溶着部4の形成に際して、弁体1と端子板2との所定部位同士を一定の電池内圧によって剥離可能な低い溶着強度に溶接する必要があるため、そのような低い溶着強度に溶接が可能な超音波溶接が採用されていた。しかしながら、超音波溶接は、振動発熱により被溶接物の接合部の表面にのみ溶解を起こさせて被溶接物同士を溶接するものであって、不安定要素が多いことから溶着強度にどうしてもばらつきが生じる。これに対し上記の防爆安全機構では、この溶着強度によって電流を遮断するための電流遮断圧力を設定しているので、電流遮断圧力は、溶着強度のばらつきに応じて相違し、一定値に設定できない欠点がある。それにより、電池内圧が所定値に達する以前に電流が遮断されてしまったり、逆に、電池内圧が所定値に達しているにも拘わらず電流が遮断されないなどの不都合が生じることになる。
【0007】
そこで、図9に示すような密閉型電池用防爆封口板が提案されている。この密閉型電池用防爆封口板は、電池内圧の上昇によって電流を遮断する際に、溶着強度の影響を受けることのないものである。すなわち、この防爆封口板は、上部金属箔弁体11と下部金属箔弁体12とにより防爆弁機構が構成されており、その他の構成は図8のものと同様である。上部金属箔弁体11には、中央部に平面視C字形状の薄肉部からなる上部易破断部13が形成され、下部金属箔弁体12には、上部易破断部13よりも径の小さい平面視円形の薄肉部からなる下部易破断部14が中央部に形成されている。この両金属箔弁体11,12は、各々の易破断部13,14が同心状に対向する相対位置で各々の中央部が互いに溶接されて、溶着部15が形成されている。ここで、下部易破断部14は上部易破断部13に対し破断強度を低く設定されている。
【0008】
上記防爆封口板は、両金属箔弁体11,12の中央部の溶着部15のみを介して電気的に接続されており、電流遮断圧力は、刻印手段で形成された下部易破断部14の破断強度によって設定されているため、溶着部15の溶着強度のばらつきの影響を受けない。すなわち、電池内圧が所定値まで上昇したときに、円形の下部易破断部14の全体が破断されて、下部金属箔弁体12における下部易破断部14の内方部位がくり抜かれて上部金属箔弁体11と一体に下部金属箔弁体12から離間し、通電電流が遮断される。電池内圧がさらに上昇した場合には、上部易破断部13が破断して開口し、ガスを外部に排出する。この防爆封口板では溶着部15を剥離させる必要がないから、溶着部15を強固な溶着強度に溶接が可能なレーザー溶接によって形成できる。したがって、電流遮断圧力は、刻印手段などで形成される下部易破断部14の破断強度によって設定されるから、溶着強度のばらつきの影響を全く受けない。
【0009】
【発明が解決しようとする課題】
上記防爆封口板は、上述のように顕著な防爆安全機能を発揮するものであるが、以下のような問題が残存している。すなわち、下部易破断部14は溶着部15を囲む円形状であって全体の長さが比較的長く、電流遮断圧力は、上述の長い下部易破断部14の厚みの全体の和による破断強度により設定される。そのため、下部易破断部14は、全体にわたりμmオーダーの極めて薄く、且つ均一な厚みに正確に管理して形成する必要があるから、量産性に欠ける。しかも、下部易破断部14は、刻印手段を高精度に制御する加工を施したとしても、極めて薄い厚みに形成することから、どうしても厚みにばらつきが生じる。また、円形の下部易破断部14は、その全体に対し均等に破断圧力が作用するから、破断され始める部位が特定されず、破断動作が不安定になり易い。したがって、電流遮断圧力は、以上の不安点要因により信頼性の低いものになりがちである。
【0010】
そこで本発明は、上述の問題点を解消し、所定の電池内圧で破断させる易破断部を、量産性に優れた製作手段により所定の破断強度に正確に形成でき、信頼性の高い電流遮断機能を得られる密閉型電池用防爆封口板およびその製造方法を提供することを目的とするものである。
【0011】
【課題を解決するための手段】
上記目的を達成するために、本願の第1発明は、発電要素を収納した電池ケースの開口部を密閉するとともに、電池内圧が設定値まで上昇したときに一部が破断して通電電流を遮断する密閉型電池用防爆封口板において、導電性を有する上部および下部の両金属箔弁体が、それらの周縁部間に絶縁ガスケットを介在して重ね合わされ、且つ各々の中央部位を互いに溶着した接続部のみを介して電気的に導通され、前記両金属箔弁体が、前記上部金属箔弁体の上部に金属キャップを配置して金属ケース内に挿入されてなり、前記下部金属箔弁体は、前記接続部を囲むように設けられた分離線部と、前記分離線部の両端部に連設されて相対向し、電池内圧を前記上部金属箔弁体に作用させる一対の通気孔と、前記両通気孔の相対向する各々の孔縁部間の部分により形成され、電池内圧が所定値に達した時に破断する易破断部とを備え、電池内圧が所定値に達したときに、前記上部金属箔弁体の上方への変形による応力を受けて前記易破断部が破断することにより、前記分離線部、前記両通気孔および前記易破断部で囲まれる部分が前記上部金属箔弁体と共に分離するように構成され、易破断部に対する外周側近傍位置に、下部金属箔弁体を金属ケースに局部的に固定する固定部を設け、前記固定部は、分離線部、両通気孔および易破断部を結ぶ環状の中心点と、前記両通気孔の各々の孔縁部間を結ぶ直線の中点とを通る線上に、前記固定部の中心点を設定して形成されていることを特徴とする。
【0012】
上記第1発明に係る密閉型電池用防爆封口板は、電池内圧が下部金属箔弁体の易破断部の破断強度によって設定された所定値まで上昇すると、この圧力を下部金属箔弁体の通気孔を通じて受ける上部金属箔弁体が上方へ向け凸状に変形し、それによって下部金属箔弁体の易破断部に剪断力が作用して、易破断部が破断する。それにより、下部金属箔弁体における分離線部、両通気孔および易破断部で囲まれた部分は、接続部により上部金属箔弁体と共に下部金属箔弁体から離れるため、接続部を通じてのみ導通していた両金属箔弁体が離間して通電電流が遮断される。
【0013】
この密閉型電池用防爆封口板では、易破断部の破断強度が一対の通気孔の各々の孔縁部間を結ぶ直線の長さにより設定されており、上記直線の長さは、従来の防爆封口板の円形の易破断部に比較して格段に短い。したがって、易破断部は、従来の易破断部と同一の破断強度に設定する場合に長さが格段に短くなった分だけ厚くすることができ、下部金属箔弁体の全体厚みを一定にすることは容易であるから、易破断部は、一対の通気孔の間隔のみの管理により所定の破断強度に正確に設定でき、この一対の通気孔は打ち抜き加工により正確な間隔に製作できる。この防爆封口板は、従来の高精度な制御を必要とする刻印加工を用いないことから量産性に優れているとともに、易破断部を設定した破断強度に正確に形成できることから、電流遮断圧力にばらつきが生じない。
【0014】
また上記第1発明は、易破断部に対する外周側近傍位置に、下部金属箔弁体を金属ケースに局部的に固定する固定部を設けている。
【0015】
これにより、下部金属箔弁体が接続部を介して上部金属箔弁体により引っ張り上げられるときに、下部金属箔弁体における易破断部の外周側近傍箇所は固定部を介して金属ケースにより引っ張り上げられないように保持されるから、易破断部は、下部金属箔弁体の展性や絶縁ガスケットの変形による影響を受けて破断強度がばらつくといったことが生じない。そのため、この防爆封口板は、易破断部を一対の通気孔の間隔のみにより所定の破断強度に正確に設定できることと併せて、電流遮断圧力に高い信頼性を得られる。
【0016】
さらに上記第1発明は、固定部を、分離線部、両通気孔および易破断部を結ぶ環状の中心点と、前記両通気孔の各々の孔縁部間を結ぶ直線の中点とを通る線上に、前記固定部の中心点を設定して形成している。
【0017】
これにより、固定部は、易破断部の中点に対応して形成されることから、易破断部の全体にわたり均等な保持力を安定に作用させることができる。
【0018】
前記発明において、上部および下部の両金属箔弁体の接続部を、両通気孔の各々の孔縁部間を結ぶ直線の中点に対し、前記直線に平行な線上において何れかの方向にずれた位置に形成することが好ましい。
【0019】
これにより、易破断部は、その全体が水平に引っ張り上げらるのではなく、易破断部の中点からずれた位置に形成された接続部により斜め方向に引き裂く状態に破断されることになり、所定の電池内圧に達した時点で円滑且つ安定に破断される。
【0020】
前記発明において、固定部を、下部金属箔弁体と金属ケースとの所定の対面部位を互いに溶接した溶着部により構成することができる。
【0021】
これにより、下部金属箔弁体が接続部を介して上部金属箔弁体により引っ張り上げられるときに、下部金属箔弁体における易破断部に対し外周側近傍部位を、金属ケースにより引き上げられないように確実に保持できる。
【0022】
前記発明において、固定部を、金属ケースまたは絶縁ガスケットに設けた凸部によって下部金属箔弁体が局部的に強く金属ケースに圧接される構成とすることもできる。
【0023】
これにより、下部金属箔弁体が接続部を介して上部金属箔弁体により引っ張り上げられるときに、下部金属箔弁体における易破断部に対し外周側近傍部位を、絶縁ガスケットと金属ケースとにより局部的に強く挟み付けて引き上げられないように確実に保持できる。
【0024】
前記発明において、下部金属箔弁体の一対の通気孔を、多角形状に形成するとともに、共に同一形状のものを対称配置に形成することが好ましい。
【0025】
これにより、一対の通気孔を、その多角形状の角部を相対向させて形成するようにすれば、両通気孔の間隔を所定値に正確に形成できるとともに、易破断部の破断部位を、両通気孔の各々の角部を結ぶ直線上にほぼ規定でき、易破断部を所定の破断強度に容易にかつ正確に形成することができる。
【0026】
本願の第2発明は、発電要素を収納した電池ケースの開口部を密閉するとともに、電池内圧が設定値まで上昇したときに一部が破断して通電電流を遮断する密閉型電池用防爆封口板において、導電性を有する上部および下部の両金属箔弁体が、それらの周縁部間に絶縁ガスケットを介在して重ね合わされ、且つ各々の中央部位を互いに溶着した接続部のみを介して電気的に導通され、前記両金属箔弁体が、前記上部金属箔弁体の上部に金属キャップを配置して金属ケース内に挿入されてなり、 前記下部金属箔弁体は、前記接続部を囲むように設けられた分離線部と、前記分離線部の両端部に連設されて相対向し、電池内圧を前記上部金属箔弁体に作用させる一対の通気孔と、前記両通気孔の相対向する各々の孔縁部間の部分により形成され、電池内圧が所定値に達した時に破断する易破断部とを備え、電池内圧が所定値に達したときに、前記上部金属箔弁体の上方への変形による応力を受けて前記易破断部が破断することにより、前記分離線部、前記両通気孔および前記易破断部で囲まれる部分が前記上部金属箔弁体と共に分離するように構成され、下部金属箔弁体の分離線部は、C字形状のスリットからなり、その両端部が一対の通気孔にそれぞれ連通するよう形成されていることを特徴とする
【0027】
これにより、分離線部を打ち抜き加工などの量産性に優れた加工により容易に形成できるとともに、下部金属箔弁体における接続部を囲む環状部分は、易破断部のみを介在して下部金属箔弁体の本体部分に接続された状態となり、電流遮断圧力は、易破断部の長さと厚みとで決定する破断強度のみにより設定できるから、正確に設定できる。
【0028】
本願の第3発明は、発電要素を収納した電池ケースの開口部を密閉するとともに、電池内圧が設定値まで上昇したときに一部が破断して通電電流を遮断する密閉型電池用防爆封口板において、導電性を有する上部および下部の両金属箔弁体が、それらの周縁部間に絶縁ガスケットを介在して重ね合わされ、且つ各々の中央部位を互いに溶着した接続部のみを介して電気的に導通され、前記両金属箔弁体が、前記上部金属箔弁体の上部に金属キャップを配置して金属ケース内に挿入されてなり、 前記下部金属箔弁体は、前記接続部を囲むように設けられた分離線部と、前記分離線部の両端部に連設されて相対向し、電池内圧を前記上部金属箔弁体に作用させる一対の通気孔と、前記両通気孔の相対向する各々の孔縁部間の部分により形成され、電池内圧が所定値に達した時に破断する易破断部とを備え、電池内圧が所定値に達したときに、前記上部金属箔弁体の上方への変形による応力を受けて前記易破断部が破断することにより、前記分離線部、前記両通気孔および前記易破断部で囲まれる部分が前記上部金属箔弁体と共に分離するように構成され、下部金属箔弁体の易破断部は、前記一対の通気孔の各々の孔縁部間を結ぶ直線が、前記下部金属箔弁体を製造する際の圧延ロールによる筋目方向に合致するように形成されていることを特徴とする
【0029】
これにより、易破断部を常に安定に破断させることができる。
【0030】
前記発明において、下部金属箔弁体の易破断部に、一対の通気孔の孔縁部間を結ぶ直線に沿って形成したミシン目または細い溝からなる破断規定線を設けることができる。
【0031】
これにより、易破断部は、破断規定線部により破断部位を確実に規定されるから、破断動作を安定に且つ円滑に行わせることができ、電流遮断圧力を一層確実に所定値に設定することができる。
【0032】
前記発明において、上部金属箔弁体に、中央部分が下方へ向け膨出した凹状部が設けられ、下部金属箔弁体に、中央部分が上方へ向け膨出し、その膨出部分の外周に沿って分離線部、一対の通気孔および易破断部が環状に配して形成された凸状部が設けられ、前記両金属箔弁体が、前記凹状部と前記凸状部との接触部位を溶接により互いに溶着した接続部を介して電気的導通状態に連結された構成とすることができる。
【0033】
これにより、両金属箔弁体間に溶接により接続部を形成する場合、両金属箔弁体の凹状部および凸状部は保持手段を用いることなく各々の先端部同士を密着状態に保持することができるため、溶接不良や穿孔が生じることがなく、強固な接続部を歩留りよく形成することができる。
【0034】
本願の第4発明に係る密閉型電池用防爆封口板の製造方法は、請求項3に記載の密閉型電池用防爆封口板の製造に際して、中央部分が上方へ向け膨出した凸状部を有する下部金属箔弁体を金属ケース内に挿入して、前記下部金属箔弁体における周縁部の所定部位と金属ケースの対面部位とをレーザー溶接により相互に溶着して固定部を形成する工程と、中央部分が下方へ向け膨出した凹状部を有する上部金属箔弁体を前記金属ケース内に挿入して、前記両金属箔弁体の各々の周縁部分を絶縁ガスケットを介在して重ね合わせ、前記凹状部と前記凸状部との各々の先端部位を互いに接触させる工程と、前記両金属箔弁体における各々の周縁部分を固定治具により上下から挟み付けて固定する工程と、前記凹状部と前記凸状部との互いに接触する部位をレーザー溶接により相互に溶着して接続部を形成する工程と、を有している。
【0035】
上記密閉型電池用防爆封口板の製造方法では、固定部の形成に際して、互いの溶接すべき箇所である金属ケースと下部金属箔弁体の周縁部分とは、共に平坦面であって直接的に押圧しなくても隙間なく密着するから、支障なくレーザー溶接できる。また、レーザー溶接により接続部を形成するに際して、両金属箔弁体の各々の凹状部および凸状部の各々の先端部位は隙間のない状態に密着するから、溶接不良や穿孔が生じることがなく、強固な接続部を歩留りよく形成することができる。
【0036】
【発明の実施の形態】
以下、本発明の好ましい実施の形態について図面を参照しながら説明する。図1(a)は本発明の第1の実施の形態に係る密閉型電池用防爆封口板を示す縦断面図、同図(b)はこの防爆封口板における下部金属箔弁体18の平面図である。同図において、この密閉型電池用防爆封口板は、可撓性を有する薄い上部金属箔弁体17と、この上部金属箔弁体17に対設された可撓性を有する薄い下部金属箔弁体18と、両金属箔弁体17,18の各々の周縁部分の間に介在されたリング状の絶縁ガスケット19と、上部金属箔弁体18の周縁部の上面に重ね合わされたリング状のPTC(Positive Temperature Coefficient)素子20と、このPTC素子20上に載置された複数の排気孔21aを有する金属キャップ21と、上記の各部材を積層状態で挿入させて保持する複数の通気孔22aを有するアルミニウム製の金属ケース22とを備えている。
【0037】
上部金属箔弁体17は、例えば厚さ0.10mmで外径が12.7mmの可撓性を有するアルミニウム円板からなり、中央部が下方に向け湾曲形状に膨出した凹状部23と、この凹状部23の周囲にC字形状の刻印を用いて形成された易破断性の薄肉部24とを有している。一方、下部金属箔弁体18は、例えば厚さ0.10mmで外径が13.5mmの可撓性を有するアルミニウム円板からなり、その中央部分が上方に向け膨出した凸状部27を有している。両金属箔弁体17,18は、(b)に示す両金属箔弁体17,18の各々の中心点Sよりずれた部位を局部的にレーザー溶接することにより互いに溶着されてなる接続部28のみを介して電気的導通状態に接続されている。
【0038】
下部金属箔弁体18には、(b)に明示するように、接続部28を囲むように設けられた平面視C字形状のスリットからなる分離線部29と、この分離線部29の両端部にそれぞれ連設されて相対向する三角形状の一対の通気孔30A,30Aと、この両通気孔30A,30Aの相対向する残存部分からなる易破断部31とを備えている。また、下部金属箔弁体18は、易破断部31に対し接続部28とは反対側の近傍部位が金属ケース22にレーザー溶接されて、固定部32が形成されている。
【0039】
一対の通気孔30A,30Aは、同一の三角形状であって、各々の角部を相対向させて対称配置に形成されている。易破断部31は、一対の通気孔30A,30Aの各々の三角形状の角部が相対向されていることにより、(b)に破線で図示するように破断部位がほぼ規定されており、その破断部位の長さLおよび厚みにより電池内圧を受けたときの破断強度が設定されている。さらに、易破断部31は、一対の通気孔30A,30Aの各々の孔縁部間を結ぶ(b)に破線で示す直線が、下部金属箔弁体18を製造する際の圧延ロールによる筋目方向33に合致するよう形成されている。
【0040】
上記接続部28は、両金属箔部弁体17,18の中心点Sに対し、易破断部31における両通気孔30A,30Aの各々の孔縁部間を結ぶ直線に平行な線R上のいずれかの方向にずれて形成される。したがって、接続部28は(b)の2点鎖線で示す部位に設けてもよい。また、固定部32は、上記中心点Sと、両通気孔30A,30Aの各々の孔縁部間を結ぶ直線の中点を通る線上に、溶接の中心点を設定して形成されている。
【0041】
上記防爆封口板は、絶縁ガスケット19を介在して重ね合わせた両金属箔弁体17,18の上にPTC素子20および金属キャップ21を重ね合わせた状態で金属ケース22内に挿入し、金属ケース22の上部を内方にかしめ加工して組立られている。この防爆封口板を電池ケース34に挿入するに際しは、(a)に示すように、電池ケース34内に収容した極板群37から導出したリード体38を金属ケース22に溶接により接続し、極板群37に電解液を注入した後に、上述のように組み立てた防爆封口板を、その周囲に絶縁ガスケット39を介在させて電池ケース34の開口部に装着する。そののちに、電池ケース34の上端部分を内方にかしめ加工すると、防爆封口板が電池ケース34を密閉する。
【0042】
次に、上記防爆封口板により電池ケース34の開口部を密閉してなる密閉型電池の作用について説明する。通電電流は、極板群37、リード体38、金属ケース22、下部金属箔弁体18から接続部28を介して上部金属箔弁体17、PTC素子20および金属キャップ21に流れ、電池として機能する。この密閉型電池では防爆安全機能が3段階に機能する。先ず、第1の防爆安全機能について説明する。過大電流が流れた場合、PTC素子20は短時間で動作温度に達して抵抗値が増大し、通電電流が大幅に減少維持される。それにより、外部短絡あるいは過大電流での誤使用による電池の著しい損傷を防止できる。
【0043】
ところで、リチウム二次電池などでは、充電器の故障などによる無制御での過充電、あるいは逆充電、または多数直列過放電などが発生した場合、上記PTC素子20の動作電流以下の電流値であっても、電池の安全許容電流を超え、電池内圧が上昇することが多い。この場合、さらに継続して電池に電流が流れた場合には、電解液および活物質の分解などを伴いながら電池温度が急激に上昇して、過大量のガスあるいは蒸気を発生させるおそれがある。そこで、電池内圧を検知して通電電流を完全に遮断する第2の防爆安全機能が作用する。
【0044】
すなわち、電池内圧が下部金属箔弁体18の易破断部31の破断強度によって設定された所定値まで上昇すると、この圧力を金属ケース22の通気孔22aおよび下部金属箔弁体18の通気孔30Aを通じて受ける上部金属箔弁体17は、図2に示すように、凹状部23が反転して上方へ向け凸状に変形し、それによって下部金属箔弁体18の易破断部31に剪断力が作用して、易破断部31が破断する。それにより、下部金属箔弁体18における分離線部29、両通気孔30A,30Aおよび易破断部31で囲まれた部分は、上部金属箔弁体17と共に下部金属箔弁体18から離れるため、接続部28を通じてのみ導通していた両金属箔弁体17,18が離間して通電電流が遮断される。ここで、上部金属箔弁体17の薄肉部24は易破断部31よりも高い破断強度に設定されているため、上部金属箔弁体17は電流遮断時にそのままの状態を維持して、電解液が漏れ出るのを防止するので、電解液がPTC素子20に付着したり、電解液が外部に漏出して機器を腐食するといったことが生じない。
【0045】
そののちに、電池内圧がさらに上昇し続けた場合には、第3の防爆安全機能が作用する。すなわち、大量のガスまたは蒸気が発生して電池内圧が上部金属箔弁体17の薄肉部24の破断強度によって設定された所定値に達すると、その薄肉部24が開裂し、充満していたガスが金属キャップ21の排気孔21aから電池の外部に排出される。ここで、下部金属箔弁体18における分離線部29、両通気孔30A,30Aおよび易破断部31で囲まれた部分は、C字形状の薄肉部24の径よりも小さい径の環状形状に設定されて、薄肉部24内に包含される相対位置で対設されている。したがって、離間して上部金属箔弁体17に付着している下部金属箔弁体18の一部分は、上部金属箔弁体17における薄肉部24の破断により開口したガス排出孔を塞ぐことがなく、大量のガス発生時にも内部ガスを迅速に外部排出することができる。
【0046】
上記防爆封口板では、易破断部31が一対の通気孔30A,30Aの各々の孔縁部間を結ぶ直線の長さLと下部金属箔弁体18の厚みとにより設定されており、線の長さLは、図9の易破断部14に比較して格段に短い。したがって、図9と同等の破断強度に設定する場合、易破断部31は、長さが格段に短くなった分だけ図9の場合より厚くすることができ、この下部金属箔弁体18の全体を一定の厚みに形成することは容易に行えるから、易破断部31は、一対の通気孔30A,30Aの間隔のみの管理により所定の破断強度に正確に設定できる。一対の通気孔30A,30Aは打ち抜き加工により正確な間隔に製作できるから、この防爆封口板は、従来の高精度な制御を必要とする刻印加工を用いないことから量産性に優れるとともに、電流遮断圧力に高い信頼性を得られる。
【0047】
しかも、上記防爆封口板は、下記の種々の手段を講じたことにより電流遮断圧力をより一層正確に設定できるとともに、破断動作を安定に行わせて高い信頼性を得られる。先ず、第1に、下部金属箔弁体18が接続部28を介して上部金属箔弁体17により引っ張り上げられるときに、下部金属箔弁体18における易破断部31の外側の近傍箇所は固定部32により金属ケース22に離間しないよう保持されるから、易破断部31は、下部金属箔弁体18の展性や絶縁ガスケット19の変形による影響を受けて破断強度がばらつくといったことが生じない。しかも、固定部32は易破断部31の中点に対応して形成されているから、易破断部31にはその全体にわたり均等な保持力が安定に作用する。
【0048】
第2に、接続部28は、下部金属箔弁体18の中心点Sから上述の方向にずれた位置に設けられているから、易破断部31は、その全体が水平に引っ張り上げらるのではなく、接続部28により斜め方向に引き裂く状態で破断されることになり、所定の電池圧力に達した時点で円滑且つ安定に破断される。第3に、易破断部31は、一対の通気孔30A,30Aの各々の三角形の対向角部で規定された破断方向が下部金属箔弁体18の圧延ロールによる筋目方向33と一致するよう設定して形成されているので、常に安定した破断動作を得ることができる。このように、易破断部31は上述のような種々の破断のための要件を備えているから、電流遮断圧力にばらつきが生じない。
【0049】
上記第1の実施の形態の防爆封口板および図9の従来の防爆封口板の各々の電流遮断圧力を図3に示す検査装置により測定した。すなわち、防爆封口板を筒型の一対の電極体40,41により気密に挟み付け、この電極体40,41を介して電源42から防爆封口板に電流を供給した状態において、高圧空気源43から電極体41を通じて防爆封口板に加える高圧空気を毎秒0.6 kg/cm2 で徐々に昇圧させていき、易破断部31が破断して電流が遮断されたのを検流計44が検知したときの圧力センサ47の指示値を電流遮断圧力として計測した。その結果を(表1)に示す。
【0050】
【表1】

Figure 0003853461
【0051】
この表1から明らかなように、従来の防爆封口板では標準偏差が1.28であったのが、上記実施の形態の防爆封口板の場合には、標準偏差が0.30に大幅に低減している。なお、標準偏差σは下記の式(1)に基づき計算した。式(1)において、xi は上記装置により測定した電流遮断圧力、x0 は平均値、nは測定回数をそれぞれ示す。
【0052】
【数1】
Figure 0003853461
【0053】
上記実施の形態の防爆封口板の易破断部31は、一対の三角形状の通気孔30A,30Aの各々の角部を相対向させることにより、破断される箇所がほぼ規定されている。この易破断部31は、図4(a)に示す円形の一対の通気孔30B、30B、または同図(b)に示す四角形状の一対の通気孔30C、30Cの各々の角部を相対向させて形成し、それらの角部の間に形成してもよい。この場合、いずれの通気孔30B,30Cも、同一形状のものを一対用いて、対称配置に形成すれば、上記実施の形態と同様の破断効果を得ることができる。
【0054】
図5は、本発明の第2の実施の形態に係る密閉型電池用防爆封口板における下部金属箔弁体18を示す平面図である。この下部金属箔弁体18は、易破断部31に、三角形状の一対の通気孔30A,30Aの孔縁部間を結ぶ直線に沿って破断規定線部となるミシン目48が形成されており、その他の構成は第1の実施の形態と同様である。したがって、易破断部31は、ミシン目48によって破断部位が確実に規制されるから、破断動作を安定に且つ円滑に行わせることができ、電流遮断圧力を一層確実に所定値に設定することができる。なお、ミシン目48に代えて、薄肉の溝部を形成しても、上記と同様の効果を得ることができる。
【0055】
図6は本発明の第3の実施の形態に係る密閉型電池用防爆封口板を示す縦断面図である。この実施の形態の防爆封口板が第1および第2の実施の形態のものと異なるのは、下部金属箔弁体18の易破断部31に対し外側の近傍箇所に設ける固定部49の構成のみであり、その他の構成は上記各実施の形態と同様である。
【0056】
この実施の形態の固定部49は、金属ケース22における易破断部31の外周側の近傍部位の対応箇所に、上方に突出する凸部22bを設け、この凸部22bにより下部金属箔弁体18の対応箇所が押し上げられて絶縁ガスケット19との間で局部的に強く金属ケース22に圧接された構成になっている。なお、この固定部49は、金属ケース22の凸部22bに代えて、絶縁ガスケット19に下方へ突出する凸部を設けて構成してもよい。
【0057】
上記固定部49は、第1の実施の形態の防爆封口板の固定部32と同様に、電池内圧により上部金属箔弁体17の凹状部23が変形するのに伴って下部金属箔弁体18における分離線部29の内方部位が引き上げられるときに、下部金属箔弁体18における易破断部31の外方箇所が金属ケース22に押し付けて引き上げられるのを阻止する。それにより、下部金属箔弁体18の展性により易破断部31の破断強度がばらつくのを確実に防止できるから、易破断部31は所定の電池内圧に達した時点でばらつきなく確実に破断される。
【0058】
つぎに、第1または第2の実施の形態に係る防爆封口板の製造方法について説明する。図7(a)は、金属ケース22と下部金属箔弁体18との各々の所定部位を相互に溶着して固定部32を形成する工程を示す。金属ケース22内に、分離線部29、通気孔30A,30Aおよび易破断部31を予め形成した下部金属箔弁体18、或いは上記構成に加えてミシン目48を形成した下部金属箔弁体18を挿入する。続いて、金属ケース22と下部金属箔弁体18とを、光通過孔57aを有する固定治具57と熱退避用空間58aを有する固定治具58により両側から挟み付け、金属ケース22の所定部位に、レーザー溶接機54から光通過孔57aを通じレーザー光を照射して、下部金属箔弁体18における易破断部31の外周側近接部位と金属ケース22とを相互にレーザー溶接して固定部32を形成する。ここで、互いの溶接すべき箇所である金属ケース22と下部金属箔弁体18の周縁部分とは、共に平坦面であるから、直接的に押圧しなくても隙間なく密着し、支障なくレーザー溶接できる。
【0059】
次工程では、両金属箔弁体17,18相互間に接続部28を形成する。図7(b)に示すように、絶縁ガスケット19および上部金属箔弁体17を金属ケース22内に順次挿入して、両金属箔弁体17,18の各々の周縁部分を絶縁ガスケット19を介在して重ね合わせる。絶縁ガスケット19を介在して重ね合わされた両金属箔弁体17,18の各々の周縁部分を、上下の固定治具52,53により金属ケース22を介在して挟み付け、固定する。
【0060】
つぎに、凹状部23および凸状部27の各々の接触部分の所定部位に、レーザー溶接機54から上部固定治具52の光通過孔52aを通じレーザー光を照射してレーザー溶接し、接続部28を形成する。図7(b)に示すように、上部金属箔弁体17を金属ケース22内に挿入して、上部金属箔弁体17の周縁部分を絶縁ガスケット19上に載置すると、上部および下部の金属箔弁体17,18の各々の凹状部23と凸状部27との先端部同士が互いに接触する。すなわち、下部金属箔弁体18の凸状部27および上部金属箔弁体17の凹状部23は、下部金属箔弁体18の周縁部上面から凸状部27の先端までの突出寸法をd1、上部金属箔弁体17の周縁部下面から凹状部23先端までの突出寸法をd2、絶縁ガスケット19の厚みをDとしたときに、d1+d2>Dの寸法関係に設定されている。
【0061】
上述の絶縁ガスケット19を介在して重ね合わされた両金属箔弁体17,18の各々の周縁部分を、上下の固定治具52,53により金属ケース22を介在して挟み付け、固定する。このとき、上記のd1+d2>Dの寸法関係から明らかなように、凹状部23および凸状部27が僅かに撓められて、それらの各々の先端部位は、屈撓による復元力によって互いに強く押し付け合って、隙間のない状態に密着する。つぎに、凹状部23および凸状部27の各々の接触部分の所定部位に、レーザー溶接機54から上部固定治具52の光通過孔52aを通じレーザー光を照射してレーザー溶接し、接続部28を形成する。
【0062】
ところで、レーザー溶接は、溶着強度の高い溶着部を形成できるものであって、被溶接物が剛性体や厚みの大きいものである場合にはそれ自体が変形しないことから支障なく溶接を行える。しかし、本発明における被溶接物である金属箔弁体17,18は、0.1 〜0.15mm程度の厚みの薄いものであって変形し易いため、レーザー溶接するに際してこれらの被溶接部位を互いに密着状態に保持する必要があるが、それらの被溶接部位を、固定治具を両側から押し付ける手段などにより密着させるようなことはできない。なぜならば、一方の固定治具にはレーザー光の通過孔を、他方の固定治具におけるレーザー光の照射箇所には熱影響を避けるための空間を、それぞれ必要とするためである。もし、被溶接部位に隙間が生じると、レーザー光を照射される一方の被溶接部材から他方の被溶接部材への熱伝導が不十分となり、溶接不良や孔があくなどの欠陥が生じる。
【0063】
これに対し、本発明の製造方法では、被溶接物である両金属箔弁体17,18の凹状部23および凸状部27は、絶縁ガスケット19の厚みDに対し上記のようにd1+d2>Dの寸法関係に設定したので、凹状部23と凸状部27とは、保持手段を用いることなく各々の先端部同士を密着同士に保持することができる。そのため、溶接不良や穿孔が生じることがなく、強固な接続部28を歩留りよく形成することができる。なお、図7の工程以後は、従来と同様の工程により防爆封口板を製作する。
【0064】
【発明の効果】
以上のように、本発明の密閉型電池用防爆封口板によれば、易破断部の破断強度を一対の通気孔の各々の孔縁部間を結ぶ直線の長さにより設定する構成とし、所定の位置に下部金属箔弁体を金属ケースに局部的に固定する固定部を設けたので、易破断部は、長さが格段に短くなった分だけ大きな厚みで所定の破断強度に正確に設定でき、また、一対の通気孔は、その間隔を正確に形成するのは容易であるから、破断強度にばらつきが生じない。したがって、この防爆封口板は、量産性に優れるとともに、電流遮断圧力に高い信頼性を得ることができる。
【0065】
本発明に係る密閉型電池用防爆封口板の製造方法によれば、共に平坦面である金属ケースと下部金属箔弁体の周縁部分とを隙間なく密着させてレーザー溶接することにより、強固な固定部を確実に形成できる。また、両金属箔弁体の各々の凹状部および凸状部の各々の先端部位を隙間のない状態に密着させてレーザー溶接することにより、溶接不良や穿孔のない強固な接続部を歩留りよく形成することができる。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態に係る密閉型電池用防爆封口板を示し、(a)は縦断面図、(b)は(a)における下部金属箔弁体のみの平面図。
【図2】同上防爆封口板の下部金属箔弁体が破断した状態の縦断面図。
【図3】同上防爆封口板の検査装置の概略を示す水平断面図。
【図4】(a),(b)はいずれも下部金属箔弁体に形成する一対の通気孔の変形例を示す平面図。
【図5】本発明の第2の実施の形態に係る密閉型電池用防爆封口板における下部金属箔弁体を示す平面図。
【図6】本発明の第3の他の実施の形態に係る密閉型電池用防爆封口板を示す縦断面図。
【図7】第1または第2の実施の形態に係る密閉型電池用防爆封口板の製造方法を示す工程図。
【図8】従来の密閉型電池用防爆封口板を示す縦断面図。
【図9】従来の他の密閉型電池用防爆封口板を示す縦断面図。
【符号の説明】
17 上部金属箔弁体
18 下部金属箔弁体
18a 凸部
19 絶縁ガスケット
19a 凸部
21 金属キャップ
22 金属ケース
23 凹状部
27 凸状部
28 接続部
29 分離線部
30A〜30C 通気孔
32,49 固定部
33 筋目方向
34 電池ケース
48 ミシン目(破断規定線部)
52,53 固定治具
57,58 固定治具[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an explosion-proof sealing plate for a sealed battery used for sealing a sealed battery, particularly a sealed nonaqueous electrolyte battery having a high energy density, such as a lithium secondary battery, and a method for producing the same.
[0002]
[Prior art]
In recent years, electronic devices such as AV devices and personal computers have been rapidly becoming portable and cordless, and the driving power sources of these portable devices are non-representatives such as various alkaline storage batteries and lithium secondary batteries with high capacities. A water electrolyte (organic solvent electrolyte) secondary battery is suitable, and further, these non-aqueous electrolyte secondary batteries are promoted to be a sealed type having high energy density and excellent load characteristics.
[0003]
By the way, in a sealed nonaqueous electrolyte battery having a high energy density, a so-called Neumann method that consumes gas generated inside the battery as a counter electrode cannot be adopted, and it is necessary to avoid overcharge and overdischarge. However, when a device including a charger fails or is overcharged or misused, the power generation element inside the battery undergoes a chemical reaction, such as an electrolyte solution or active material due to an abnormal reaction due to overcharge or short circuit, for example. As a result, gas is abnormally generated inside the battery, and the internal pressure of the battery becomes excessive. In order to prevent such problems from occurring in advance, an explosion-proof safety device has been added to this type of battery to open the valve body and discharge gas when the internal pressure of the battery exceeds the set value. ing.
[0004]
Furthermore, in a non-aqueous electrolyte secondary battery, a charging current continues to flow in an overcharged state, so the electrolyte and active material may continue to decompose and the temperature may rise rapidly. Therefore, this type of battery is provided with a reliable explosion-proof safety mechanism that completely cuts off the energization current prior to gas discharge by detecting that the battery internal pressure has increased to a predetermined value.
[0005]
As such an explosion-proof safety mechanism, for example, one having the structure shown in FIG. 8 is known (see JP-A-6-215747). In this explosion-proof safety mechanism, an upper valve body 1 and a terminal plate 2 having a vent hole 3 are stacked with an insulating gasket 10 interposed between their peripheral portions, and the valve body 1 and the terminal plate 2 are respectively It is in a conductive state only through the welded portion 4 at the center of the. Normally, an energizing current flows from the electrode plate (not shown), the lead body (not shown), the metal case 7 and the terminal plate 2 to the valve body 1, the PTC element 8 and the metal cap 9 via the welded portion 4, Functions as a battery. When the battery internal pressure rises to a predetermined value, the valve body 1 that receives the battery internal pressure through the vent hole 5 of the metal case 7 and the vent hole 3 of the terminal plate 2 is deformed in the internal pressure acting direction (upward in the drawing). Due to the stress, the valve body 1 is peeled off from the welded portion 4 of the terminal plate 2 to cut off the energization current.
[0006]
By the way, in the above explosion-proof safety mechanism, it is necessary to weld the predetermined parts of the valve body 1 and the terminal plate 2 to a low welding strength that can be peeled off by a constant battery internal pressure when forming the welding part 4. Ultrasonic welding, which can be welded at a low welding strength, has been adopted. However, ultrasonic welding involves welding only the surfaces of the joints of the workpieces by vibration and heat to weld the workpieces to each other, and because there are many unstable elements, the welding strength inevitably varies. Arise. On the other hand, in the above explosion-proof safety mechanism, since the current interruption pressure for interrupting the current is set by the welding strength, the current interruption pressure differs depending on the dispersion of the welding strength and cannot be set to a constant value. There are drawbacks. As a result, the current is interrupted before the battery internal pressure reaches the predetermined value, or conversely, the current is not interrupted even though the battery internal pressure reaches the predetermined value.
[0007]
Therefore, an explosion-proof sealing plate for a sealed battery as shown in FIG. 9 has been proposed. The explosion-proof sealing plate for a sealed battery is not affected by the welding strength when the current is interrupted by an increase in battery internal pressure. That is, in this explosion-proof sealing plate, the upper metal foil valve body 11 and the lower metal foil valve body 12 constitute an explosion-proof valve mechanism, and other configurations are the same as those in FIG. The upper metal foil valve body 11 is formed with an upper easily breakable portion 13 formed of a thin C-shaped portion in plan view at the center, and the lower metal foil valve body 12 has a smaller diameter than the upper easily breakable portion 13. A lower easily breakable portion 14 formed of a thin-walled portion having a circular shape in plan view is formed in the center portion. The two metal foil valve bodies 11 and 12 are welded at their center portions to each other at a relative position where the easily breakable portions 13 and 14 are concentrically opposed to each other to form a welded portion 15. Here, the lower easily breakable portion 14 is set to have a lower breaking strength than the upper easily breakable portion 13.
[0008]
The explosion-proof sealing plate is electrically connected only through the welded portion 15 at the center of both metal foil valve bodies 11 and 12, and the current interruption pressure is that of the lower easily breakable portion 14 formed by the marking means. Since it is set according to the breaking strength, it is not affected by the variation in the welding strength of the welded portion 15. That is, when the battery internal pressure rises to a predetermined value, the entire circular lower easily breakable portion 14 is broken, and the inner portion of the lower easily breakable portion 14 in the lower metal foil valve body 12 is cut out, so that the upper metal foil. The valve body 11 is separated from the lower metal foil valve body 12 integrally with the valve body 11, and the energization current is interrupted. When the battery internal pressure further increases, the upper easily breakable portion 13 breaks and opens, and the gas is discharged to the outside. Since it is not necessary to peel off the welded portion 15 with this explosion-proof sealing plate, the welded portion 15 can be formed by laser welding that can be welded to a strong weld strength. Therefore, since the current interruption pressure is set by the breaking strength of the lower easily breakable portion 14 formed by the marking means or the like, it is not affected at all by the variation in the welding strength.
[0009]
[Problems to be solved by the invention]
Although the explosion-proof sealing plate exhibits a remarkable explosion-proof safety function as described above, the following problems remain. That is, the lower easily breakable portion 14 has a circular shape surrounding the welded portion 15 and has a relatively long overall length, and the current interruption pressure depends on the breaking strength based on the sum of the thicknesses of the long lower easily breakable portion 14 described above. Is set. For this reason, the lower easily breakable portion 14 is extremely thin on the order of [mu] m and needs to be formed in a uniform thickness with accurate management, and thus lacks mass productivity. Moreover, even if the lower easily breakable portion 14 is processed to control the marking means with high accuracy, the lower easily breakable portion 14 is formed to have a very thin thickness, so that the thickness is inevitably varied. In addition, since the rupture pressure acts uniformly on the entire lower easily breakable portion 14 of the circle, the portion where the rupture starts is not specified, and the rupture operation tends to become unstable. Therefore, the current interrupting pressure tends to be unreliable due to the above anxiety factors.
[0010]
Therefore, the present invention eliminates the above-mentioned problems, and can easily form an easily rupture portion that is ruptured at a predetermined battery internal pressure to a predetermined rupture strength by a manufacturing means excellent in mass productivity, and has a highly reliable current interruption function. It is an object of the present invention to provide an explosion-proof sealing plate for a sealed battery and a method for producing the same.
[0011]
[Means for Solving the Problems]
  To achieve the above objective,First of this applicationThe invention provides an explosion-proof sealing plate for a sealed battery that seals an opening of a battery case that houses a power generation element and that partially breaks and interrupts an energization current when the battery internal pressure rises to a set value. The upper and lower metal foil valve bodies having the above are overlapped with an insulating gasket interposed between their peripheral portions, and are electrically connected only through the connection portions where the respective central portions are welded to each other, Both metal foil valve elements are inserted into a metal case with a metal cap disposed on the upper metal foil valve element, and the lower metal foil valve element is provided so as to surround the connecting portion. A separation line, a pair of ventilation holes that are connected to both ends of the separation line part and face each other, and cause battery internal pressure to act on the upper metal foil valve body, and respective edge edges of the two ventilation holes that face each other Formed by the part between the parts, the battery internal pressure is An easily breakable portion that breaks when a constant value is reached, and when the internal pressure of the battery reaches a predetermined value, the easily breakable portion breaks due to stress due to the upward deformation of the upper metal foil valve body. The part surrounded by the separation line part, the two vent holes and the easily breakable part is separated with the upper metal foil valve body.The fixing portion for locally fixing the lower metal foil valve body to the metal case is provided at a position near the outer peripheral side with respect to the easily breakable portion, and the fixing portion is an annular shape connecting the separation line portion, both the air holes and the easily breakable portion. It is characterized by being formed by setting the center point of the fixed portion on a line passing through the center point and a midpoint of a straight line connecting between the hole edges of the two air holes.
[0012]
  the aboveAccording to the first inventionThe explosion-proof sealing plate for a sealed battery is an upper metal foil that receives this pressure through the vent of the lower metal foil valve body when the battery internal pressure rises to a predetermined value set by the breaking strength of the easily breakable portion of the lower metal foil valve body. The valve body is deformed in a convex shape upward, whereby a shearing force acts on the easily breakable portion of the lower metal foil valve body, and the easily breakable portion is broken. As a result, the part surrounded by the separation line part, both vent holes and the easily breakable part in the lower metal foil valve body is separated from the lower metal foil valve body together with the upper metal foil valve body by the connection part, and therefore only conducts through the connection part. Both metal foil valve bodies which have been separated are separated from each other and the energization current is interrupted.
[0013]
In this sealed battery explosion-proof sealing plate, the breaking strength of the easily breakable portion is set by the length of a straight line connecting the edge portions of each of the pair of vent holes, and the length of the straight line is a conventional explosion-proof sealing plate. Compared to the round easily breakable portion of the sealing plate, it is much shorter. Therefore, the easily breakable portion can be made thicker as much as the length is remarkably shortened when set to the same break strength as the conventional easily breakable portion, and the entire thickness of the lower metal foil valve body is made constant. Since it is easy, the easily breakable portion can be accurately set to a predetermined breaking strength by managing only the interval between the pair of vent holes, and the pair of vent holes can be manufactured at an accurate interval by punching. This explosion-proof sealing plate is superior in mass productivity because it does not use the conventional engraving process that requires high-precision control, and it can be accurately formed to a breaking strength with an easily breakable part. There is no variation.
[0014]
  Moreover, the said 1st invention has provided the fixing | fixed part which fixes a lower metal foil valve body locally to a metal case in the outer peripheral side vicinity position with respect to an easily breakable part.
[0015]
  As a result, when the lower metal foil valve body is pulled up by the upper metal foil valve body through the connecting portion, the portion near the outer peripheral side of the easily breakable portion of the lower metal foil valve body is pulled by the metal case through the fixing portion. Since it is held so as not to be raised, the easily breakable portion is not affected by the malleability of the lower metal foil valve body and the deformation of the insulating gasket, and the breaking strength does not vary. For this reason, this explosion-proof sealing plate can obtain a high reliability in the current interrupting pressure in combination with the fact that the easily breakable portion can be accurately set to a predetermined breaking strength only by the distance between the pair of vent holes.
[0016]
  Further, in the first aspect of the invention, the fixing part passes through an annular center point connecting the separation line part, both the vent holes and the easily breakable part, and a midpoint of a straight line connecting between the respective hole edges of the both vent holes. A center point of the fixed portion is set on the line.
[0017]
  Thereby, since a fixing | fixed part is formed corresponding to the midpoint of an easily breakable part, it can make an equal holding force act stably over the whole easily breakable part.
[0018]
  In the present invention, the connecting portions of the upper and lower metal foil valve bodies are displaced in any direction on a line parallel to the straight line with respect to the midpoint of the straight line connecting the edge portions of the two vent holes. It is preferable to form at a different position.
[0019]
  As a result, the easily breakable portion is not pulled up horizontally as a whole, but is broken in a state of tearing in an oblique direction by a connecting portion formed at a position shifted from the midpoint of the easily breakable portion. When the predetermined internal pressure of the battery is reached, it is broken smoothly and stably.
[0020]
In the above invention, the fixing portion can be constituted by a welded portion in which predetermined facing portions of the lower metal foil valve body and the metal case are welded to each other.
[0021]
As a result, when the lower metal foil valve body is pulled up by the upper metal foil valve body through the connecting portion, the portion near the outer peripheral side cannot be pulled up by the metal case with respect to the easily breakable portion in the lower metal foil valve body. Can be held securely.
[0022]
In the above invention, the fixing portion may be configured such that the lower metal foil valve body is locally strongly pressed against the metal case by a convex portion provided on the metal case or the insulating gasket.
[0023]
As a result, when the lower metal foil valve body is pulled up by the upper metal foil valve body through the connecting portion, the vicinity of the outer peripheral side of the easily breakable portion of the lower metal foil valve body is formed by the insulating gasket and the metal case. It can be securely held so that it cannot be pulled up by being pinched locally.
[0024]
In the above invention, it is preferable that the pair of vent holes of the lower metal foil valve body are formed in a polygonal shape, and those having the same shape are formed in a symmetrical arrangement.
[0025]
Thus, if the pair of ventilation holes are formed so that the polygonal corners are opposed to each other, the interval between both the ventilation holes can be accurately formed to a predetermined value, and the breakage part of the easily breakable part can be It can be defined almost on a straight line connecting the corners of the two air holes, and the easily breakable portion can be easily and accurately formed with a predetermined breaking strength.
[0026]
  The second invention of the present application seals the opening of the battery case that houses the power generation element, and partially seals the explosion-proof sealing plate for battery when the internal pressure of the battery rises to a set value to cut off the energization current. In this case, both the upper and lower metal foil valve bodies having conductivity are overlapped with each other by interposing an insulating gasket between their peripheral portions, and are electrically connected only through the connection portions where the respective central portions are welded to each other. The both metal foil valve bodies are inserted into the metal case by placing a metal cap on top of the upper metal foil valve body,  The lower metal foil valve body is connected to and separated from a separation line portion provided so as to surround the connection portion, and both ends of the separation line portion, and the internal pressure of the battery acts on the upper metal foil valve body. A pair of air holes to be formed and an easily breakable portion that is formed by a portion between the respective edge portions of the air holes facing each other and that breaks when the battery internal pressure reaches a predetermined value. When the upper metal foil valve body is reached, the portion that is surrounded by the separation line portion, the two vent holes, and the easily breakable portion by receiving the stress due to the upward deformation of the upper metal foil valve body and breaking the easily breakable portion Is configured to separate with the upper metal foil valve body,The separation line part of the lower metal foil valve body is formed of a C-shaped slit, and both ends thereof are formed to communicate with a pair of vent holes, respectively.It is characterized by being.
[0027]
As a result, the separation line portion can be easily formed by processing excellent in mass productivity such as punching processing, and the annular portion surrounding the connection portion in the lower metal foil valve body is interposed only by the easily breakable portion, and the lower metal foil valve Since it becomes the state connected to the main-body part of the body and the current interruption pressure can be set only by the breaking strength determined by the length and thickness of the easily breakable portion, it can be set accurately.
[0028]
  A third invention of the present application seals an opening of a battery case that houses a power generation element, and is an explosion-proof sealing plate for a sealed battery that is partially broken to cut off an energization current when the battery internal pressure rises to a set value. In this case, both the upper and lower metal foil valve bodies having conductivity are overlapped with each other by interposing an insulating gasket between their peripheral portions, and are electrically connected only through the connection portions where the respective central portions are welded to each other. The both metal foil valve bodies are inserted into the metal case by placing a metal cap on top of the upper metal foil valve body,  The lower metal foil valve body is connected to and separated from a separation line portion provided so as to surround the connection portion, and both ends of the separation line portion, and the internal pressure of the battery acts on the upper metal foil valve body. A pair of air holes to be formed and an easily breakable portion that is formed by a portion between the respective edge portions of the air holes facing each other and that breaks when the battery internal pressure reaches a predetermined value. When the upper metal foil valve body is reached, the portion that is surrounded by the separation line portion, the two vent holes, and the easily breakable portion by receiving the stress due to the upward deformation of the upper metal foil valve body and breaking the easily breakable portion Is configured to separate with the upper metal foil valve body,The easily breakable portion of the lower metal foil valve body is formed so that the straight line connecting the edge portions of each of the pair of vent holes coincides with the line direction of the rolling roll when the lower metal foil valve body is manufactured.It is characterized by being.
[0029]
Thereby, an easily breakable part can always be fractured stably.
[0030]
In the above-mentioned invention, a breakage defining line composed of a perforation or a narrow groove formed along a straight line connecting the edge portions of the pair of air holes can be provided in the easily breakable portion of the lower metal foil valve body.
[0031]
As a result, the breakable portion of the easily breakable portion is reliably defined by the breakage defining line portion, so that the breaking operation can be performed stably and smoothly, and the current interrupting pressure is set to a predetermined value more reliably. Can do.
[0032]
In the above invention, the upper metal foil valve body is provided with a concave portion having a central portion bulging downward, and the lower metal foil valve body has a central portion bulging upward, along the outer periphery of the bulged portion. A separating line part, a pair of vent holes, and a convex part formed by arranging an easy-to-break part in an annular shape, and the metal foil valve body has a contact part between the concave part and the convex part. It can be set as the structure connected with the electrical continuity state via the connection part welded mutually by welding.
[0033]
Thereby, when forming a connection part between both metal foil valve bodies by welding, the concave part and convex part of both metal foil valve bodies hold | maintain each front-end | tip part in a close_contact | adherence state, without using a holding means. Therefore, it is possible to form a strong connection portion with a high yield without causing poor welding or perforation.
[0034]
  According to the fourth invention of the present applicationThe manufacturing method of the explosion-proof sealing plate for the sealed battery is as follows:Claim 3When manufacturing an explosion-proof sealing plate for a sealed battery, a lower metal foil valve body having a convex portion with a central portion bulging upward is inserted into a metal case, and a predetermined peripheral portion of the lower metal foil valve body is determined. The part and the facing part of the metal case are welded to each other by laser welding to form a fixing part, and the upper metal foil valve body having a concave part whose central part bulges downward is inserted into the metal case. A step of superimposing the peripheral portions of each of the two metal foil valve bodies with an insulating gasket interposed therebetween, and bringing the respective tip portions of the concave portion and the convex portion into contact with each other; A step of sandwiching and fixing each peripheral portion of the body from above and below with a fixing jig, and a step of forming a connection portion by welding the portions of the concave portion and the convex portion that are in contact with each other by laser welding And have .
[0035]
In the manufacturing method of the above-mentioned sealed battery explosion-proof sealing plate, when the fixing portion is formed, the metal case which is a place to be welded to each other and the peripheral portion of the lower metal foil valve body are both flat surfaces and directly Laser welding can be performed without any trouble because it adheres without a gap without pressing. In addition, when forming the connecting portion by laser welding, the concave portions of the metal foil valve bodies and the tip portions of the convex portions are in close contact with each other without any gaps, so that no welding failure or perforation occurs. A strong connection portion can be formed with a high yield.
[0036]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. FIG. 1A is a longitudinal sectional view showing an explosion-proof sealing plate for a sealed battery according to the first embodiment of the present invention, and FIG. 1B is a plan view of a lower metal foil valve body 18 in the explosion-proof sealing plate. It is. In the same figure, this explosion-proof sealing plate for a sealed battery includes a thin upper metal foil valve body 17 having flexibility, and a thin lower metal foil valve having flexibility that is opposed to the upper metal foil valve body 17. Body 18, ring-shaped insulating gasket 19 interposed between the peripheral portions of both metal foil valve bodies 17, 18, and ring-shaped PTC superimposed on the upper surface of the peripheral portion of upper metal foil valve body 18. (Positive Temperature Coefficient) element 20, a metal cap 21 having a plurality of exhaust holes 21a mounted on the PTC element 20, and a plurality of vent holes 22a for inserting and holding each of the above members in a stacked state. A metal case 22 made of aluminum.
[0037]
The upper metal foil valve body 17 is made of, for example, a flexible aluminum disk having a thickness of 0.10 mm and an outer diameter of 12.7 mm, and a concave portion 23 whose central portion bulges downward in a curved shape, and the concave shape. There is an easily breakable thin portion 24 formed using a C-shaped stamp around the portion 23. On the other hand, the lower metal foil valve body 18 is made of a flexible aluminum disk having a thickness of 0.10 mm and an outer diameter of 13.5 mm, for example, and has a convex portion 27 whose central portion bulges upward. ing. The two metal foil valve bodies 17 and 18 are welded to each other by locally welding the portions of the two metal foil valve bodies 17 and 18 shown in FIG. Is connected to the electrically conductive state only through.
[0038]
In the lower metal foil valve body 18, as clearly shown in (b), a separation line portion 29 formed of a C-shaped slit provided in a plan view so as to surround the connection portion 28, and both ends of the separation line portion 29. A pair of triangular air holes 30A, 30A that are connected to each other and face each other, and an easily breakable portion 31 that is formed by remaining portions of the air holes 30A, 30A that face each other. The lower metal foil valve body 18 is laser-welded to the metal case 22 in the vicinity of the easily breakable portion 31 on the side opposite to the connecting portion 28 to form a fixing portion 32.
[0039]
The pair of vent holes 30A and 30A have the same triangular shape, and are formed in a symmetrical arrangement with their corners facing each other. The easily breakable portion 31 is substantially defined by a broken portion as shown by a broken line in (b) because the triangular corner portions of the pair of vent holes 30A and 30A are opposed to each other. The breaking strength when the battery internal pressure is received is set by the length L and the thickness of the breaking portion. Further, the easily breakable portion 31 is formed by a straight line indicated by a broken line in (b) connecting between the hole edge portions of the pair of vent holes 30A, 30A. 33.
[0040]
The connecting portion 28 is on a line R parallel to a straight line connecting the edge portions of both the vent holes 30A and 30A in the easily breakable portion 31 with respect to the center point S of both metal foil portion valve bodies 17 and 18. It is formed by shifting in either direction. Therefore, the connecting portion 28 may be provided at a portion indicated by a two-dot chain line in (b). The fixed portion 32 is formed by setting a center point of welding on a line passing through the center point S and a midpoint of a straight line connecting the hole edges of both the vent holes 30A and 30A.
[0041]
The explosion-proof sealing plate is inserted into the metal case 22 in a state where the PTC element 20 and the metal cap 21 are overlapped on the metal foil valve bodies 17 and 18 overlapped with the insulating gasket 19 interposed therebetween. The upper part of 22 is crimped inward and assembled. When the explosion-proof sealing plate is inserted into the battery case 34, as shown in FIG. 4A, the lead body 38 led out from the electrode plate group 37 accommodated in the battery case 34 is connected to the metal case 22 by welding, and the electrode After injecting the electrolytic solution into the plate group 37, the explosion-proof sealing plate assembled as described above is attached to the opening of the battery case 34 with the insulating gasket 39 interposed therebetween. After that, when the upper end portion of the battery case 34 is caulked inward, the explosion-proof sealing plate seals the battery case 34.
[0042]
Next, the operation of the sealed battery in which the opening of the battery case 34 is sealed with the explosion-proof sealing plate will be described. The energizing current flows from the electrode plate group 37, the lead body 38, the metal case 22, and the lower metal foil valve body 18 to the upper metal foil valve body 17, the PTC element 20, and the metal cap 21 through the connection portion 28, and functions as a battery. To do. In this sealed battery, the explosion-proof safety function functions in three stages. First, the first explosion-proof safety function will be described. When an excessive current flows, the PTC element 20 reaches the operating temperature in a short time, the resistance value increases, and the energization current is significantly reduced and maintained. Thereby, significant damage to the battery due to external short circuit or misuse due to excessive current can be prevented.
[0043]
By the way, in the case of a lithium secondary battery or the like when an uncontrolled overcharge due to a charger failure or the like, a reverse charge, or a multiple series overdischarge occurs, the current value is equal to or less than the operating current of the PTC element 20. In many cases, however, the allowable current of the battery is exceeded and the internal pressure of the battery increases. In this case, when a current continues to flow through the battery, the battery temperature rapidly rises with decomposition of the electrolytic solution and the active material, and an excessive amount of gas or vapor may be generated. Therefore, the second explosion-proof safety function that detects the internal pressure of the battery and completely cuts off the energized current acts.
[0044]
That is, when the battery internal pressure rises to a predetermined value set by the breaking strength of the easily breakable portion 31 of the lower metal foil valve body 18, this pressure is increased by the air holes 22 a of the metal case 22 and the air holes 30 A of the lower metal foil valve body 18. As shown in FIG. 2, the upper metal foil valve element 17 received through the concave part 23 is inverted and deformed upward so that a shearing force is applied to the easily breakable part 31 of the lower metal foil valve element 18. It acts and the easily breakable part 31 fractures. Thereby, the part surrounded by the separation line portion 29, both the vent holes 30A, 30A and the easily breakable portion 31 in the lower metal foil valve body 18 is separated from the lower metal foil valve body 18 together with the upper metal foil valve body 17, The two metal foil valve bodies 17 and 18 that are conducted only through the connection portion 28 are separated from each other, and the energization current is interrupted. Here, since the thin-walled portion 24 of the upper metal foil valve body 17 is set to have a higher breaking strength than the easily breakable portion 31, the upper metal foil valve body 17 is maintained as it is when the current is interrupted, so that the electrolyte solution Is prevented from leaking out, so that the electrolytic solution does not adhere to the PTC element 20 or the electrolytic solution leaks out and corrodes the device.
[0045]
After that, when the battery internal pressure continues to rise, the third explosion-proof safety function operates. That is, when a large amount of gas or vapor is generated and the internal pressure of the battery reaches a predetermined value set by the breaking strength of the thin portion 24 of the upper metal foil valve body 17, the thin portion 24 is cleaved and filled with gas. Is discharged from the exhaust hole 21a of the metal cap 21 to the outside of the battery. Here, the portion surrounded by the separation line portion 29, both the vent holes 30 </ b> A and 30 </ b> A, and the easily breakable portion 31 in the lower metal foil valve body 18 has an annular shape having a diameter smaller than the diameter of the C-shaped thin portion 24. It is set and opposed at a relative position included in the thin portion 24. Therefore, a part of the lower metal foil valve element 18 that is separated and attached to the upper metal foil valve element 17 does not block the gas discharge hole that is opened by the breakage of the thin portion 24 in the upper metal foil valve element 17, Even when a large amount of gas is generated, the internal gas can be quickly discharged to the outside.
[0046]
In the explosion-proof sealing plate, the easily breakable portion 31 is set by the length L of the straight line connecting the hole edges of each of the pair of vent holes 30A, 30A and the thickness of the lower metal foil valve body 18, The length L is much shorter than the easily breakable portion 14 of FIG. Therefore, when setting the breaking strength equal to that in FIG. 9, the easily breakable portion 31 can be made thicker than in the case of FIG. Can be easily formed to have a constant thickness, and the easily breakable portion 31 can be accurately set to a predetermined breaking strength by managing only the distance between the pair of vent holes 30A, 30A. Since the pair of vent holes 30A and 30A can be manufactured at an accurate interval by punching, this explosion-proof sealing plate is excellent in mass production because it does not use a conventional engraving process that requires high-precision control, and interrupts current. High reliability in pressure can be obtained.
[0047]
In addition, the explosion-proof sealing plate can set the current interruption pressure more accurately by taking the following various means, and can stably perform the breaking operation and obtain high reliability. First, when the lower metal foil valve body 18 is pulled up by the upper metal foil valve body 17 via the connection portion 28, the vicinity of the easily breakable portion 31 outside the lower metal foil valve body 18 is fixed. Since the portion 32 is held so as not to be separated from the metal case 22, the easily breakable portion 31 is not affected by the malleability of the lower metal foil valve body 18 and the deformation of the insulating gasket 19, so that the breaking strength does not vary. . In addition, since the fixing portion 32 is formed corresponding to the midpoint of the easily breakable portion 31, a uniform holding force acts stably on the easily breakable portion 31 throughout.
[0048]
Secondly, since the connecting portion 28 is provided at a position shifted from the center point S of the lower metal foil valve body 18 in the above-described direction, the entire easily breakable portion 31 is pulled up horizontally. Instead, it is broken in a state of tearing in an oblique direction by the connecting portion 28, and is smoothly and stably broken when a predetermined battery pressure is reached. Thirdly, the easily breakable part 31 is set so that the breaking direction defined by the triangular opposing corners of each of the pair of vent holes 30A, 30A coincides with the line direction 33 by the rolling roll of the lower metal foil valve body 18 Therefore, a stable breaking operation can always be obtained. Thus, since the easily breakable part 31 has the requirements for various breaks as described above, there is no variation in the current interruption pressure.
[0049]
The current interruption pressures of the explosion-proof sealing plate of the first embodiment and the conventional explosion-proof sealing plate of FIG. 9 were measured by the inspection apparatus shown in FIG. That is, the explosion-proof sealing plate is hermetically sandwiched between a pair of cylindrical electrode bodies 40 and 41, and a current is supplied from the power source 42 to the explosion-proof sealing plate via the electrode bodies 40 and 41. High-pressure air applied to the explosion-proof sealing plate through the electrode body 41 is 0.6 kg / cm / second.2Then, the pressure was gradually increased, and the indicated value of the pressure sensor 47 when the galvanometer 44 detected that the easily breakable portion 31 was broken and the current was interrupted was measured as the current interrupting pressure. The results are shown in (Table 1).
[0050]
[Table 1]
Figure 0003853461
[0051]
As is apparent from Table 1, the standard deviation of the conventional explosion-proof sealing plate was 1.28, but in the case of the explosion-proof sealing plate of the above embodiment, the standard deviation is greatly reduced to 0.30. The standard deviation σ was calculated based on the following formula (1). In formula (1), xiIs the current breaking pressure measured by the above device, x0Represents an average value, and n represents the number of measurements.
[0052]
[Expression 1]
Figure 0003853461
[0053]
In the easily breakable portion 31 of the explosion-proof sealing plate of the above-described embodiment, the portions to be broken are substantially defined by making the corner portions of the pair of triangular vent holes 30A and 30A face each other. This easily breakable portion 31 is opposed to the corners of the pair of circular holes 30B and 30B shown in FIG. 4A or the pair of square holes 30C and 30C shown in FIG. And may be formed between the corners. In this case, if any of the vent holes 30B and 30C are formed in a symmetrical arrangement using a pair of the same shape, the same breaking effect as in the above embodiment can be obtained.
[0054]
FIG. 5 is a plan view showing the lower metal foil valve body 18 in the sealed battery explosion-proof sealing plate according to the second embodiment of the present invention. In the lower metal foil valve body 18, a perforation 48 serving as a breakage defining line portion is formed in the easily breakable portion 31 along a straight line connecting the edge portions of the pair of triangular air holes 30 </ b> A and 30 </ b> A. Other configurations are the same as those of the first embodiment. Therefore, the breakable portion of the easily breakable portion 31 is reliably regulated by the perforation 48, so that the breaking operation can be performed stably and smoothly, and the current interrupting pressure can be set to a predetermined value more reliably. it can. Even if a thin groove portion is formed instead of the perforation 48, the same effect as described above can be obtained.
[0055]
FIG. 6 is a longitudinal sectional view showing an explosion-proof sealing plate for a sealed battery according to a third embodiment of the present invention. The explosion-proof sealing plate of this embodiment is different from that of the first and second embodiments only in the configuration of the fixing portion 49 provided in the vicinity of the outside of the easily breakable portion 31 of the lower metal foil valve body 18. Other configurations are the same as those in the above embodiments.
[0056]
The fixing portion 49 of this embodiment is provided with a protruding portion 22b that protrudes upward at a corresponding location in the vicinity of the outer peripheral side of the easily breakable portion 31 in the metal case 22, and the lower metal foil valve element 18 is formed by the protruding portion 22b. The corresponding portion is pushed up, and is strongly pressed to the metal case 22 locally with the insulating gasket 19. In addition, this fixing | fixed part 49 may replace with the convex part 22b of the metal case 22, and may provide the convex part which protrudes below in the insulating gasket 19, and may be comprised.
[0057]
The fixing portion 49 is similar to the fixing portion 32 of the explosion-proof sealing plate of the first embodiment, and the lower metal foil valve body 18 is deformed as the concave portion 23 of the upper metal foil valve body 17 is deformed by the battery internal pressure. When the inner part of the separation line part 29 is pulled up, the outer part of the easily breakable part 31 in the lower metal foil valve body 18 is pressed against the metal case 22 to be pulled up. As a result, the rupture strength of the easily breakable portion 31 can be reliably prevented from varying due to the malleability of the lower metal foil valve body 18, so that the easily breakable portion 31 is surely broken without variation when it reaches a predetermined battery internal pressure. The
[0058]
Below, the manufacturing method of the explosion-proof sealing board which concerns on 1st or 2nd embodiment is demonstrated. FIG. 7A shows a process of forming the fixing portion 32 by welding predetermined portions of the metal case 22 and the lower metal foil valve body 18 to each other. The lower metal foil valve body 18 in which the separation line portion 29, the vent holes 30A and 30A and the easily breakable portion 31 are formed in advance in the metal case 22, or the lower metal foil valve body 18 in which the perforation 48 is formed in addition to the above configuration. Insert. Subsequently, the metal case 22 and the lower metal foil valve body 18 are sandwiched from both sides by a fixing jig 57 having a light passage hole 57a and a fixing jig 58 having a heat evacuation space 58a. Next, laser light is irradiated from the laser welder 54 through the light passage hole 57a, and the vicinity of the outer peripheral side of the easily breakable portion 31 of the lower metal foil valve body 18 and the metal case 22 are laser welded to each other to fix the fixing portion 32. Form. Here, since the metal case 22 and the peripheral portion of the lower metal foil valve body 18 which are the parts to be welded with each other are both flat surfaces, they are in close contact with each other without being pressed directly, and without any trouble. Can be welded.
[0059]
In the next step, a connecting portion 28 is formed between the two metal foil valve bodies 17 and 18. As shown in FIG. 7 (b), the insulating gasket 19 and the upper metal foil valve element 17 are sequentially inserted into the metal case 22, and the peripheral portions of both the metal foil valve elements 17 and 18 are interposed by the insulating gasket 19. And overlap. The peripheral portions of the two metal foil valve bodies 17 and 18 overlapped with the insulating gasket 19 interposed therebetween are sandwiched and fixed by the upper and lower fixing jigs 52 and 53 with the metal case 22 interposed therebetween.
[0060]
Next, laser welding is performed by irradiating a predetermined portion of each contact portion of the concave portion 23 and the convex portion 27 with laser light from the laser welding machine 54 through the light passage hole 52 a of the upper fixing jig 52, and the connection portion 28. Form. When the upper metal foil valve element 17 is inserted into the metal case 22 and the peripheral portion of the upper metal foil valve element 17 is placed on the insulating gasket 19 as shown in FIG. The tips of the concave portions 23 and the convex portions 27 of the foil valve bodies 17 and 18 are in contact with each other. That is, the convex portion 27 of the lower metal foil valve body 18 and the concave portion 23 of the upper metal foil valve body 17 have a protruding dimension from the upper surface of the peripheral edge of the lower metal foil valve body 18 to the tip of the convex portion 27, d1, When the projecting dimension from the lower surface of the peripheral edge of the upper metal foil valve body 17 to the tip of the recessed part 23 is d2, and the thickness of the insulating gasket 19 is D, the dimensional relationship of d1 + d2> D is set.
[0061]
The peripheral portions of the two metal foil valve bodies 17 and 18 overlapped with the above-described insulating gasket 19 are sandwiched and fixed by the upper and lower fixing jigs 52 and 53 with the metal case 22 interposed therebetween. At this time, as is apparent from the dimensional relationship of d1 + d2> D, the concave portion 23 and the convex portion 27 are slightly bent, and their respective tip portions are strongly pressed against each other by a restoring force due to bending. Together, they are in close contact with no gaps. Next, laser welding is performed by irradiating a predetermined portion of each contact portion of the concave portion 23 and the convex portion 27 with laser light from the laser welding machine 54 through the light passage hole 52 a of the upper fixing jig 52, and the connection portion 28. Form.
[0062]
By the way, laser welding can form a welded portion with high welding strength, and when the work piece is a rigid body or a material having a large thickness, it can be welded without any problem because it does not deform itself. However, since the metal foil valve elements 17 and 18 which are the objects to be welded in the present invention are thin with a thickness of about 0.1 to 0.15 mm and easily deform, the parts to be welded are in close contact with each other when laser welding is performed. However, it is not possible to bring these parts to be welded into close contact by means of pressing the fixing jig from both sides. This is because one fixing jig requires a laser light passage hole, and the other fixing jig requires a space for avoiding thermal effects at the laser light irradiation portion. If there is a gap in the welded part, heat conduction from one welded member to which the laser beam is irradiated to the other welded member becomes insufficient, resulting in defects such as poor welding and holes.
[0063]
On the other hand, in the manufacturing method of the present invention, the concave portions 23 and the convex portions 27 of the two metal foil valve bodies 17 and 18 which are the workpieces are d1 + d2> D as described above with respect to the thickness D of the insulating gasket 19. Accordingly, the concave portion 23 and the convex portion 27 can hold the tip portions closely together without using a holding means. For this reason, there is no welding failure or perforation, and the strong connection portion 28 can be formed with a high yield. In addition, after the process of FIG. 7, an explosion-proof sealing board is manufactured by the process similar to the past.
[0064]
【The invention's effect】
  As described above, according to the explosion-proof sealing plate for a sealed battery of the present invention, the breaking strength of the easily breakable portion is set by the length of the straight line connecting the edge portions of the pair of vent holes.The fixed part that fixes the lower metal foil valve body locally to the metal case is provided at a predetermined position.Therefore, the easily breakable portion can be accurately set to a predetermined breaking strength with a thickness that is much shorter than the length, and the pair of vent holes can be easily formed accurately. Therefore, there is no variation in breaking strength. Therefore, this explosion-proof sealing plate is excellent in mass productivity and can obtain high reliability in the current interruption pressure.
[0065]
According to the method of manufacturing an explosion-proof sealing plate for a sealed battery according to the present invention, the metal case which is a flat surface and the peripheral portion of the lower metal foil valve body are brought into close contact with each other without any gap, thereby being firmly fixed. The part can be formed reliably. In addition, by forming the concave part of each metal foil valve body and the tip part of each convex part in close contact with each other in a state without gaps, laser welding is performed to form a strong connection part without poor welding or perforation. can do.
[Brief description of the drawings]
FIG. 1 shows an explosion-proof sealing plate for a sealed battery according to a first embodiment of the present invention, wherein (a) is a longitudinal sectional view, and (b) is a plan view of only a lower metal foil valve body in (a). .
FIG. 2 is a longitudinal sectional view showing a state where the lower metal foil valve body of the explosion-proof sealing plate is broken.
FIG. 3 is a horizontal sectional view schematically showing the inspection device for the explosion-proof sealing plate.
FIGS. 4A and 4B are plan views showing modifications of a pair of vent holes formed in the lower metal foil valve body. FIGS.
FIG. 5 is a plan view showing a lower metal foil valve body in an explosion-proof sealing plate for a sealed battery according to a second embodiment of the present invention.
FIG. 6 is a longitudinal sectional view showing an explosion-proof sealing plate for a sealed battery according to a third other embodiment of the present invention.
FIG. 7 is a process diagram showing a method for manufacturing a sealed battery explosion-proof sealing plate according to the first or second embodiment.
FIG. 8 is a longitudinal sectional view showing a conventional explosion-proof sealing plate for a sealed battery.
FIG. 9 is a longitudinal sectional view showing another conventional explosion-proof sealing plate for a sealed battery.
[Explanation of symbols]
17 Upper metal foil disc
18 Lower metal foil valve
18a Convex part
19 Insulation gasket
19a Convex
21 Metal cap
22 Metal case
23 Concave part
27 Convex part
28 connections
29 Separation line
30A-30C Vent
32, 49 fixed part
33 Streak direction
34 Battery case
48 Perforation (Break Specified Line)
52, 53 Fixing jig
57, 58 Fixing jig

Claims (10)

発電要素を収納した電池ケースの開口部を密閉するとともに、電池内圧が設定値まで上昇したときに一部が破断して通電電流を遮断する密閉型電池用防爆封口板において、
導電性を有する上部および下部の両金属箔弁体が、それらの周縁部間に絶縁ガスケットを介在して重ね合わされ、且つ各々の中央部位を互いに溶着した接続部のみを介して電気的に導通され、
前記両金属箔弁体が、前記上部金属箔弁体の上部に金属キャップを配置して金属ケース内に挿入されてなり、
前記下部金属箔弁体は、
前記接続部を囲むように設けられた分離線部と、
前記分離線部の両端部に連設されて相対向し、電池内圧を前記上部金属箔弁体に作用させる一対の通気孔と、
前記両通気孔の相対向する各々の孔縁部間の部分により形成され、電池内圧が所定値に達した時に破断する易破断部とを備え、
電池内圧が所定値に達したときに、前記上部金属箔弁体の上方への変形による応力を受けて前記易破断部が破断することにより、前記分離線部、前記両通気孔および前記易破断部で囲まれる部分が前記上部金属箔弁体と共に分離するように構成され
易破断部に対する外周側近傍位置に、下部金属箔弁体を金属ケースに局部的に固定する固定部を設け、
前記固定部は、分離線部、両通気孔および易破断部を結ぶ環状の中心点と、前記両通気孔の各々の孔縁部間を結ぶ直線の中点とを通る線上に、前記固定部の中心点を設定して形成されている
ことを特徴とする密閉型電池用防爆封口板。
In the sealed battery explosion-proof sealing plate that seals the opening of the battery case that houses the power generation element, and partially cuts off when the battery internal pressure rises to the set value to cut off the energization current.
Both upper and lower metal foil valve bodies having conductivity are overlapped with each other by interposing an insulating gasket between their peripheral portions, and are electrically connected only through a connection portion where each central portion is welded to each other. ,
The both metal foil valve bodies are inserted into a metal case by placing a metal cap on top of the upper metal foil valve body,
The lower metal foil valve body is
A separating line portion provided so as to surround the connecting portion;
A pair of vent holes that are connected to both ends of the separation line portion and face each other, and cause battery internal pressure to act on the upper metal foil valve body;
Formed by a portion between each of the opposite edge portions of the air holes, and an easily breakable portion that breaks when the battery internal pressure reaches a predetermined value,
When the internal pressure of the battery reaches a predetermined value, the easily breakable portion is broken by receiving stress due to the upward deformation of the upper metal foil valve body, so that the separation line portion, the two vent holes, and the easy breakage The part surrounded by the part is configured to be separated together with the upper metal foil valve body ,
In the vicinity of the outer peripheral side with respect to the easily breakable portion, a fixing portion for locally fixing the lower metal foil valve body to the metal case is provided,
The fixing portion is formed on a line passing through a separation line portion, an annular center point connecting both the vent holes and the easily breakable portion, and a straight midpoint connecting the edge portions of the two vent holes. An explosion-proof sealing plate for a sealed battery, characterized in that it is formed by setting the center point of the battery.
上部および下部の両金属箔弁体の接続部は、両通気孔の各々の孔縁部間を結ぶ直線の中点に対し、前記直線に平行な線上において何れかの方向にずれた位置に形成されている請求項1に記載の密閉型電池用防爆封口板。  The connecting parts of both the upper and lower metal foil valve bodies are formed at positions shifted in either direction on a line parallel to the straight line, with respect to the midpoint of the straight line connecting the edge portions of the two vent holes. The explosion-proof sealing plate for a sealed battery according to claim 1. 固定部は、下部金属箔弁体と金属ケースとの所定の対面部位を互いに溶接した溶着部からなる請求項1または請求項2に記載密閉型電池用防爆封口板。3. The explosion-proof sealing plate for a sealed battery according to claim 1 , wherein the fixing portion is a welded portion in which predetermined facing portions of the lower metal foil valve body and the metal case are welded to each other. 固定部は、金属ケースまたは絶縁ガスケットに設けた凸部によって下部金属箔弁体が局部的に強く金属ケースに圧接されるように構成されている請求項1または請求項2に記載密閉型電池用防爆封口板。 3. The sealed battery according to claim 1 , wherein the fixing portion is configured such that the lower metal foil valve body is locally strongly pressed against the metal case by a convex portion provided on the metal case or the insulating gasket. Explosion-proof sealing plate. 下部金属箔弁体の一対の通気孔は、多角形状に形成されるとともに、共に同一形状のものが対称配置に形成されている請求項1ないし請求項4のいずれかに記載の密閉型電池用防爆封口板。5. The sealed battery according to claim 1 , wherein the pair of ventilation holes of the lower metal foil valve body are formed in a polygonal shape, and both of the same shape are formed in a symmetrical arrangement. Explosion-proof sealing plate. 発電要素を収納した電池ケースの開口部を密閉するとともに、電池内圧が設定値まで上昇したときに一部が破断して通電電流を遮断する密閉型電池用防爆封口板において、
導電性を有する上部および下部の両金属箔弁体が、それらの周縁部間に絶縁ガスケットを介在して重ね合わされ、且つ各々の中央部位を互いに溶着した接続部のみを介して電気的に導通され、
前記両金属箔弁体が、前記上部金属箔弁体の上部に金属キャップを配置して金属ケース内に挿入されてなり、
前記下部金属箔弁体は、
前記接続部を囲むように設けられた分離線部と、
前記分離線部の両端部に連設されて相対向し、電池内圧を前記上部金属箔弁体に作用させる一対の通気孔と、
前記両通気孔の相対向する各々の孔縁部間の部分により形成され、電池内圧が所定値に達した時に破断する易破断部とを備え、
電池内圧が所定値に達したときに、前記上部金属箔弁体の上方への変形による応力を受 けて前記易破断部が破断することにより、前記分離線部、前記両通気孔および前記易破断部で囲まれる部分が前記上部金属箔弁体と共に分離するように構成され、
下部金属箔弁体の分離線部は、C字形状のスリットからなり、その両端部が一対の通気孔にそれぞれ連通するよう形成されていることを特徴とする密閉型電池用防爆封口板。
In the sealed battery explosion-proof sealing plate that seals the opening of the battery case that houses the power generation element, and partially cuts off when the battery internal pressure rises to the set value to cut off the energization current.
Both upper and lower metal foil valve bodies having conductivity are overlapped with each other by interposing an insulating gasket between their peripheral portions, and are electrically connected only through a connection portion where each central portion is welded to each other. ,
The both metal foil valve bodies are inserted into a metal case by placing a metal cap on top of the upper metal foil valve body,
The lower metal foil valve body is
A separating line portion provided so as to surround the connecting portion;
A pair of vent holes that are connected to both ends of the separation line portion and face each other, and cause battery internal pressure to act on the upper metal foil valve body;
Formed by a portion between each of the opposite edge portions of the air holes, and an easily breakable portion that breaks when the battery internal pressure reaches a predetermined value,
When the battery internal pressure reaches a predetermined value, said by the frangible section stress due to the deformation of the upper upper metal foil valve body accepted by breaks, the separation line section, the two vent holes and the easily The portion surrounded by the fracture portion is configured to separate with the upper metal foil valve body,
An explosion-proof sealing plate for a sealed battery, wherein the separation line portion of the lower metal foil valve body is formed of a C-shaped slit, and both end portions thereof are respectively communicated with a pair of vent holes.
発電要素を収納した電池ケースの開口部を密閉するとともに、電池内圧が設定値まで上昇したときに一部が破断して通電電流を遮断する密閉型電池用防爆封口板において、
導電性を有する上部および下部の両金属箔弁体が、それらの周縁部間に絶縁ガスケットを介在して重ね合わされ、且つ各々の中央部位を互いに溶着した接続部のみを介して電気的に導通され、
前記両金属箔弁体が、前記上部金属箔弁体の上部に金属キャップを配置して金属ケース内に挿入されてなり、
前記下部金属箔弁体は、
前記接続部を囲むように設けられた分離線部と、
前記分離線部の両端部に連設されて相対向し、電池内圧を前記上部金属箔弁体に作用させる一対の通気孔と、
前記両通気孔の相対向する各々の孔縁部間の部分により形成され、電池内圧が所定値に達した時に破断する易破断部とを備え、
電池内圧が所定値に達したときに、前記上部金属箔弁体の上方への変形による応力を受けて前記易破断部が破断することにより、前記分離線部、前記両通気孔および前記易破断部で囲まれる部分が前記上部金属箔弁体と共に分離するように構成され、
下部金属箔弁体の易破断部は、前記一対の通気孔の各々の孔縁部間を結ぶ直線が、前記下部金属箔弁体を製造する際の圧延ロールによる筋目方向に合致するように形成されていることを特徴とする密閉型電池用防爆封口板。
In the sealed battery explosion-proof sealing plate that seals the opening of the battery case that houses the power generation element, and partially cuts off when the battery internal pressure rises to the set value to cut off the energization current.
Both upper and lower metal foil valve bodies having conductivity are overlapped with each other by interposing an insulating gasket between their peripheral portions, and are electrically connected only through a connection portion where each central portion is welded to each other. ,
The both metal foil valve bodies are inserted into a metal case by placing a metal cap on top of the upper metal foil valve body,
The lower metal foil valve body is
A separating line portion provided so as to surround the connecting portion;
A pair of vent holes that are connected to both ends of the separation line portion and face each other, and cause battery internal pressure to act on the upper metal foil valve body;
Formed by a portion between each of the opposite edge portions of the air holes, and an easily breakable portion that breaks when the battery internal pressure reaches a predetermined value,
When the internal pressure of the battery reaches a predetermined value, the easily breakable portion is broken by receiving stress due to the upward deformation of the upper metal foil valve body, so that the separation line portion, the two vent holes, and the easy breakage The part surrounded by the part is configured to be separated together with the upper metal foil valve body,
The easily breakable portion of the lower metal foil valve body is formed so that the straight line connecting the edge portions of each of the pair of vent holes coincides with the line direction of the rolling roll when the lower metal foil valve body is manufactured. An explosion-proof sealing plate for a sealed battery , characterized in that
下部金属箔弁体の易破断部には、一対の通気孔の孔縁部間を結ぶ直線に沿って形成されたミシン目または細い溝からなる破断規定線が設けられている請求項1ないし請求項7のいずれかに記載の密閉型電池用防爆封口板。The frangible portion of the lower metal foil valve body claims 1 break defining line consisting of perforations or narrow groove formed along a straight line is provided connecting the hole edge portions of the pair of vent holes according Item 8. The explosion-proof sealing plate for a sealed battery according to any one of Items 7 . 上部金属箔弁体に、中央部分が下方へ向け膨出した凹状部が設けられ、
下部金属箔弁体に、中央部分が上方へ向け膨出し、その膨出部分の外周に沿って分離線部、一対の通気孔および易破断部が環状に配して形成された凸状部が設けられ、
前記両金属箔弁体が、前記凹状部と前記凸状部との接触部位を溶接により互いに溶着した接続部を介して電気的導通状態に連結されている請求項1ないし請求項8のいずれかに記載の密閉型電池用防爆封口板。
The upper metal foil valve body is provided with a concave portion with a central portion bulging downward,
On the lower metal foil valve body, there is a convex portion formed by bulging upward at the center portion, and along the outer periphery of the bulged portion, with a separation line portion, a pair of vent holes and an easily breakable portion arranged annularly. Provided,
The two metal foil valve body, any one of claims 1 and is connected to an electrical conductive state via the connecting portion which is welded together by welding the contact portion between said concave portion and the convex portion according to claim 8 An explosion-proof sealing plate for a sealed battery according to 1.
請求項3に記載の密閉型電池用防爆封口板の製造方法であって、
中央部分が上方へ向け膨出した凸状部を有する下部金属箔弁体を金属ケース内に挿入して、前記下部金属箔弁体における周縁部の所定部位と金属ケースの対面部位とをレーザー溶接により相互に溶着して固定部を形成する工程と、
中央部分が下方へ向け膨出した凹状部を有する上部金属箔弁体を前記金属ケース内に挿入して、前記両金属箔弁体の各々の周縁部分を絶縁ガスケットを介在して重ね合わせ、前記凹状部と前記凸状部との各々の先端部位を互いに接触させる工程と、
前記両金属箔弁体における各々の周縁部分を固定治具により上下から挟み付けて固定する工程と、
前記凹状部と前記凸状部との互いに接触する部位をレーザー溶接により相互に溶着して接続部を形成する工程と、
を有する密閉型電池用防爆封口板の製造方法。
A method for producing an explosion-proof sealing plate for a sealed battery according to claim 3 ,
A lower metal foil valve body having a convex portion whose central portion bulges upward is inserted into a metal case, and a predetermined portion of the peripheral portion of the lower metal foil valve body and a facing portion of the metal case are laser-welded. Forming a fixing portion by welding to each other,
An upper metal foil valve body having a concave portion with a central portion bulging downward is inserted into the metal case, and the peripheral portions of the two metal foil valve bodies are overlapped with an insulating gasket interposed therebetween, A step of bringing the tip portions of the concave portion and the convex portion into contact with each other;
The step of sandwiching and fixing each peripheral portion of both the metal foil valve bodies from above and below with a fixing jig,
Forming a connecting portion by welding the portions of the concave portion and the convex portion that are in contact with each other by laser welding;
The manufacturing method of the explosion-proof sealing board for sealed batteries which has this.
JP08384097A 1997-04-02 1997-04-02 Explosion-proof sealing plate for sealed battery and method for manufacturing the same Expired - Fee Related JP3853461B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08384097A JP3853461B2 (en) 1997-04-02 1997-04-02 Explosion-proof sealing plate for sealed battery and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08384097A JP3853461B2 (en) 1997-04-02 1997-04-02 Explosion-proof sealing plate for sealed battery and method for manufacturing the same

Publications (2)

Publication Number Publication Date
JPH10284035A JPH10284035A (en) 1998-10-23
JP3853461B2 true JP3853461B2 (en) 2006-12-06

Family

ID=13813914

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08384097A Expired - Fee Related JP3853461B2 (en) 1997-04-02 1997-04-02 Explosion-proof sealing plate for sealed battery and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP3853461B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170075658A (en) * 2015-12-23 2017-07-03 신흥에스이씨주식회사 CID assembly for a secondary battery with excellent durability

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW367631B (en) * 1997-04-21 1999-08-21 Toyo Kohan Co Ltd Closed battery
JP3816637B2 (en) * 1997-07-09 2006-08-30 松下電器産業株式会社 Explosion-proof sealed battery
WO2000062357A1 (en) * 1999-04-12 2000-10-19 Toyo Kohan Co., Ltd. Safety device for enclosed cell and enclosed cell comprising the same
US6348281B1 (en) 1999-11-19 2002-02-19 Eveready Battery Company, Inc. Electrochemical cell having venting cover
TWI224881B (en) * 2000-01-14 2004-12-01 Sony Corp Nonaqueous electrolyte solution secondary battery
JP2001291502A (en) * 2000-04-05 2001-10-19 Toyo Kohan Co Ltd Sealed battery, sealed body and can
KR100578805B1 (en) * 2004-03-24 2006-05-11 삼성에스디아이 주식회사 Cap assembly and secondary battery using the same
JP4806936B2 (en) * 2005-02-03 2011-11-02 パナソニック株式会社 Sealed battery
JP2006351512A (en) * 2005-05-16 2006-12-28 Matsushita Electric Ind Co Ltd Sealed secondary battery and its manufacturing method
US7572545B2 (en) 2006-05-24 2009-08-11 Everyready Battery Company, Inc. Battery can having vent and asymmetric welded cover
US7875376B2 (en) 2006-05-24 2011-01-25 Eveready Battery Company, Inc. Battery can having off-center C-shaped vent
US8158280B2 (en) 2006-05-24 2012-04-17 Eveready Battery Company, Inc. Battery container having cruciform vent and cover
KR100880321B1 (en) * 2006-12-14 2009-01-28 삼성에스디아이 주식회사 Secondary battery
JP4361123B2 (en) * 2007-12-20 2009-11-11 株式会社小松ライト製作所 Battery safety device
BRPI0819583B1 (en) * 2007-12-25 2019-04-02 Byd Company Limited Electrochemical Storage Cell
CN105870393B (en) * 2015-01-22 2024-05-28 松下新能源(无锡)有限公司 Insulating plate for battery and battery with same
CN113381105A (en) * 2021-06-17 2021-09-10 安徽捷创科技有限公司 Sealed battery cap

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2970340B2 (en) * 1992-09-29 1999-11-02 松下電器産業株式会社 Explosion-proof sealing plate for sealed batteries
JPH07105933A (en) * 1993-10-06 1995-04-21 Hitachi Maxell Ltd Anti-explosive enclosed battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170075658A (en) * 2015-12-23 2017-07-03 신흥에스이씨주식회사 CID assembly for a secondary battery with excellent durability
WO2018117684A1 (en) * 2015-12-23 2018-06-28 신흥에스이씨 주식회사 Secondary battery cap assembly having excellent durability

Also Published As

Publication number Publication date
JPH10284035A (en) 1998-10-23

Similar Documents

Publication Publication Date Title
JP3853461B2 (en) Explosion-proof sealing plate for sealed battery and method for manufacturing the same
KR100324863B1 (en) Explosion-proof seal plate for enclosed type cell and production method thereof
EP2804240A1 (en) Method for manufacturing packed electrode, packed electrode, secondary battery, and heat sealing machine
KR20050075702A (en) Film-covered electric device having pressure release opening
JPH09139196A (en) Cleavage type relief valve of sealed battery container
JP5974531B2 (en) Manufacturing method of sealed battery
JP3853460B2 (en) Explosion-proof sealing plate for sealed battery and method for manufacturing the same
WO2010088332A1 (en) Modular cid assembly for a lithium ion battery
JP4284712B2 (en) Explosion-proof sealing plate for sealed battery and sealed battery using the same
US20020094477A1 (en) Connecting structure of conductive connecting tab of battery
KR20170012138A (en) Cap assembly for a secondary battery and the battery
JP3322566B2 (en) Explosion-proof sealing plate for sealed batteries
JP3848438B2 (en) Method for manufacturing explosion-proof sealing plate for sealed battery
JPH10247483A (en) Safety structure of sealed battery
JP3816637B2 (en) Explosion-proof sealed battery
JP4222820B2 (en) Manufacturing method of battery safety mechanism
JP3378147B2 (en) Method of manufacturing explosion-proof sealing plate for sealed battery
JPH1186822A (en) Sealed-type battery
JP2002075314A (en) Battery safety mechanism and its manufacturing method
JPH10284033A (en) Manufacture of safety valve of lithium ion battery
JP2006294309A (en) Thin battery
JPH11250886A (en) Explosion-proof structure for secondary battery
JPH10162798A (en) Safety structure of sealed battery
JPH10302744A (en) Explosion-proof sealing plate for sealed battery
JPH0636209U (en) Sealed battery

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040809

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060613

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060801

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060822

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060906

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090915

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100915

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees