JP3599967B2 - Sealed battery - Google Patents

Sealed battery Download PDF

Info

Publication number
JP3599967B2
JP3599967B2 JP24411497A JP24411497A JP3599967B2 JP 3599967 B2 JP3599967 B2 JP 3599967B2 JP 24411497 A JP24411497 A JP 24411497A JP 24411497 A JP24411497 A JP 24411497A JP 3599967 B2 JP3599967 B2 JP 3599967B2
Authority
JP
Japan
Prior art keywords
battery
metal
plate
metal plate
composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP24411497A
Other languages
Japanese (ja)
Other versions
JPH1186822A (en
Inventor
和彦 渡邉
克彦 森
兼人 増本
哲哉 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP24411497A priority Critical patent/JP3599967B2/en
Publication of JPH1186822A publication Critical patent/JPH1186822A/en
Application granted granted Critical
Publication of JP3599967B2 publication Critical patent/JP3599967B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【0001】
【発明の属する技術分野】
本発明は、密閉型電池、特にリチウム二次電池等の高エネルギー密度を有する密閉型電池が異常使用された場合の過大な内圧を処理すると共に通電回路を遮断することができる電池封口構造を備えた密閉型電池に関するものである。
【0002】
【従来の技術】
リチウム二次電池等のエネルギー密度の高い密閉型電池は、この電池を使用する機器や充電器等の故障、あるいは誤った使用がなされた場合に、電池内部に異常にガスが発生して内圧が過大上昇することがある。このような異常使用に備えて異常発生したガスを排出するガス抜き機構が設けられる。また、非水電解液二次電池では異常温度上昇を伴うので、ガス排出に先立って通電電流を遮断する電流遮断機構が設けられる。
【0003】
前記ガス抜き機構や電流遮断機構を備えた密閉型電池の従来技術として、特開平5−335011号、特開平5−343043号、特開平8−306351号、特開平8−315798号、特開平9−199105号、特開平9−199106号の各公報に開示されたものが知られている。これらに開示された構成は、異常上昇した内圧により金属薄板を変形させることにより、電気的接続のための接合を絶って通電を遮断し、異常なガス発生の根源となっている過大電流回路を遮断するように構成されている。
【0004】
【発明が解決しようとする課題】
しかしながら、電池内圧が所定値以上に上昇したときに通電回路を完全に遮断するためには、電気的接続のために溶接により接合されている部分が確実に剥離する精度、あるいは所定の電池内圧が加わったときに破断する易破断部の破断精度が要求されるため、接合部の材厚や溶接強度や易破断部の精度管理が難しく製品の歩留りが低下する問題点があった。
【0005】
本発明が目的とするところは、電池内圧の上昇時に電気的接合部が遮断される遮断精度を向上させ、信頼性の高い封口板を備えた密閉型電池を提供することにある。
【0006】
【課題を解決するための手段】
上記目的を達成するための本発明は、発電要素を収容する電池ケースの端部開口が封口板により密閉封口され、この封口板の電極部を形成する金属キャップから電池内部寄りに設けられた金属薄板が電池内圧の上昇によって変形することにより、発電要素から金属キャップに至る通電回路を遮断する機構を備えた密閉型電池において、前記封口板の電池内部に面した位置に前記発電要素に電気的接続して設けられ、金属板と金属箔とを重ね合わせて冷間圧接したクラッド材の中央部において前記金属板のみに開口部を形成すると共に、クラッド材の適所に金属板と金属箔とを貫いた通気穴を形成した複合金属板と、この複合金属板の電池外部側に絶縁部材を介して周辺部が前記複合金属板と共に固定支持されると共に、前記金属キャップに電気的に接続して設けられ、中央部に電池内部側に緩やかに膨出する膨出部を形成して、この膨出部の中心部が複合金属板の前記開口部上の金属箔に溶接される金属薄板とを備え、異常上昇した電池内圧により前記金属薄板の膨出部が、これに溶接された開口部上の金属箔を破り取って、電池外部側に反転することで、複合金属板から金属キャップに至る通電回路を遮断するように構成したことを特徴とする。
【0007】
上記構成によれば、複合金属板を構成する金属板の中央部に設けた開口部は金属箔で覆って形成され、この部分の金属箔に金属薄板の膨出部の中心が溶接されているので、異常上昇した電池内圧が複合金属板に形成された通気穴から侵入し、その圧力が金属薄板に及ぶと、加圧された金属薄板の膨出部は溶接された開口部位置の金属箔を破り取って反転し、複合金属板から金属キャップに至る通電回路を遮断することになる。この構成では、電池内圧による通電回路の遮断精度は、開口部を覆う金属箔の破断強度に依存するので、この金属箔の材質及び厚さに関わる破断強度を管理すればよく、金属箔を一定の品質に管理すれば安定動作する通電回路遮断構造を構成することができる。
【0009】
複合金属板は、上記クラッド材で構成することに代えて、金属板の外周部を求心方向に折り返し、この折り返し部に金属箔の周辺部を挟圧保持して構成することができ、金属板の中央部に形成された開口部に進出させた金属薄板の膨出部の中心と金属箔とが溶接されるので、金属薄板が電池内圧により反転して開口部から後退するときに金属箔を破断する範囲は開口部を覆う範囲となり、金属箔の破断強度を所定精度に設定することができる。
【0010】
【発明の実施の形態】
以下、添付図面を参照して本発明の一実施形態について説明し、本発明の理解に供する。
【0011】
図1は、本発明の第1の実施形態に係る密閉型電池の封口板部分の構成を断面構造として示しており、密閉型電池は図示省略した下部に発電要素を収容して有底円筒形に形成された電池ケース10の上部開口を封口板1で密閉封口して構成されている。この封口板1は、電池ケース10にかしめ加工により固定された周囲部において、電池内部側から、金属板6aに金属箔6bをクラッド加工により接合した複合金属板6、絶縁リング5、中央部に電池内部側への膨出部4aが形成された金属薄板4、リング状の臨界温度抵抗体であるPTC3、通気口9aが形成された金属キャップ9の順に配設され、それぞれを積層してガスケット2により電池ケース10との間を絶縁して電池ケース10にかしめ加工により固定される。前記複合金属板6の金属板6aには発電要素に接続するリード8が接合され、金属箔6bと前記金属薄板4の膨出部中心位置とは溶接により接合されているので、複合金属板6から金属薄板4、PTC3、金属キャップ9へと通じる通電回路が形成される。
【0012】
前記複合金属板6は、図3に示すように、中心位置に開口部11が形成されたアルミニウム円板(金属板)6aの表面にアルミニウム箔(金属箔)6bを冷間圧接したクラッド材として形成し、その後にアルミニウム板6a及びアルミニウム箔6bを貫通させて通気口12を形成したものである。
【0013】
また、前記金属薄板4は、中央部に電池内部側に緩やかに膨出させた膨出部4aを形成すると共に、この膨出部4aにCの字状に薄肉部を形成した易破断部4bが設けられている。具体的な構成例でこれを示すと、厚さ0.15mmのアルミニウム板を直径12.7mmの円板に形成し、膨出部4aに直径4.0mmのC型形状の刻印を用いてCの字状の薄肉部分を形成することにより易破断部4bを形成する。この金属薄板4は膨出部4aの中心を前記複合金属板6の開口部12の中心でアルミニウム箔6bにレーザー溶接される。
【0014】
また、PTC(Positive Temperature Coefficient)3は、周知の臨界温度抵抗体であって、正常時は無視できる僅かな電気抵抗値であるが、過大な電流が流れることによる温度上昇により、その温度が所定の温度域(臨界温度)を越えたとき急激に電気抵抗値が増大する正温度係数抵抗素子である。
【0015】
上記構成になる封口板1を備えた密閉型電池が、この密閉型電池を使用する機器の故障、あるいは誤った使用、外部短絡等の異常使用がなされた場合に発生するガス等による内部圧力の異常上昇、あるいは異常な温度上昇に対応する異常対応動作について、図1〜図3を参照して以下に説明する。
【0016】
電池の異常使用のケースとして、電池を使用する機器の故障による正負電極間の短絡、充電器の故障による過充電、電池容量を無視した過負荷使用、故意または予期せぬ事態による正負電極間の短絡、多数直列接続による過放電、逆充電等々が考えられるが、このような異常使用に対処すべく、3通りの異常対応動作がなされる。
【0017】
まず、第1の異常対応動作は、過大な電流が流れた場合に、PTC3は過大電流が流れたことにより温度上昇し、それが臨界温度に達したとき、その電気抵抗値が急激に増大するので通電電流は大幅に減少維持され、外部短絡や過大電流での誤使用における電池損傷が防止される。
【0018】
しかし、密閉型電池の一例であるリチウム二次電池では、充電器の故障等による無制御での過充電、あるいは逆充電、多数直列接続での過放電などの場合に、前記PTC3が臨界温度に温度上昇するに至らない電流であっても電池安全容量を越えて電池内圧が上昇することがある。即ち、このような異常電流が継続して流れた場合に、電解液及び活物質の分解などを伴いながら電池温度が急激に上昇し、大量のガスあるいは蒸気を発生させる。そこで、このような電池内圧が所定圧より上昇した場合に、通電電流回路を遮断する第2の異常対応動作が起動する。
【0019】
図1に示す封口板1の各構成要素の状態は正常時の状態であって、電池ケース10内の内圧が上昇したとき、その内圧は複合金属板6に形成された通気口12から侵入して金属薄板4に及ぶので、この内圧が所定値を越えたとき、図2に示すように、金属薄板4の膨出部4aは、その中心位置で複合金属体6の開口部11で溶接されている金属箔6bを引き破り、その膨出方向を反転させる。この膨出部4aの反転によって、複合金属板6と金属薄板4との間の導通が絶たれ通電回路が遮断されるので、電池内圧上昇の原因となっている異常電流は絶たれ、電池内圧上昇の根源は排除される。
【0020】
しかし、異常電流が遮断されても瞬時に温度が低下するわけもなく、ガスや蒸気の発生も瞬時には治まらず、電池内圧が更に上昇し続けた場合には、第3の異常対応動作が起動する。即ち、大量のガスまたは蒸気が発生して、電池内圧が金属薄板4に設けた易破断部4bの破断強度に基づいて設定した所定値に達すると、易破断部4bが破断して金属薄板4の中央部が開裂され、電池内部に充満していたガスや蒸気は金属キャップ8の通気口8aから外部放出される。
【0021】
次に、本発明の第2の実施形態に係る密閉型電池の構成について図4〜図6を参照して説明する。本構成は、第1の実施形態の構成における複合金属板6の変形例を示すもので、他の構成要素は共通する。従って共通する構成要素には同一の符号を付して、その説明は省略する。
【0022】
図4において、封口板1aの電池内部側には複合金属板13が設けられており、この複合金属板13は、図6に示すように、中央に開口部14を形成した金属円板(金属板)13に0.01mm〜0.1mm厚さの金属箔13bを重ね合わせ、外周部で金属円板13aを周囲から求心方向に折り返して金属箔13bの周囲を挟圧固定し、金属円板13a及び金属箔13bを貫通する通気穴15を形成して構成されている。
【0023】
この複合金属板13は、図4に示すように、中央部において金属箔13bが電池内部側となるように配設され、金属円板13aの中央に形成された開口部14内に進出する金属薄板4の膨出部4aの中心と金属箔13bとが溶接される。
【0024】
本構成において、電池内圧が異常上昇したときには、複合金属板13に形成された通気穴15から封口板1a内に侵入する電池内圧は金属薄板4に及び、図5に示すように膨出部4aを反転させる。このとき、金属薄板4の膨出部4aに溶接されている金属箔13bは反転する膨出部4aに破り取られる。この金属箔13bの破断強度は、金属円板13aに形成された開口部14を覆う金属箔13bが開口部14の周縁部分で破断する強度として設定できるので、金属箔13bの材質及び厚さを管理することにより破断精度を一定に維持することができる。従って、一定の接合強度に加工し難い溶接部分の剥離強度に依存しないので、安定した通電回路遮断構造を構成することができる。
【0025】
尚、本構成におけるPTC3による過大電流の抑制、電流遮断後の電池内圧の異常上昇時のガスの外部放出の構成は、先に説明した第1実施形態の構成の動作と同様なので、その説明は省略する。
【0026】
また、上記実施形態においては、円筒形の電池について説明したが、角筒形電池あるいはそれに類似の電池においても同様に実施することができる。
【0027】
【発明の効果】
以上の説明の通り本発明によれば、複合金属板を構成する金属板の開口部を覆う金属箔に金属薄板の膨出部の中心を溶接して電池内圧の異常上昇による通電回路の遮断構造が形成されているので、電池内圧により金属薄板の膨出部が反転したときに前記開口部を覆う金属箔が反転する膨出部に破り取られ、通電回路が遮断される。従って、一定の接合強度が得難い溶接部の剥離に依存することなく、開口部を覆う金属箔の破断強度で管理することができるので、金属箔の材質及び厚さを一定に管理することにより動作精度の高い通電回路の遮断構造が構成できる。
【図面の簡単な説明】
【図1】本発明の第1の実施形態に係る密閉型電池の封口板の構成を示す断面図。
【図2】図1に示す平常状態から通電回路遮断の動作がなされた状態を示す断面図。
【図3】第1の実施形態に係る複合金属板の構成を示す(a)は平面図、(b)はA−A線矢視断面図。
【図4】本発明の第2の実施形態に係る密閉型電池の封口板の構成を示す断面図。
【図5】図4に示す平常状態から通電回路遮断の動作がなされた状態を示す断面図。
【図6】第2の実施形態に係る複合金属板の構成を示す(a)は平面図、(b)はA−A線矢視断面図。
【符号の説明】
1、1a 封口板
3 PTC
4 金属薄板
4a 膨出部
4b 易破断部
6、13 複合金属板
6a、13a 金属板
6b、13b 金属箔
9 金属キャップ
10 電池ケース
11、14 開口部
12、15 通気穴
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention has a battery sealing structure capable of processing an excessive internal pressure and shutting off an energizing circuit when a sealed battery having a high energy density such as a lithium secondary battery is abnormally used, particularly a lithium secondary battery. A sealed battery.
[0002]
[Prior art]
A sealed battery with a high energy density, such as a lithium secondary battery, may have abnormal internal gas due to abnormal gas generation inside the battery if the equipment or charger that uses this battery is broken or used improperly. May rise excessively. A gas venting mechanism is provided for discharging the gas that has occurred abnormally in preparation for such abnormal use. In addition, since the non-aqueous electrolyte secondary battery involves an abnormal temperature rise, a current interrupt mechanism for interrupting the current before the gas is discharged is provided.
[0003]
As prior art of a sealed battery provided with the gas release mechanism and the current cutoff mechanism, Japanese Patent Application Laid-Open Nos. Hei 5-335501, Hei 5-34043, Hei 8-306351, Hei 8-315798, Hei 9 JP-A-199105 and JP-A-9-199106 are known. The configurations disclosed in these documents deform the thin metal plate by an abnormally increased internal pressure, thereby interrupting the connection for electrical connection and cutting off the current, and removing an excessive current circuit that is a source of abnormal gas generation. It is configured to shut off.
[0004]
[Problems to be solved by the invention]
However, in order to completely shut off the energizing circuit when the battery internal pressure rises above a predetermined value, it is necessary to ensure that the precision at which the parts joined by welding for electrical connection are peeled off, or the predetermined battery internal pressure, Since the breaking accuracy of the easily breakable portion that breaks when added is required, there is a problem that it is difficult to control the material thickness, welding strength, and precision of the easily breakable portion of the joined portion, and the product yield is reduced.
[0005]
An object of the present invention is to provide a sealed battery provided with a highly reliable sealing plate, which improves the breaking accuracy at which an electrical junction is broken when the internal pressure of the battery increases.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides a battery case in which an end opening of a battery case accommodating a power generation element is hermetically sealed by a sealing plate, and a metal cap provided on the inside of the battery from a metal cap forming an electrode portion of the sealing plate. In a sealed battery provided with a mechanism for interrupting an energizing circuit from a power generation element to a metal cap by deforming a thin plate due to an increase in battery internal pressure, an electric power is applied to the power generation element at a position of the sealing plate facing the inside of the battery. Provided connected, forming an opening only in the metal plate at the center of the clad material cold-welded by superimposing the metal plate and the metal foil, and the metal plate and the metal foil in the appropriate place of the clad material a composite metal plate formed with vent holes through, together with the peripheral portion is fixed and supported together with the composite metal plate through the outside of the battery-side insulating member of the composite metal plate, electrostatic the metal cap Manner by connecting provided, forming a bulging portion which gently bulge inside the battery side in the central portion, the central portion of the expanded portion is welded to the metal foil on the opening of the composite metal plate The metal sheet on the opening welded to the metal sheet by the abnormally increased internal pressure of the battery, and the metal sheet on the opening is turned to the outside of the battery, thereby forming a composite metal sheet. It is characterized in that it is configured so as to cut off an energizing circuit from to the metal cap .
[0007]
According to the above configuration, the opening provided at the center of the metal plate constituting the composite metal plate is formed by covering with the metal foil, and the center of the bulging portion of the metal thin plate is welded to this portion of the metal foil. Therefore, when the internal pressure of the battery abnormally rises enters through the ventilation hole formed in the composite metal plate and the pressure reaches the metal plate, the bulging portion of the pressed metal plate becomes the metal foil at the position of the welded opening. , And the electric circuit from the composite metal plate to the metal cap is cut off. In this configuration, the breaking accuracy of the current-carrying circuit due to the internal pressure of the battery depends on the breaking strength of the metal foil covering the opening, so the breaking strength related to the material and thickness of this metal foil may be controlled, and the metal foil may be fixed. If the quality is controlled to be as low as possible, it is possible to configure a current-carrying circuit cutoff structure that operates stably.
[0009]
The composite metal plate can be formed by folding the outer peripheral portion of the metal plate in the centripetal direction and holding the peripheral portion of the metal foil in the folded portion, instead of using the clad material. The metal foil is welded to the center of the bulge of the metal sheet that has been advanced to the opening formed in the center of the metal sheet, so that when the metal sheet is reversed by the internal pressure of the battery and recedes from the opening, the metal foil is removed. The rupture range covers the opening, and the rupture strength of the metal foil can be set to a predetermined accuracy.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an embodiment of the present invention will be described with reference to the accompanying drawings to provide an understanding of the present invention.
[0011]
FIG. 1 shows the structure of a sealing plate portion of a sealed battery according to a first embodiment of the present invention as a cross-sectional structure. The sealed battery has a bottomed cylindrical shape in which a power generation element is accommodated in a lower part (not shown). The upper opening of the battery case 10 formed in the above is hermetically sealed with a sealing plate 1. The sealing plate 1 has a composite metal plate 6 in which a metal foil 6b is joined to a metal plate 6a by a cladding process, an insulating ring 5, and a central portion in a peripheral portion fixed to the battery case 10 by swaging. A thin metal plate 4 having a swelling portion 4a formed on the inside of the battery, a PTC 3 which is a ring-shaped critical temperature resistor, and a metal cap 9 having a vent 9a are arranged in this order. The battery case 10 is insulated from the battery case 10 and fixed to the battery case 10 by caulking. The lead 8 connected to the power generating element is joined to the metal plate 6a of the composite metal plate 6, and the metal foil 6b and the center of the bulging portion of the thin metal plate 4 are joined by welding. An energization circuit is formed which leads to the thin metal plate 4, the PTC 3, and the metal cap 9.
[0012]
As shown in FIG. 3, the composite metal plate 6 is a clad material obtained by cold pressing an aluminum foil (metal foil) 6b on the surface of an aluminum disk (metal plate) 6a having an opening 11 formed at the center position. After that, the vent 12 is formed by penetrating the aluminum plate 6a and the aluminum foil 6b.
[0013]
The thin metal plate 4 has a bulged portion 4a gently bulging toward the inside of the battery at the center, and an easily breakable portion 4b having a C-shaped thin portion formed on the bulged portion 4a. Is provided. To show this in a specific configuration example, an aluminum plate having a thickness of 0.15 mm is formed into a disk having a diameter of 12.7 mm, and a C-shaped stamp having a diameter of 4.0 mm is formed on the bulging portion 4a. The easily breakable portion 4b is formed by forming a thin portion having a U-shape. The thin metal plate 4 is laser-welded to the aluminum foil 6b at the center of the bulging portion 4a and at the center of the opening 12 of the composite metal plate 6.
[0014]
Further, a PTC (Positive Temperature Coefficient) 3 is a well-known critical temperature resistor, which has a negligible electric resistance value that can be ignored in a normal state. However, the temperature rises to a predetermined value due to a rise in temperature caused by the flow of an excessive current. Is a positive temperature coefficient resistance element whose electric resistance value rapidly increases when the temperature exceeds a critical temperature range (critical temperature).
[0015]
The sealed battery provided with the sealing plate 1 having the above-described structure can reduce the internal pressure due to gas or the like generated when a device using the sealed battery fails, or is improperly used due to improper use or external short circuit. An abnormal response operation corresponding to an abnormal increase or an abnormal temperature increase will be described below with reference to FIGS.
[0016]
Examples of abnormal use of batteries include a short circuit between the positive and negative electrodes due to a failure of the device that uses the battery, overcharging due to a charger failure, overload use ignoring battery capacity, and a positive or negative electrode due to intentional or unexpected situations. Short-circuiting, over-discharging due to multiple series connection, reverse charging, and the like can be considered. In order to cope with such abnormal use, three kinds of abnormal response operations are performed.
[0017]
First, in the first abnormal response operation, when an excessive current flows, the temperature of the PTC 3 rises due to the excessive current flowing, and when the PTC 3 reaches a critical temperature, its electric resistance value sharply increases. As a result, the supplied current is greatly reduced and maintained, and battery damage due to an external short circuit or erroneous use due to excessive current is prevented.
[0018]
However, in the case of a lithium secondary battery, which is an example of a sealed battery, in the case of uncontrolled overcharging due to a failure of a charger or the like, reverse charging, overdischarging in a large number of series connections, etc., the PTC 3 reaches a critical temperature. Even if the current does not increase the temperature, the internal pressure of the battery may increase beyond the safe capacity of the battery. That is, when such an abnormal current continues to flow, the battery temperature rises rapidly with the decomposition of the electrolytic solution and the active material, and a large amount of gas or vapor is generated. Therefore, when the battery internal pressure rises above a predetermined pressure, a second abnormality handling operation for interrupting the current supply circuit is started.
[0019]
The state of each component of the sealing plate 1 shown in FIG. 1 is a normal state, and when the internal pressure in the battery case 10 rises, the internal pressure enters through the vent 12 formed in the composite metal plate 6. When the internal pressure exceeds a predetermined value, the bulging portion 4a of the thin metal plate 4 is welded at the opening 11 of the composite metal body 6 at its center position as shown in FIG. The metal foil 6b is torn and its bulging direction is reversed. Due to the reversal of the bulging portion 4a, the conduction between the composite metal plate 6 and the thin metal plate 4 is cut off, and the energizing circuit is cut off. The source of the rise is eliminated.
[0020]
However, even if the abnormal current is interrupted, the temperature does not drop instantaneously, the generation of gas or steam does not subside instantaneously, and if the internal pressure of the battery continues to increase, the third abnormal response operation is performed. to start. That is, when a large amount of gas or vapor is generated and the internal pressure of the battery reaches a predetermined value set based on the breaking strength of the easily breakable portion 4b provided on the thin metal plate 4, the easily breakable portion 4b breaks and the thin metal plate 4 The central portion of the metal cap 8 is cleaved, and the gas or vapor filling the inside of the battery is discharged outside from the vent 8a of the metal cap 8.
[0021]
Next, a configuration of a sealed battery according to a second embodiment of the present invention will be described with reference to FIGS. This configuration shows a modification of the composite metal plate 6 in the configuration of the first embodiment, and other components are common. Therefore, common components are denoted by the same reference numerals, and description thereof is omitted.
[0022]
In FIG. 4, a composite metal plate 13 is provided on the inside of the battery of the sealing plate 1a. As shown in FIG. 6, the composite metal plate 13 has a metal disk (metal) having an opening 14 in the center as shown in FIG. A metal foil 13b having a thickness of 0.01 mm to 0.1 mm is superimposed on the metal plate 13 and the metal disk 13a is folded back from the periphery in the centripetal direction at the outer periphery, and the periphery of the metal foil 13b is clamped and fixed. A ventilation hole 15 penetrating through the metal foil 13a and the metal foil 13b is formed.
[0023]
As shown in FIG. 4, the composite metal plate 13 is disposed such that the metal foil 13b is located on the inside of the battery at the center, and the metal metal 13 protrudes into the opening 14 formed at the center of the metal disk 13a. The center of the bulging portion 4a of the thin plate 4 is welded to the metal foil 13b.
[0024]
In this configuration, when the battery internal pressure rises abnormally, the battery internal pressure that enters the sealing plate 1a through the ventilation hole 15 formed in the composite metal plate 13 reaches the metal thin plate 4, and as shown in FIG. Is inverted. At this time, the metal foil 13b welded to the bulging portion 4a of the thin metal plate 4 is torn off by the bulging portion 4a which is inverted. The breaking strength of the metal foil 13b can be set as the strength at which the metal foil 13b covering the opening 14 formed in the metal disk 13a breaks at the peripheral portion of the opening 14, so that the material and the thickness of the metal foil 13b are reduced. By controlling, the breaking accuracy can be maintained constant. Therefore, since it does not depend on the peel strength of the welded portion which is hard to be processed to a constant joining strength, a stable energizing circuit cutoff structure can be configured.
[0025]
Note that the configuration of the PTC 3 in this configuration for suppressing an excessive current and for releasing the gas to the outside when the battery internal pressure is abnormally increased after the current interruption is the same as the operation of the configuration of the first embodiment described above. Omitted.
[0026]
In the above embodiment, the cylindrical battery is described. However, the present invention can be similarly applied to a prismatic battery or a battery similar thereto.
[0027]
【The invention's effect】
As described above, according to the present invention, the center of the swelling portion of the thin metal plate is welded to the metal foil covering the opening of the metal plate constituting the composite metal plate, and the structure for interrupting the current-carrying circuit due to an abnormal rise in the internal pressure of the battery. Is formed, when the bulging portion of the thin metal plate is reversed by the internal pressure of the battery, the metal foil covering the opening is torn off by the bulging portion which is reversed, and the energizing circuit is cut off. Therefore, it is possible to control the breaking strength of the metal foil covering the opening without depending on the peeling of the welded part where it is difficult to obtain a constant joining strength. A highly accurate energizing circuit shutoff structure can be configured.
[Brief description of the drawings]
FIG. 1 is a sectional view showing a configuration of a sealing plate of a sealed battery according to a first embodiment of the present invention.
FIG. 2 is a cross-sectional view showing a state in which the operation of interrupting the energizing circuit has been performed from the normal state shown in FIG. 1;
FIGS. 3A and 3B are a plan view and a cross-sectional view taken along line AA of the composite metal plate according to the first embodiment.
FIG. 4 is a sectional view showing a configuration of a sealing plate of a sealed battery according to a second embodiment of the present invention.
FIG. 5 is a cross-sectional view showing a state in which an operation of interrupting an energizing circuit is performed from the normal state shown in FIG. 4;
6A is a plan view showing a configuration of a composite metal plate according to a second embodiment, and FIG. 6B is a cross-sectional view taken along line AA.
[Explanation of symbols]
1, 1a sealing plate 3 PTC
Reference Signs List 4 metal thin plate 4a bulging portion 4b easily breakable portion 6, 13 composite metal plate 6a, 13a metal plate 6b, 13b metal foil 9 metal cap 10 battery case 11, 14 opening 12, 15 vent hole

Claims (2)

発電要素を収容する電池ケースの端部開口が封口板により密閉封口され、この封口板の電極部を形成する金属キャップから電池内部寄りに設けられた金属薄板が電池内圧の上昇によって変形することにより、発電要素から金属キャップに至る通電回路を遮断する機構を備えた密閉型電池において、
前記封口板の電池内部に面した位置に前記発電要素に電気的接続して設けられ、金属板と金属箔とを重ね合わせて冷間圧接したクラッド材の中央部において前記金属板のみに開口部を形成すると共に、クラッド材の適所に金属板と金属箔とを貫いた通気穴を形成した複合金属板と、
この複合金属板の電池外部側に絶縁部材を介して周辺部が前記複合金属板と共に固定支持されると共に、前記金属キャップに電気的に接続して設けられ、中央部に電池内部側に緩やかに膨出する膨出部を形成して、この膨出部の中心部が複合金属板の前記開口部上の金属箔に溶接される金属薄板とを備え
異常上昇した電池内圧により前記金属薄板の膨出部が、これに溶接された開口部上の金属箔を破り取って、電池外部側に反転することで、複合金属板から金属キャップに至る通電回路を遮断するように構成した
ことを特徴とする密閉型電池。
The end opening of the battery case accommodating the power generation element is hermetically sealed by a sealing plate, and a metal thin plate provided near the inside of the battery from a metal cap forming an electrode portion of the sealing plate is deformed by an increase in battery internal pressure. , In a sealed battery equipped with a mechanism for shutting off an energizing circuit from a power generating element to a metal cap,
The sealing plate is provided at a position facing the inside of the battery so as to be electrically connected to the power generating element, and an opening is formed only in the metal plate at a central portion of the clad material that is formed by laminating a metal plate and a metal foil and cold-pressing the metal plate. And a composite metal plate having a ventilation hole formed through a metal plate and a metal foil at an appropriate position in the clad material ,
Together with the peripheral portion is fixed and supported together with the composite metal plate via an insulating member in the battery outside of the composite metal plate, the metal cap is provided with electrically connected loosely to the battery inner side in the central portion Forming a swelling portion that swells, comprising a metal sheet whose central portion is welded to a metal foil on the opening of the composite metal plate ;
Due to the abnormally increased internal pressure of the battery, the bulging portion of the thin metal plate tears off the metal foil on the opening welded to the thin metal plate and turns over to the outside of the battery, so that an energizing circuit from the composite metal plate to the metal cap is formed. A sealed battery characterized in that the battery is shut off .
発電要素を収容する電池ケースの端部開口が封口板により密閉封口され、この封口板の電極部を形成する金属キャップから電池内部寄りに設けられた金属薄板が電池内圧の上昇によって変形することにより、発電要素から金属キャップに至る通電回路を遮断する機構を備えた密閉型電池において、
前記封口板の電池内部に面した位置に前記発電要素に電気的接続して設けられ、金属板と金属箔とを前者が電池外部側になるように重ね合わせ、金属板の外周部を求心方向に折り返し、この折り返し部に金属箔の周辺部を挟圧保持した複合板材からなり、この複合板材の中央部において前記金属板のみに開口部を形成すると共に、複合板材の適所に金属板と金属箔とを貫いた通気穴を形成した複合金属板と、
この複合金属板の電池外部側に絶縁部材を介して周辺部が前記複合金属板と共に固定支持されると共に、前記金属キャップに電気的に接続して設けられ、中央部に電池内部側に緩やかに膨出する膨出部を形成して、この膨出部の中心部が複合金属板の前記開口部上の金属箔に溶接される金属薄板とを備え、
異常上昇した電池内圧により前記金属薄板の膨出部が、これに溶接された開口部上の金属箔を破り取って、電池外部側に反転することで、複合金属板から金属キャップに至る通電回路を遮断するように構成した
ことを特徴とする密閉型電池。
The end opening of the battery case accommodating the power generation element is hermetically sealed by a sealing plate, and a metal thin plate provided near the inside of the battery from a metal cap forming an electrode portion of the sealing plate is deformed by an increase in battery internal pressure. , In a sealed battery equipped with a mechanism for shutting off an energizing circuit from a power generating element to a metal cap,
The sealing plate is provided at a position facing the inside of the battery so as to be electrically connected to the power generating element. The metal plate and the metal foil are overlapped so that the former is on the outside of the battery, and the outer peripheral portion of the metal plate is placed in the centripetal direction. The composite plate is made of a composite plate in which the peripheral portion of the metal foil is pressed and held at the folded portion. At the center of the composite plate, an opening is formed only in the metal plate. A composite metal plate with ventilation holes formed through the foil,
A peripheral portion of the composite metal plate is fixedly supported on the outside of the battery via an insulating member together with the composite metal plate, and is provided so as to be electrically connected to the metal cap. Forming a swelling portion that swells, comprising a metal sheet whose central portion is welded to a metal foil on the opening of the composite metal plate;
Due to the abnormally increased internal pressure of the battery, the bulging portion of the thin metal plate tears off the metal foil on the opening welded to the thin metal plate and turns over to the outside of the battery, so that an energizing circuit from the composite metal plate to the metal cap is formed. A sealed battery characterized in that the battery is shut off.
JP24411497A 1997-09-09 1997-09-09 Sealed battery Expired - Fee Related JP3599967B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24411497A JP3599967B2 (en) 1997-09-09 1997-09-09 Sealed battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24411497A JP3599967B2 (en) 1997-09-09 1997-09-09 Sealed battery

Publications (2)

Publication Number Publication Date
JPH1186822A JPH1186822A (en) 1999-03-30
JP3599967B2 true JP3599967B2 (en) 2004-12-08

Family

ID=17113976

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24411497A Expired - Fee Related JP3599967B2 (en) 1997-09-09 1997-09-09 Sealed battery

Country Status (1)

Country Link
JP (1) JP3599967B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2990686B2 (en) * 1994-11-17 1999-12-13 田辺製薬株式会社 Total infusion containing water-soluble vitamin B
JP2001291502A (en) * 2000-04-05 2001-10-19 Toyo Kohan Co Ltd Sealed battery, sealed body and can
KR100579378B1 (en) * 2004-10-28 2006-05-12 삼성에스디아이 주식회사 Secondary Battery
JP2009140870A (en) 2007-12-10 2009-06-25 Sanyo Electric Co Ltd Terminal for sealed battery, and sealed battery
JP4596289B2 (en) * 2008-11-06 2010-12-08 トヨタ自動車株式会社 Sealed battery
US9660247B2 (en) 2011-11-23 2017-05-23 Toyota Jidosha Kabushiki Kaisha Secondary battery manufacturing method and secondary battery
KR101917411B1 (en) * 2015-08-21 2018-11-09 주식회사 엘지화학 Cap assembly

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0625889Y2 (en) * 1984-11-08 1994-07-06 富士電気化学株式会社 Explosion-proof battery
JPH07107840B2 (en) * 1989-08-29 1995-11-15 松下電器産業株式会社 Organic electrolyte battery
JPH0562664A (en) * 1991-09-02 1993-03-12 Matsushita Electric Ind Co Ltd Explosion proof type nonaqueous secondary battery
JP3233679B2 (en) * 1992-05-14 2001-11-26 旭化成株式会社 Manufacturing method of battery safety valve device
JP3387118B2 (en) * 1992-06-12 2003-03-17 ソニー株式会社 Sealed battery
JPH06203818A (en) * 1992-12-26 1994-07-22 Hitachi Maxell Ltd Explosion-proof sealed battery
JPH0794161A (en) * 1993-09-24 1995-04-07 Fuji Photo Film Co Ltd Nonaqueous electrolyte battery
JP3375434B2 (en) * 1994-10-14 2003-02-10 日立マクセル株式会社 Explosion-proof sealed battery
EP0881697B1 (en) * 1996-02-15 2002-09-18 TOYO KOHAN Co., Ltd Cladding material for a safety valve

Also Published As

Publication number Publication date
JPH1186822A (en) 1999-03-30

Similar Documents

Publication Publication Date Title
JP2970340B2 (en) Explosion-proof sealing plate for sealed batteries
JP4596289B2 (en) Sealed battery
US7745024B2 (en) Sealed accumulator equipped with a safety device
EP1422771A1 (en) Non-aqueous electrolytic secondary battery
JP2004319463A (en) Secondary battery
US6063518A (en) Sealed electrochemical cell equipped with a circuit-breaking terminal
US8828598B2 (en) Sealed-type cell
WO1997016859A1 (en) Explosion-proof seal plate for enclosed type cell and production method thereof
JPH11154504A (en) Pressure breaking sensor
JP4284712B2 (en) Explosion-proof sealing plate for sealed battery and sealed battery using the same
JP3599967B2 (en) Sealed battery
JPH11307080A (en) Electric path breaking component for battery
JPH10284035A (en) Explosion proof sealing plate for sealed battery and its manufacture
JP4552414B2 (en) Film type battery
JP3346675B2 (en) Explosion-proof sealing plate for sealed batteries
JP2000323114A (en) Sealed battery
JP2014235943A (en) Secondary battery
JP3639414B2 (en) Sealed battery
JP3605668B2 (en) Non-aqueous electrolyte secondary battery
JP3322566B2 (en) Explosion-proof sealing plate for sealed batteries
JPH10284034A (en) Explosion proof sealing plate for sealed battery and its manufacture
JP2004303447A (en) Secondary battery
JP3754792B2 (en) Temperature fuse and temperature fuse mounting structure for secondary battery
JP3600013B2 (en) Sealed battery
JP2010027263A (en) Battery module

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040817

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040915

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080924

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080924

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090924

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees