JPS6371644A - Method for measuring thermal diffusivity - Google Patents

Method for measuring thermal diffusivity

Info

Publication number
JPS6371644A
JPS6371644A JP21585386A JP21585386A JPS6371644A JP S6371644 A JPS6371644 A JP S6371644A JP 21585386 A JP21585386 A JP 21585386A JP 21585386 A JP21585386 A JP 21585386A JP S6371644 A JPS6371644 A JP S6371644A
Authority
JP
Japan
Prior art keywords
sample
time
thermal diffusivity
value
differentiated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21585386A
Other languages
Japanese (ja)
Other versions
JPH0765975B2 (en
Inventor
Tadahiko Azumi
安積 忠彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHINKU RIKO KK
Original Assignee
SHINKU RIKO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHINKU RIKO KK filed Critical SHINKU RIKO KK
Priority to JP21585386A priority Critical patent/JPH0765975B2/en
Publication of JPS6371644A publication Critical patent/JPS6371644A/en
Publication of JPH0765975B2 publication Critical patent/JPH0765975B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To find the thermal diffusibility of a thick sample which has low heat conductivity with a small error relatively easily without damaging the radiated surface of the sample by heating the sample stepwise and employing the same method as a flashing method for analysis. CONSTITUTION:The surface of a plane sample which has constant thickness (l) is radiated with an electromagnetic wave or particle rays with constant energy uniformly and continuously from a certain point of time. The curve of the temperature rise of the rear surface of the sample is recorded and differentiated with time to find a time (t) from the point of time when a differentiated value with a specific rate to the maximum differentiated value is obtained. The heat conduction expression of the step heating method id also differentiated with time to find a Fourier series value (alphat/l<2>, where alpha is thermal diffusivity) with which a differentiated value with a specific rate to the maximum differentiated value of temperature is obtained. The thermal diffusivity alpha is found from this Fourier series value and said time (t) and thickness (l) of the sample. Consequently, the thermal diffusivity with the small error is found relatively easily.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、熱拡散率の測定方法に関する。[Detailed description of the invention] (Industrial application field) The present invention relates to a method for measuring thermal diffusivity.

従来、電磁波又は粒子線を厚さ一定の平板試料に照射し
て熱拡散率を測定する方法には2通りある。その1つは
瞬時加熱(フラッシュ法)であり、他の1つは一定加熱
(ステップ法)である。
Conventionally, there are two methods for measuring thermal diffusivity by irradiating electromagnetic waves or particle beams onto a flat sample of constant thickness. One is instantaneous heating (flash method) and the other is constant heating (step method).

フラッシュ法においては、第3図示のような、パルス状
の電磁波又は粒子線例えばレーザ光を一定の厚さの平板
試料の全面に亘って均一に照射すると、レーザ光が試料
に吸収され試料に熱損失が無い場合には、該試料の背面
の温度上昇01曲線はよく知られた次のような熱伝導式
に従って上昇する。
In the flash method, as shown in Figure 3, when pulsed electromagnetic waves or particle beams such as laser light are uniformly irradiated over the entire surface of a flat sample of a certain thickness, the laser light is absorbed by the sample and heat is generated in the sample. In the absence of losses, the temperature rise 01 curve on the back side of the sample rises according to the well-known heat conduction equation:

θ、=θm [1+2.、(−1) exp (−n”
 x” (It / A!”))−(t)但し、αは試
料の熱拡散率 !は試料の厚み tはレーザ光を照射してからの時間 θmはt→■のときのe。
θ,=θm [1+2. , (-1) exp (-n"
x” (It / A!”)) - (t) However, α is the thermal diffusivity of the sample! is the thickness of the sample, t, and the time θm after laser beam irradiation is e when t→■.

この関係式によりフーリエご数α”、/l”を変数のよ
うになる。
According to this relational expression, the Fourier numbers α'', /l'' become variables.

第4図から、例えば試料温度上昇幅が最高温度上昇幅の
半分に達する時の7一リエ級数値αtzs/l”= a
 138 Bを求め、また試料の温度上昇幅θ、が最高
温度上昇幅θmの半分に達するまでの時間t6..を測
定し、次式から熱拡散率αを求める。
From Fig. 4, for example, when the sample temperature rise width reaches half of the maximum temperature rise width, the 7-tier series value αtzs/l''= a
138 B, and the time t6. until the temperature increase width θ of the sample reaches half of the maximum temperature increase width θm. .. is measured, and the thermal diffusivity α is determined from the following formula.

α=α13887’/ to、s        ・・
・(2)また、比率Cpは試料が吸収した熱量をQ1試
料の重さを特とする請 求められる。
α=α13887'/to, s...
-(2) Also, the ratio Cp can be used to express the amount of heat absorbed by the sample, Q1, and the weight of the sample.

したがって熱伝導率λは、密度ρが既知であれば、λ=
α・Cp・ρから求めることができる。
Therefore, the thermal conductivity λ is λ=
It can be determined from α, Cp, and ρ.

一方、ステップ法においては、第5図示のようi、:t
=aからハロゲン光のような光をステップ状に試料の全
面に亘って均一に照射すると、(t)式を求めたときと
同一の条件下で試料背面の温度は、よく知られた次のよ
うな熱伝導式に従つて上昇する。
On the other hand, in the step method, i, :t as shown in Figure 5
When light such as halogen light is uniformly irradiated stepwise over the entire surface of the sample from =a, the temperature at the back of the sample under the same conditions as when formula (t) was calculated is as follows, which is well known. It rises according to the heat conduction equation.

・・・(3) 但しqは単位時間、単位面積当りに照射吸収されるエネ
ルギー この熱伝導式により7一リエ級数αt/l!を変数にし
て関係θ、λ/qlを求める図示すると、第6図のよう
になる。
...(3) However, q is the energy irradiated and absorbed per unit time and unit area. According to this heat conduction formula, 7-Lier series αt/l! When the relationships θ and λ/ql are determined using variables, the result is shown in FIG. 6.

例えばαts/z”に対するθ、をθ言t、)、2αt
 1 /ノ2に対するθ、をθt (2ts )とし、
α11/がとθtcztt)/θt(tx)の関係を図
示すると第7図のようなグラフが得られる。
For example, θ for αts/z” is expressed as θt, ), 2αt
Let θ for 1/2 be θt (2ts),
When the relationship between α11/(θtcztt)/θt(tx) is illustrated, a graph as shown in FIG. 7 is obtained.

t、を指定するとθ*(2t1)/θg(t1)は実験
的に求めらnるので、第7図から、その値におけるαt
!/l”=kが得られ、この式から熱拡散率αがα=k
l″/ tt         ・・・(4)から求め
られる。
When t is specified, θ*(2t1)/θg(t1) can be obtained experimentally, so from Fig. 7, αt at that value can be determined experimentally.
! /l”=k is obtained, and from this equation, the thermal diffusivity α is α=k
l″/tt...calculated from (4).

次に(3)式においてt→■とすると、Σの中は零とな
る。
Next, in equation (3), if t→■, then Σ becomes zero.

従って(3)式を図示し、その曲線の勾配を求める。Therefore, equation (3) is illustrated and the slope of the curve is determined.

試料の密度ρ、試料の厚み!、単位時間、単位面積当り
に照射吸収されるエネルギqが判れば、これ等と勾配を
(5)式に代入することにより比熱Opが求められる。
Sample density ρ, sample thickness! If the energy q irradiated and absorbed per unit time and unit area is known, the specific heat Op can be determined by substituting these and the gradient into equation (5).

熱伝導率λはフラッシュ法と同様にして求められる。The thermal conductivity λ is obtained in the same manner as the flash method.

(発明が解決しようとする問題点] 上述の7ラツシユ法によれば、簡便に熱拡散率を求める
ことができるが、光を瞬時に照射して試料を加熱するた
め、熱伝導率が悪い試料では照射面の温度が極端に高く
なる。したがってプラスチック等の試料とか、一般の試
料でも融点、転移点の近傍では熱定象を正確に求めるこ
とが困薄である。
(Problems to be Solved by the Invention) According to the above-mentioned 7-ratio method, thermal diffusivity can be easily determined. In this case, the temperature of the irradiated surface becomes extremely high.Therefore, it is difficult to accurately determine the thermal characteristics of plastic samples and other general samples near the melting point or transition point.

一方、ステップ法は、試料の照射面を損5することが少
なく、熱伝導率の悪い試料の測定に適しているが、時間
t、の選び方が不適切であ率を求めるにはかなりの熟練
を要する。
On the other hand, the step method causes less damage to the irradiated surface of the sample and is suitable for measuring samples with poor thermal conductivity, but the time t is inappropriately selected and requires considerable skill to calculate the rate. It takes.

本発明は従来の2つの方法のそれぞれの不都合を解消す
ることをその目的とするものである。
It is an object of the present invention to overcome the disadvantages of the two conventional methods.

(問題点を解決する手段) 本発明は上述の目的を達成するために、一定エネルギの
電磁波又は粒子線を厚さ一定(功の平板試料の表面にあ
る時点より一様に照射しつづけ、該試料の背面の温度上
昇曲線を記録して該曲線を時間について微分し、最大微
分値に対して所定比率の微分値が得られる前記時点から
の時間(t)を求め、また、ステップ加熱法の熱伝導式
を時間について微分し、温度の最大微分値に対して前記
所定比率の微分値が得られる7−りエ級数値(αt、’
s但し、α;熱拡散率)を求め、該7一リエ級数値、前
記時間(t)及び試料の厚さく粉から熱拡散率(φを求
めることを特徴とする。
(Means for Solving the Problems) In order to achieve the above-mentioned object, the present invention continues to irradiate electromagnetic waves or particle beams with a constant energy uniformly from a certain point on the surface of a flat plate sample of a constant thickness. The temperature rise curve on the back side of the sample is recorded and the curve is differentiated with respect to time to determine the time (t) from said point in time at which a differential value of a predetermined ratio to the maximum differential value is obtained; The heat conduction equation is differentiated with respect to time, and the differential value of the predetermined ratio is obtained with respect to the maximum differential value of temperature.
s However, it is characterized in that α: thermal diffusivity) is determined, and thermal diffusivity (φ) is determined from the 7-Lier series value, the time (t), and the thickness of the sample.

(作 用〕 ステップ法を用いると、試料背面の温度上昇(3)式を
微分すると この(6)式を(t)式をθmで除した式と比較すると
、(6)式の左辺の(dos / cl t)(q/ρ
C3pl)を070mと置き換えると、フラッシュ法と
同じとなる。
(Function) When the step method is used, the temperature rise on the back side of the sample is differentiated by Equation (3). Comparing this Equation (6) with the equation obtained by dividing Equation (t) by θm, the left-hand side of Equation (6) ( dos / cl t) (q/ρ
If C3pl) is replaced with 070m, it becomes the same as the flash method.

(6)式の左辺の分母は、(5j式から明らかなように
、tがωにおけるdθ、/atであるから、tGf式の
左辺はある時間における温度の微分値とtがQにおける
温度の微分値(最大微分値)との比を示す。
The denominator on the left side of equation (6) is (as is clear from equation 5j, t is dθ, /at at ω, so the left side of tGf equation is the differential value of temperature at a certain time, and t is the differential value of temperature at Q. Indicates the ratio to the differential value (maximum differential value).

したがって、フラッシュ法と同じように、(6)式を図
示した第1図から例えば試料の温度の微分値が最大微分
値の半分に達する時の7一リエ級数値αt*、s/l″
=α1388を求め、また試料の温度微分値が最大微分
値の半分に達するまでの時間ち、Sを測定し、次式 %式%( から熱拡散率を求める。
Therefore, in the same way as the flash method, from FIG.
= α1388, and after the time until the temperature differential value of the sample reaches half of the maximum differential value, S is measured, and the thermal diffusivity is determined from the following formula: %.

(実施例〕 本発明方法の実施例を添付図面につき説明する。(Example〕 Embodiments of the method of the invention will be described with reference to the accompanying drawings.

試料として、厚み5mff1のステンレスfll (S
Us304〕を用い、加ハロゲンランプを加熱源として
α5 W / cTAのエネルギをある時点より該試料
の1面に投入した。
As a sample, a stainless steel full (S
Using a halogenated halogen lamp as a heating source, energy of α5 W/cTA was applied to one side of the sample from a certain point.

そのときの試料の背面の温度上昇曲線の微分曲線を第2
図に示す。この微分曲線は、フンピユータによるソフト
処理により求めた。
The differential curve of the temperature rise curve on the back side of the sample at that time is
As shown in the figure. This differential curve was obtained through software processing using Funpyuta.

この微分曲線がら最大微分値の1/2の微分値における
時間はα96秒であった。そこでこのr196秒と、試
料の厚み0.5 (Jを(2)式に代入し、熱拡散率α
を算出した。
In this differential curve, the time at a differential value of 1/2 of the maximum differential value was α96 seconds. Therefore, by substituting r196 seconds and sample thickness 0.5 (J into equation (2), thermal diffusivity α
was calculated.

α=(α1388X[L5”)/[L96=(LO36
cJ/gsc該試料の比熱は、従来と同じようにt−+
coにおける温度の微分値と単位時間、単位面積当りに
試料に吸収されるエネルギq1密度ρ、試料の厚みlと
を(5)式に代入して求める 但し、qは比熱が既知のものとの比較から求める。
α=(α1388X[L5”)/[L96=(LO36
cJ/gscThe specific heat of the sample is t-+ as before.
The differential value of temperature at co, unit time, energy absorbed by the sample per unit area q1 density ρ, and thickness l of the sample are substituted into equation (5). Obtain from comparison.

同様に熱伝導率λもλ=Op・ρ・αから求める。Similarly, the thermal conductivity λ is determined from λ=Op・ρ・α.

(発明の効果) 以上説明したように、低熱伝導率で肉厚な試料をステッ
プ加熱により加熱し、解析はフラッシュ法と同じ方法を
用いることにより該試料の照射面を損傷することなく、
シかも誤差の少ない熱拡散率を比較的簡単に求めること
ができる効果を有する。
(Effects of the Invention) As explained above, a thick sample with low thermal conductivity is heated by step heating, and analysis is performed using the same method as the flash method, without damaging the irradiated surface of the sample.
This has the effect that the thermal diffusivity can be determined relatively easily with little error.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の方法における温度の績分値変化の理論
曲線図、第2図はステップ加熱したときの試料の背面の
温度上昇微分値実測曲線を示す図、第3図はフラッシュ
法におけるエネルギ一時間の関係を示す図、第4図はス
テップ法におけるエネルギ一時間の関係を示す図、第5
ト*l−+−w  Q  dJ  J+  ++  j
ト 1−  ↓+  I↓ 7田+*a  l−+−a
  ^ruy tw  、ul、  64図、第6図は
ステップ法における温度上昇の理論曲線図、第7図はス
テップ法においてデータ解析に用いる曲線を示す図であ
る。 特許出願人  真空理工株式会社 代  理  人   北   村   欣   −゛\
外2名
Fig. 1 is a theoretical curve diagram of the temperature change in the method of the present invention, Fig. 2 is a diagram showing the measured curve of the differential value of temperature rise on the back side of the sample when step heating is performed, and Fig. 3 is a diagram showing the measured curve of the temperature rise differential value in the flash method. Figure 4 shows the relationship between energy and time in the step method. Figure 5 shows the relationship between energy and time.
G*l−+−w Q dJ J+ ++ j
G 1- ↓+ I↓ 7field+*a l-+-a
^ruy tw, ul, Figure 64 is a diagram showing a theoretical curve of temperature rise in the step method, and Figure 7 is a diagram showing a curve used for data analysis in the step method. Patent applicant: Shinku Riko Co., Ltd. Representative: Kin Kitamura −゛\
2 people outside

Claims (1)

【特許請求の範囲】[Claims] 一定エネルギの電磁波又は粒子線を厚さ一定(l)の平
板試料の表面にある時点より一様に照射しつづけ、該試
料の背面の温度上昇曲線を記録して該曲線を時間につい
て微分し、最大微分値に対して所定比率の微分値が得ら
れる前記時点からの時間(t)を求め、また、ステップ
加熱法の熱伝導式を時間について微分し、温度の最大微
分値に対して前記所定比率の微分値が得られるフーリエ
級数値(αt/l^2、但し、α:熱拡散率)を求め、
該フーリエ級数値、前記時間(t)及び試料の厚さ(l
)から熱拡散率(α)を求めることを特徴とする熱拡散
率測定方法。
Continue to irradiate electromagnetic waves or particle beams with constant energy uniformly from a certain point on the surface of a flat sample with a constant thickness (l), record a temperature rise curve on the back side of the sample, and differentiate the curve with respect to time, Determine the time (t) from the point in time when a differential value of a predetermined ratio is obtained with respect to the maximum differential value, and also differentiate the heat conduction equation of the step heating method with respect to time, and calculate the predetermined value with respect to the maximum differential value of temperature. Find the Fourier series value (αt/l^2, where α: thermal diffusivity) that yields the differential value of the ratio,
The Fourier series value, the time (t) and the sample thickness (l
) A thermal diffusivity measuring method characterized by determining the thermal diffusivity (α) from ).
JP21585386A 1986-09-16 1986-09-16 Thermal diffusivity measurement method Expired - Fee Related JPH0765975B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21585386A JPH0765975B2 (en) 1986-09-16 1986-09-16 Thermal diffusivity measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21585386A JPH0765975B2 (en) 1986-09-16 1986-09-16 Thermal diffusivity measurement method

Publications (2)

Publication Number Publication Date
JPS6371644A true JPS6371644A (en) 1988-04-01
JPH0765975B2 JPH0765975B2 (en) 1995-07-19

Family

ID=16679359

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21585386A Expired - Fee Related JPH0765975B2 (en) 1986-09-16 1986-09-16 Thermal diffusivity measurement method

Country Status (1)

Country Link
JP (1) JPH0765975B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5713665A (en) * 1995-05-12 1998-02-03 Agency Of Industrial Science & Technology, Ministry Of International Trade & Industry Method and apparatus for thermal diffusivity measurement
JP2011158362A (en) * 2010-02-01 2011-08-18 Kyushu Electric Power Co Inc Thermal fatigue evaluation method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5713665A (en) * 1995-05-12 1998-02-03 Agency Of Industrial Science & Technology, Ministry Of International Trade & Industry Method and apparatus for thermal diffusivity measurement
JP2011158362A (en) * 2010-02-01 2011-08-18 Kyushu Electric Power Co Inc Thermal fatigue evaluation method

Also Published As

Publication number Publication date
JPH0765975B2 (en) 1995-07-19

Similar Documents

Publication Publication Date Title
Saintey et al. Defect sizing by transient thermography. II. A numerical treatment
JPH07181154A (en) Method and equipment of modulation differentiation analysis
US20210385917A1 (en) Method for operating a domestic cooking appliance and domestic cooking appliance
JP3252155B2 (en) Thermal diffusivity measurement method by thermoreflectance method
Agresti et al. Depth-dependent calibration for quantitative elemental depth profiling of copper alloys using laser-induced plasma spectroscopy
JPS6371644A (en) Method for measuring thermal diffusivity
EP1302758A3 (en) Temperature measuring method and apparatus
US11035809B2 (en) Thermal diffusion factor measurement device, thermal diffusion factor measurement method and program
Albuquerque et al. Time resolved thermal lens in edible oils
JPS628188B2 (en)
Bouaziz et al. Laser heating of a material with time-dependent laser source
JPH0389139A (en) Measurement of moisture
Bartell et al. Electron diffraction studies of laser‐pumped molecules. IV. SF6, experiment and theory
JPS6033483A (en) Method of deciding timing of completion of drying in powdered and granular body drier
JPS6258146A (en) Method for measuring heat diffusivity
JPS5565143A (en) Measuring method for heat capacity
JPS6435220A (en) Liquid surface detector
JPS61228637A (en) Method and device for temperature measurement of semiconductor substrate
JP2864097B2 (en) Method and apparatus for analyzing thermal diffusivity, biot number and specific heat data in laser flash method
JPS6370940A (en) Heat treatment device for resist master disk
JPS5674645A (en) Measuring method of thermal constant by progressive spot heat source
JPH09251004A (en) Method and device for optical-acoustic analyzing
JPS62100624A (en) Temperature measuring object selector
BE1000602A6 (en) Testing aluminium alloys for effects of ageing - repeatedly checking electric resistance correlated with temp. to derive prediction curve
Longa General Theoretical Background of the Differential Analysis of Casting Cooling Curves

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees