JP2011158362A - Thermal fatigue evaluation method - Google Patents

Thermal fatigue evaluation method Download PDF

Info

Publication number
JP2011158362A
JP2011158362A JP2010020787A JP2010020787A JP2011158362A JP 2011158362 A JP2011158362 A JP 2011158362A JP 2010020787 A JP2010020787 A JP 2010020787A JP 2010020787 A JP2010020787 A JP 2010020787A JP 2011158362 A JP2011158362 A JP 2011158362A
Authority
JP
Japan
Prior art keywords
temperature
pipe
fourier series
change
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010020787A
Other languages
Japanese (ja)
Inventor
Hideto Misumi
英人 三隅
Shiro Kubo
司郎 久保
Kiminobu Hojo
公伸 北条
Mayumi Ochi
真弓 越智
Nobuyoshi Iriki
信好 入木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyushu Electric Power Co Inc
Original Assignee
Kyushu Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyushu Electric Power Co Inc filed Critical Kyushu Electric Power Co Inc
Priority to JP2010020787A priority Critical patent/JP2011158362A/en
Publication of JP2011158362A publication Critical patent/JP2011158362A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a thermal fatigue evaluation method capable of estimating accurately in a short time, a temperature change on the inner surface from a measured temperature on the outer surface of a tubular structure. <P>SOLUTION: This method includes: the first process for expressing a change with time of the inner surface temperature and a change with time of the outer surface temperature of a structure in the form of Fourier series expansion so as to satisfy a heat conduction equation, and comparing each Fourier series expansion term of the change with time of the inner surface temperature and the change with time of the outer surface temperature, to thereby determine a coefficient ratio M<SB>j</SB>and a phase delay Δθ<SB>j</SB>of each Fourier series expansion term; the second process for measuring the outer surface temperature of the structure by a temperature sensor; and the third process for developing outer surface measured temperature measured in the second process by the Fourier series, multiplying the coefficient of each Fourier series expansion term of the outer surface measured temperature by the coefficient ratio M<SB>j</SB>determined in the first process, and shifting the phase of each Fourier series expansion term as much as the phase delay Δθ<SB>j</SB>determined in the first process, to thereby estimate the change with time of the inner surface temperature of the structure. The thermal fatigue damage degree of the structure is determined based on the change with time of the inner surface temperature estimated in the third process. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、流体の温度変動を受ける配管等の管状構造物の熱疲労評価方法に関する。   The present invention relates to a method for evaluating thermal fatigue of tubular structures such as pipes that undergo temperature fluctuations of fluid.

高温流体を扱う発電プラントのようなプラントには、主配管から分岐する分岐管が多数設けられている。主配管と分岐間との結合部では、高温水と低温水とが合流する部位や、主管からの流れが分岐管に流入することで両流体の温度差により熱成層が発生する部位で温度変動が生じる場合がある。この温度変動(振動)により分岐管に応力変動を生じ、これが分岐管の熱疲労の原因となる。   Plants such as power plants that handle high-temperature fluids are provided with many branch pipes that branch from the main pipe. At the joint between the main pipe and the branch, temperature fluctuations occur in the part where high temperature water and low temperature water merge, and in the part where thermal stratification occurs due to the temperature difference between the two fluids when the flow from the main pipe flows into the branch pipe. May occur. This temperature fluctuation (vibration) causes a stress fluctuation in the branch pipe, which causes thermal fatigue of the branch pipe.

このような熱疲労を評価するためには、配管内面の温度変化を把握する必要がある。配管内面の温度変化を把握する方法の一例として、配管の内面に温度センサを取り付け、この温度センサによって直接内面の温度変化を計測することも考えられる。この場合、予めそのような温度変動の発生が予想されるすべての場所に温度センサを取り付ける必要があり、コスト高となる。   In order to evaluate such thermal fatigue, it is necessary to grasp the temperature change of the inner surface of the pipe. As an example of a method for grasping the temperature change of the inner surface of the pipe, it is conceivable to attach a temperature sensor to the inner surface of the pipe and measure the temperature change of the inner surface directly by this temperature sensor. In this case, it is necessary to attach temperature sensors to all places where such temperature fluctuations are expected in advance, resulting in high costs.

そこで、配管外面の測定温度から配管内面の温度変化を推定し、推定された配管内面の温度変化に基づいて熱疲労を評価する方法が種々検討されている。例えば特許文献1に示される方法では、配管外面に取り付けられた温度センサによって配管外面の温度変化を測定し、測定された配管外面の温度変化に基づいて、熱伝導方程式を用いた逆解析を行うことにより、配管内面の温度変化(温度の時間分布)を求めている。そして、上記の逆解析で求めた配管内面の温度変化を用いて、グリーン関数により配管の熱応力変化を算出し、この配管の熱応力変化と内圧応力変化とによって疲労損傷度変化を算出する。   Thus, various methods for estimating the temperature change of the inner surface of the pipe from the measured temperature of the outer surface of the pipe and evaluating thermal fatigue based on the estimated temperature change of the inner surface of the pipe have been studied. For example, in the method disclosed in Patent Document 1, the temperature change of the pipe outer surface is measured by a temperature sensor attached to the pipe outer surface, and the inverse analysis using the heat conduction equation is performed based on the measured temperature change of the pipe outer surface. Thus, the temperature change (temperature time distribution) on the inner surface of the pipe is obtained. Then, using the temperature change of the inner surface of the pipe obtained by the above reverse analysis, the thermal stress change of the pipe is calculated by the Green function, and the fatigue damage degree change is calculated by the thermal stress change and the internal pressure stress change of the pipe.

特開平10−96704号公報JP-A-10-96704

特許文献1に示されるグリーン関数を用いた手法では、構造解析を用いて、最初に配管内面に均一にデルタ関数的に時間変化する温度変化を与えたときの配管外面に表れる温度の時間変化や応力の時間変化をデータベースとして準備しておく。このときに、逆解析工程では、ある時間tの配管外面の温度は、過去に発生した配管内面の温度の時間変化(0≦τ<t)と上記データベースの重ね合わせで得られているとして、内面の温度の時間変化を算出する。このため、配管内面の温度の時間変化と配管外面の温度の時間変化との関係は、tが大きくなると時間ステップに応じた大きな行列となる。したがって、一次元的な板厚方向の推定は可能であるが、空間的な広がりを考慮するエルボ形状の配管の場合、多数の構造解析を用いた多大なデータベースを準備し、逆解析工程では大行列を解く必要が生じるため、適用することは困難である。   In the method using the Green function shown in Patent Document 1, the time change of the temperature appearing on the outer surface of the pipe when the temperature change that changes with time in the delta function is uniformly applied to the inner surface of the pipe using the structural analysis. A stress change with time is prepared as a database. At this time, in the reverse analysis step, the temperature of the pipe outer surface at a certain time t is obtained by superimposing the time variation of the temperature of the pipe inner surface generated in the past (0 ≦ τ <t) and the above database. The time change of the temperature of the inner surface is calculated. For this reason, the relationship between the time change of the temperature of the pipe inner surface and the time change of the temperature of the pipe outer surface becomes a large matrix corresponding to the time step as t increases. Therefore, it is possible to estimate the one-dimensional plate thickness direction, but in the case of elbow-shaped piping that takes into account the spatial spread, a large database using many structural analyzes is prepared, and the inverse analysis process is very large. It is difficult to apply because it requires the matrix to be solved.

本発明は、上記に鑑みてなされたものであって、配管等の管状の構造物における外面の測定温度から内面の温度変化を短時間で且つ精度よく推定することのできる熱疲労評価方法を提供することを目的とする。   The present invention has been made in view of the above, and provides a thermal fatigue evaluation method capable of accurately estimating the temperature change of the inner surface from the measured temperature of the outer surface in a tubular structure such as a pipe in a short time. The purpose is to do.

上述した課題を解決し、目的を達成するために、本発明の熱疲労評価方法は、流体を流通させる中空部を有した管状の構造物の熱疲労を評価する方法であって、前記構造物の内面温度の時間変化及び外面温度の時間変化を、熱伝導方程式を満たすようにフーリエ級数で展開した形式で表し、前記内面温度の時間変化と外面温度の時間変化の各フーリエ級数展開項を比較することにより、各フーリエ級数展開項の係数比Mj及び位相遅れΔθj(j=1,2,・・)とを求める第1工程と、前記構造物の外面温度を温度センサで測定する第2工程と、前記第2工程で測定した外面測定温度をフーリエ級数で展開し、当該外面測定温度の各フーリエ級数展開項の係数に前記第1工程で求めた係数比Mjを掛けるとともに、各フーリエ級数展開項の位相を、前記第1工程で求めた位相遅れΔθjだけずらすことにより、前記構造物の内面温度の時間変化を推定する第3工程と、を有し、前記第3工程で推定した前記内面温度の時間変化に基づいて前記構造物の熱疲労損傷度を判定することを特徴とする。 In order to solve the above-described problems and achieve the object, the thermal fatigue evaluation method of the present invention is a method for evaluating thermal fatigue of a tubular structure having a hollow portion through which a fluid flows, and the structure The time variation of the inner surface temperature and the time variation of the outer surface temperature are expressed in a form expanded by Fourier series so as to satisfy the heat conduction equation, and each Fourier series expansion term of the time variation of the inner surface temperature and the time variation of the outer surface temperature is compared. Thus, the first step of obtaining the coefficient ratio M j and the phase delay Δθ j (j = 1, 2,...) Of each Fourier series expansion term, and the first step of measuring the outer surface temperature of the structure with a temperature sensor 2 steps, the outer surface measurement temperature measured in the second step is expanded by Fourier series, the coefficient of each Fourier series expansion term of the outer surface measurement temperature is multiplied by the coefficient ratio M j obtained in the first step, and Fourier series expansion terms And by shifting only the phase lag [Delta] [theta] j obtained in the first step, anda third step of estimating the time variation of the inner surface temperature of the structure, the inner surface temperature estimated in the third step The thermal fatigue damage degree of the structure is determined based on a change with time.

次の本発明に係る熱疲労評価方法は、前記構造物の軸線に垂直な断面内において、前記外面測定温度を測定するための複数の温度測定点Bp(p=1,2,・・n)を前記構造物の外面に設けるとともに、前記内面温度の時間変化を推定するための複数の温度推定点Aq(q=1,2,・・m)を前記構造物の内面に設け、前記第1工程において、任意の前記温度測定点Bpと任意の前記温度推定点Aqとの間で係数比Mjpq及び位相遅れΔθjpqとを求め、前記第2工程において、前記複数の温度測定点Bpにおける温度を測定し、前記第3工程において、前記係数比Mjpq及び前記位相遅れΔθjpqを用いて、前記複数の温度推定点Aqの温度の時間変化を推定することを特徴とする。 In the thermal fatigue evaluation method according to the present invention, a plurality of temperature measurement points B p (p = 1, 2,... N) for measuring the outer surface measurement temperature in a cross section perpendicular to the axis of the structure. ) Is provided on the outer surface of the structure, and a plurality of temperature estimation points A q (q = 1, 2,... M) for estimating the time change of the inner surface temperature are provided on the inner surface of the structure. In the first step, a coefficient ratio M jpq and a phase delay Δθ jpq are obtained between the arbitrary temperature measurement point B p and the arbitrary temperature estimation point A q, and in the second step, the plurality of temperature measurements The temperature at the point B p is measured, and the time change of the temperature at the plurality of temperature estimation points A q is estimated using the coefficient ratio M jpq and the phase delay Δθ jpq in the third step. To do.

次の本発明に係る熱疲労評価方法は、前記第3工程で推定した前記内面温度の時間変化を用いて前記構造物内部の温度の時間変化を求める第4工程と、当該構造物内部の温度の時間変化を用いて前記構造物内部に発生する熱応力の時間変化を求める第5工程と、当該熱応力の時間変化に基づき疲労累積損傷係数を求める第6工程とを有することを特徴とする。   The thermal fatigue evaluation method according to the present invention includes a fourth step for obtaining a temporal change in the temperature inside the structure using the temporal change in the inner surface temperature estimated in the third step, and a temperature inside the structure. And a sixth step of obtaining a fatigue cumulative damage coefficient based on the temporal change of the thermal stress. The fifth step of obtaining a temporal change of the thermal stress generated in the structure using the temporal change of .

本発明の熱疲労評価方法では、構造物の内面温度の時間変化及び外面温度の時間変化を、熱伝導方程式を満たすようにフーリエ級数で展開した形式で表し、内面温度の時間変化と外面温度の時間変化の各フーリエ級数展開項を比較することにより、各フーリエ級数展開項の係数比Mj及び位相遅れΔθjとを求める。そして、配管の外面温度を温度センサで測定し、この外面測定温度をフーリエ級数で展開し、当該外面測定温度の各フーリエ級数展開項の係数に前記係数比Mjを掛けるとともに、各フーリエ級数展開項の位相を前記位相遅れΔθjだけずらすことにより、配管内面の温度の時間変化を推定する。上記手順を行うことで、従来のような膨大な計算を必要とせず、配管内面の温度変化を短時間で且つ精度よく推定することができる。その結果、配管の熱疲労評価を従来に比して効率的に行うことが可能となる。 In the thermal fatigue evaluation method of the present invention, the time change of the internal surface temperature of the structure and the time change of the external surface temperature are expressed in a form developed by Fourier series so as to satisfy the heat conduction equation. By comparing each Fourier series expansion term of time change, a coefficient ratio M j and a phase delay Δθ j of each Fourier series expansion term are obtained. Then, the outer surface temperature of the pipe is measured with a temperature sensor, the outer surface measured temperature is expanded by a Fourier series, the coefficient of each Fourier series expansion term of the outer surface measured temperature is multiplied by the coefficient ratio M j , and each Fourier series expansion is performed. By shifting the phase of the term by the phase delay Δθ j , the time change of the temperature of the pipe inner surface is estimated. By performing the above procedure, it is possible to accurately estimate the temperature change of the inner surface of the pipe in a short time without requiring a huge calculation as in the prior art. As a result, the thermal fatigue evaluation of piping can be performed more efficiently than in the past.

また、本発明の熱疲労評価方法によれば、構造物の軸線に垂直な断面内において温度分布をもつ場合においても、従来のような膨大な計算を必要とせず、構造物の内面の温度分布及び温度変化を短時間で且つ精度よく算出することができる。   Further, according to the thermal fatigue evaluation method of the present invention, even in the case where the temperature distribution is in a cross section perpendicular to the axis of the structure, the temperature distribution on the inner surface of the structure is not required, as in the conventional case. In addition, the temperature change can be calculated accurately in a short time.

また、本発明の熱疲労評価方法によれば、構造物に掛かる負荷を精度よく評価することができ、構造物を交換又は修理する時期等を正確に予測することができる。   Moreover, according to the thermal fatigue evaluation method of the present invention, it is possible to accurately evaluate the load applied to the structure, and accurately predict when to replace or repair the structure.

図1は、評価対象となる配管の断面図であり、配管内面から配管外面に温度が伝わる様子を概念的に示した図である。FIG. 1 is a cross-sectional view of a pipe to be evaluated, and is a diagram conceptually showing how temperature is transmitted from the inner surface of the pipe to the outer surface of the pipe. 図2は、実施例1,2の熱疲労評価方法の手順を示すフローチャートである。FIG. 2 is a flowchart showing the procedure of the thermal fatigue evaluation method of Examples 1 and 2. 図3は、実施例1,2の熱疲労評価方法を実行する解析装置のブロック図である。FIG. 3 is a block diagram of an analysis apparatus that executes the thermal fatigue evaluation method according to the first and second embodiments. 図4は、評価対象となる配管の断面図であり、配管内面から配管外面に温度が伝わる様子を概念的に示した図である。FIG. 4 is a cross-sectional view of a pipe to be evaluated, and is a diagram conceptually showing how temperature is transmitted from the inner surface of the pipe to the outer surface of the pipe.

以下、この発明につき図面を参照しつつ詳細に説明する。なお、この発明を実施するための形態によりこの発明が限定されるものではない。また、下記実施の形態における構成要素には、当業者が容易に想定できるもの、あるいは実質的に同一のものが含まれる。   Hereinafter, the present invention will be described in detail with reference to the drawings. It should be noted that the present invention is not limited by the mode for carrying out the invention. In addition, constituent elements in the following embodiments include those that can be easily assumed by those skilled in the art or those that are substantially the same.

本発明に係る熱疲労評価方法は、例えば加圧水型原子力プラント(PWR:Pressurized Water Reactor)や沸騰水型原子力プラント(BWR:Boiling Water Reactor)等の原子力プラントに設けられる配管の熱疲労損傷を評価するのに好適に用いられる。なお、以下では配管の熱疲労を評価する場合について説明するが、評価対象となる構造物は配管に限定されるものではなく、原子炉容器や溶融炉など流体(気液二相の流れを含む)を流通させる中空部を有する管状の構造物全般が評価対象となる。   The thermal fatigue evaluation method according to the present invention evaluates thermal fatigue damage of piping provided in a nuclear power plant such as a pressurized water nuclear plant (PWR: Pressurized Water Reactor) or a boiling water nuclear plant (BWR: Boiling Water Reactor). It is used suitably for. In addition, although the case where thermal fatigue of piping is evaluated below is described, the structure to be evaluated is not limited to piping, and fluids such as reactor vessels and melting furnaces (including gas-liquid two-phase flows) General tubular structures having a hollow portion through which the gas is distributed are to be evaluated.

[実施例1]
図1は、評価対象となる円形の配管10を軸線に直交する面で切断した断面図である。図示は省略するが、配管10の中空部11には流体が流れているものとする。また、図1では、配管内面(内表面)12から配管内部13を通じて配管外面(外表面)14に温度が伝わる様子が概念的に示されている。図中、符号15は、配管内面12の温度の変動(振動)を示し、符号16は、配管外面14の温度の変動(振動)を示している。配管10の外面における所定部位には、配管外面14の温度を検出する熱電対等の温度センサ17が設置されており、温度センサ17の検出信号は、熱疲労評価を実行する解析装置(図3を参照)に入力されるように構成されている。
[Example 1]
FIG. 1 is a cross-sectional view of a circular pipe 10 to be evaluated cut along a plane orthogonal to the axis. Although illustration is omitted, it is assumed that a fluid flows in the hollow portion 11 of the pipe 10. Further, FIG. 1 conceptually shows a state in which the temperature is transmitted from the pipe inner surface (inner surface) 12 to the pipe outer surface (outer surface) 14 through the pipe interior 13. In the figure, reference numeral 15 denotes a temperature fluctuation (vibration) of the pipe inner surface 12, and reference numeral 16 denotes a temperature fluctuation (vibration) of the pipe outer surface 14. A temperature sensor 17 such as a thermocouple for detecting the temperature of the pipe outer surface 14 is installed at a predetermined portion on the outer surface of the pipe 10, and the detection signal of the temperature sensor 17 is an analysis device (see FIG. 3) that performs thermal fatigue evaluation. Reference) is configured.

図2は、実施例1の熱疲労評価方法の手順を示すフローチャートである。実施例1の熱疲労評価方法では、まず、配管内面12の時間変化と配管外面14の温度の時間変化を、熱伝導方程式を満たすようにフーリエ級数で展開した形式で表し、内面温度の時間変化と外面温度の時間変化の各フーリエ級数展開項を比較することにより、各フーリエ級数展開項の係数比Mjと位相遅れΔθjとを求め、各フーリエ級数展開項ごとに係数比Mj及び位相遅れΔθjについてのデータベースを予め作成しておく(第1工程:ステップS01)。次いで、温度センサ17によって配管外面14の温度を測定する(第2工程:ステップS02)。次いで、測定した配管外面14の測定温度をフーリエ級数で展開し、ステップS01で求めた係数比Mjと位相遅れΔθjとを用いて、逆解析手法により配管内面12の温度の時間変化を算出する(第3工程:ステップS03)。次いで、ステップS03で求めた配管内面12の温度を境界条件として、熱伝導方程式を解くことにより、配管内部13の温度変化を算出する(第4工程:ステップS04)。次いで、この配管内部13の温度変化を用いて熱応力解析を行うことにより、評価対象部位に作用する熱応力を算出する(第5工程:ステップS05)。そして、ステップS05で求めた熱応力に基づいて評価対象部位の熱疲労損傷計算を行う(第6工程:ステップS06)。 FIG. 2 is a flowchart illustrating the procedure of the thermal fatigue evaluation method of the first embodiment. In the thermal fatigue evaluation method of the first embodiment, first, the time change of the pipe inner surface 12 and the time change of the temperature of the pipe outer surface 14 are expressed in a form developed by Fourier series so as to satisfy the heat conduction equation. and by comparing the respective Fourier series expansion terms of the time variation of the external surface temperature, determined a coefficient ratio M j and the phase delay [Delta] [theta] j of the Fourier series expansion terms, coefficient ratio M j and phase for each Fourier series expansion terms A database for the delay Δθ j is created in advance (first step: step S01). Next, the temperature of the pipe outer surface 14 is measured by the temperature sensor 17 (second step: step S02). Next, the measured temperature of the pipe outer surface 14 is expanded by Fourier series, and the time change of the temperature of the pipe inner surface 12 is calculated by the inverse analysis method using the coefficient ratio M j and the phase delay Δθ j obtained in step S01. (Third step: Step S03). Next, the temperature change of the pipe interior 13 is calculated by solving the heat conduction equation using the temperature of the pipe inner surface 12 obtained in step S03 as a boundary condition (fourth step: step S04). Next, thermal stress analysis is performed using the temperature change in the pipe interior 13 to calculate thermal stress acting on the evaluation target part (fifth step: step S05). And based on the thermal stress calculated | required by step S05, the thermal fatigue damage calculation of the evaluation object site | part is performed (6th process: step S06).

上記の第1工程〜第6工程(ステップS01〜S06)は、コンピュータと、そのコンピュータに実行させるプログラムによって実現することができ、そのプログラムは、コンピュータが読み取り可能なハードディスク、フレキシブルディスク(FD)、CD−ROM、MO、DVDなどの記録媒体に格納することができる。また、このプログラムは、インターネットなどのネットワークを介して配布することができる。   The first to sixth steps (steps S01 to S06) can be realized by a computer and a program executed by the computer. The program includes a computer-readable hard disk, a flexible disk (FD), It can be stored in a recording medium such as a CD-ROM, MO, or DVD. This program can be distributed via a network such as the Internet.

以下では、まず、実施例1の熱疲労評価方法の概念、及び、各工程で算出するデータの内容について説明する。   Below, first, the concept of the thermal fatigue evaluation method of Example 1 and the contents of data calculated in each step will be described.

(第1工程:係数比及び位相遅れの算出)
実施例1では、配管10を無限平板とみなし、且つ、配管内面12の全体が一様な温度であり、さらに配管外面14の全体も一様な温度であるとみなして、一次元の数理解を算出する。
(First step: calculation of coefficient ratio and phase delay)
In the first embodiment, the pipe 10 is regarded as an infinite flat plate, the entire pipe inner surface 12 is at a uniform temperature, and the entire pipe outer surface 14 is also at a uniform temperature. Is calculated.

配管内部の温度Tをeat+bxの形で表せるとする。ここで、xは壁面に垂直な方向にとった座標で、配管内面12でx=0、配管外面14でx=h(h:板厚)である。これを熱伝導方程式に代入して以下の(数1)式が得られる。この(数1)式に、x=0およびx=hを代入すると、以下の(数2)、(数3)式のように配管内外面の温度が表される。

Figure 2011158362
Figure 2011158362
Figure 2011158362
It is assumed that the temperature T inside the pipe can be expressed in the form of e at + bx . Here, x is a coordinate taken in a direction perpendicular to the wall surface, and x = 0 on the pipe inner surface 12 and x = h (h: plate thickness) on the pipe outer surface 14. By substituting this into the heat conduction equation, the following equation (1) is obtained. By substituting x = 0 and x = h into this (Equation 1), the temperature of the inner and outer surfaces of the pipe is expressed as in the following (Equation 2) and (Equation 3).
Figure 2011158362
Figure 2011158362
Figure 2011158362

次に、(数2)、(数3)式において内外面のフーリエ級数展開した各項のj番目同士を比較することにより係数の比を求める。その結果、求めたj番目フーリエ級数項の係数の比(係数比)をM(j=1,2,・・)とする。ここで係数比Mは、図1に示すように、配管内面12での温度の振動15が配管内部13を通じて配管外面14に伝わり、配管外面14の温度の振動16になったとき、振幅が1/Mに減衰していることを表しており、係数比Mjの逆数は減衰率に対応する。 Next, the ratio of the coefficients is obtained by comparing j-ths of the terms in the Fourier series expansion of the inner and outer surfaces in the formulas (2) and (3). As a result, the ratio of the obtained j-th Fourier series term coefficient (coefficient ratio) is M j (j = 1, 2,...). Here, as shown in FIG. 1, the coefficient ratio M j is such that when the temperature vibration 15 on the pipe inner surface 12 is transmitted to the pipe outer surface 14 through the pipe inner 13 and becomes the temperature vibration 16 of the pipe outer surface 14, the amplitude increases. 1 / M j , and the reciprocal of the coefficient ratio M j corresponds to the attenuation rate.

さらに、(数2)、(数3)式において内外面のフーリエ級数展開した各項のj番目同士を比較することにより位相遅れΔθを求めておく。ここで、Δθは、配管内面12での温度の振動15が位相Δθだけ遅れて配管外面14に伝わり、配管外面14の温度の振動16になることを表している。上記の係数比M及び位相遅れΔθは、下記の(数4)式で表される。

Figure 2011158362
Further, the phase delay Δθ j is obtained by comparing the j-ths of the terms in the Fourier series expansion of the inner and outer surfaces in the equations (2) and (3). Here, Δθ j indicates that the temperature vibration 15 on the pipe inner surface 12 is transmitted to the pipe outer surface 14 with a delay of the phase Δθ j and becomes the temperature vibration 16 of the pipe outer surface 14. The coefficient ratio M j and the phase delay Δθ j are expressed by the following equation (Equation 4).
Figure 2011158362

以上の方法により求めた係数比Mj及び位相遅れΔθjのデータベースを構築しておく。ここで、データベースは、第1工程の演算を実行するコンピュータにおけるハードディスク等の情報記録媒体、あるいは、コンピュータ外部に設けられた情報記録媒体に構築される。 A database of the coefficient ratio M j and the phase delay Δθ j obtained by the above method is constructed. Here, the database is constructed on an information recording medium such as a hard disk in a computer executing the calculation of the first step, or an information recording medium provided outside the computer.

(第2工程:配管外面温度の測定)
図1に示すように、温度センサ17を用いて、配管外面14の一箇所の温度の時間変化を測定する。温度センサ17の検出信号は、解析装置20(図3を参照)に入力される。
(2nd step: Measurement of pipe outer surface temperature)
As shown in FIG. 1, a temperature sensor 17 is used to measure a temporal change in temperature at one place on the pipe outer surface 14. The detection signal of the temperature sensor 17 is input to the analysis device 20 (see FIG. 3).

(第3工程:配管内面温度の算出)
次に、第2工程で測定した配管外面14の測定温度から配管内面12の温度の時間変化を推定する逆解析手法について説明する。第2工程で測定した配管外面14の測定温度Toutをフーリエ級数で展開した結果を、下記の(数5)式で表す。

Figure 2011158362
(Third step: Calculation of pipe inner surface temperature)
Next, an inverse analysis method for estimating the time change of the temperature of the pipe inner surface 12 from the measured temperature of the pipe outer surface 14 measured in the second step will be described. The result of developing the measured temperature Tout of the pipe outer surface 14 measured in the second step by Fourier series is expressed by the following equation (Equation 5).
Figure 2011158362

そして、上述したデータベースに格納されている係数比Mj及び位相遅れΔθjを用いて、上記(数5)式の各フーリエ級数展開項の係数aj、bjに係数比Mを乗ずる操作、及び、上記(数5)式の各フーリエ級数展開項の位相をΔθjずらす操作を行う。すると、配管内面12の温度の時間変化Tinは、下記の(数6)式のように表される。

Figure 2011158362
Then, using the coefficient ratio M j and the phase delay Δθ j stored in the above-described database, an operation of multiplying the coefficients a j and b j of each Fourier series expansion term of the above equation (5) by the coefficient ratio M j. , And the operation of shifting the phase of each Fourier series expansion term in the above equation (5) by Δθ j . Then, the time change Tin of the temperature of the pipe inner surface 12 is expressed as the following (Equation 6).
Figure 2011158362

このように、配管外面14及び配管内面12の温度の時間変化をフーリエ級数で展開した形式で表現し、フーリエ級数の各項ごとに独立して係数比Mjと位相遅れΔθjについてのデータベースを作成しておき、その値を用いて、配管外面14の測定温度から配管内面12の温度を推定する逆解析を行うようにしたので、従来のような膨大な計算を必要とせず、短時間で且つ精度よく配管内面12の温度の時間変化を推定することができる。 Thus, the time change of the temperature of the pipe outer surface 14 and the pipe inner surface 12 is expressed in a form developed by Fourier series, and a database about the coefficient ratio M j and the phase delay Δθ j is independently provided for each term of the Fourier series. Since it was prepared and the inverse analysis was performed to estimate the temperature of the pipe inner surface 12 from the measured temperature of the pipe outer surface 14 using the value, it does not require enormous calculation as in the past, and in a short time And the time change of the temperature of the pipe inner surface 12 can be estimated with high accuracy.

(第4工程:配管内部温度の算出)
上記第3工程により算出した配管内面12の温度の時間変化を境界条件として、熱伝導方程式を数値計算により解き、配管内部13の各点における温度の時間変化を求める。
(4th step: Calculation of pipe internal temperature)
Using the time change of the temperature of the pipe inner surface 12 calculated in the third step as a boundary condition, the heat conduction equation is solved by numerical calculation, and the time change of the temperature at each point inside the pipe 13 is obtained.

(第5工程:熱応力算出工程)
上記の第4工程で求めた配管内部13の各点における温度の時間変化を用いて、配管10に発生する熱応力の分布と時間変化を算出する。熱応力分布と時間変化は、下記の(数7)式から求めることができる。数値計算によって内面のステップ的な温度変化に対する応力の変化を、有限要素法や有限差分法等を用いて算出しておき、内面の温度変化量に応じて、重ね合わせて応力変化を得る。

Figure 2011158362
(Fifth step: thermal stress calculation step)
The distribution and temporal change of the thermal stress generated in the pipe 10 are calculated using the temporal change in temperature at each point in the pipe interior 13 obtained in the fourth step. The thermal stress distribution and time change can be obtained from the following equation (7). A change in stress with respect to a stepwise temperature change of the inner surface is calculated by numerical calculation using a finite element method, a finite difference method, or the like, and the stress change is obtained by superimposing according to the temperature change amount of the inner surface.
Figure 2011158362

(第6工程:熱疲労損傷計算工程)
上記の第5工程で求めた熱応力の時間変化に基づいて、評価対象部位の熱疲労損傷計算を行う。本実施例では、熱疲労損傷計算の一例として、以下に説明するように疲労累積損傷係数を求める。
(6th process: Thermal fatigue damage calculation process)
Based on the temporal change of the thermal stress obtained in the fifth step, the thermal fatigue damage calculation of the evaluation target part is performed. In this embodiment, as an example of thermal fatigue damage calculation, a fatigue cumulative damage coefficient is obtained as described below.

まず、配管10に発生する熱応力σと、熱応力が配管10に何回生じた場合に配管10が疲労限界に達したとみなすかという疲労限界回数Nとの関係を予め求めておく。例えば、10Mpa〜20MPaの熱応力が配管10に加わった場合の疲労限界回数Nmax1、20Mpa〜30Mpaの熱応力が配管10に加わった場合の疲労限界回数Nmaxを求めておく。同様に30MPa以上のすべての応力についても疲労限界回数を求めておく。 First, a relationship between the thermal stress σ generated in the pipe 10 and the fatigue limit number N of how many times the thermal stress is generated in the pipe 10 is considered to have reached the fatigue limit is obtained in advance. For example, the fatigue limit number Nmax 1 when a thermal stress of 10 Mpa to 20 MPa is applied to the pipe 10 and the fatigue limit number Nmax 2 when a thermal stress of 20 Mpa to 30 Mpa is applied to the pipe 10 are obtained. Similarly, the fatigue limit number is obtained for all stresses of 30 MPa or more.

そして、上記の第5工程で求めた熱応力の時間変化から、10Mpa〜20MPaの応力が加わった回数N1、20Mpa〜30Mpaの熱応力が加わった回数Nを求める。同様に、30Mpa以上の熱応力についても回数を求める。次に、配管10の所定部位における疲労累積損傷係数Uを、下記の(数8)式から求める。

Figure 2011158362
Then, the number of times N 1 when a stress of 10 Mpa to 20 MPa is applied and the number of times N 2 where a thermal stress of 20 Mpa to 30 Mpa is applied are obtained from the temporal change of the thermal stress obtained in the fifth step. Similarly, the number of times is obtained for a thermal stress of 30 Mpa or more. Next, a fatigue cumulative damage coefficient U f at a predetermined portion of the pipe 10 is obtained from the following equation (8).
Figure 2011158362

そして、Uf<1であれば、配管10の所定部位の熱疲労度は限界に達しておらず、配管10を交換もしくは修理をする必要はないと判定する。一方、Uf>1であれば、配管10の所定部位の熱疲労度が限界に達しており、配管10を交換もしくは修理をする必要があると判定する。 If U f <1, it is determined that the thermal fatigue level of the predetermined portion of the pipe 10 has not reached the limit, and it is not necessary to replace or repair the pipe 10. On the other hand, if U f > 1, it is determined that the thermal fatigue level of the predetermined part of the pipe 10 has reached the limit, and the pipe 10 needs to be replaced or repaired.

次に、上述した熱疲労評価方法を実行する解析装置について説明する。図3は、上述した熱疲労評価方法を実行する解析装置20の構成の一例を示したブロック図である。図3に例示される解析装置20は、パーソナルコンピュータ等の演算装置にプログラムを読み込ませることによって具現化されるもので、係数比及び位相遅れ算出部21と、配管外面温度測定部22と、配管内面温度算出部23と、配管内部温度算出部24と、熱応力算出部25と、疲労累積損傷係数算出部26とを備えている。係数比及び位相遅れ算出部21は、上述した係数比Mj及び位相遅れΔθjの各データを格納するデータベース27を備えている。 Next, an analysis apparatus that executes the above-described thermal fatigue evaluation method will be described. FIG. 3 is a block diagram showing an example of the configuration of the analysis apparatus 20 that executes the above-described thermal fatigue evaluation method. The analysis device 20 illustrated in FIG. 3 is realized by causing a calculation device such as a personal computer to read a program. The coefficient ratio and phase lag calculation unit 21, the pipe outer surface temperature measurement unit 22, and the pipe An internal surface temperature calculation unit 23, a pipe internal temperature calculation unit 24, a thermal stress calculation unit 25, and a fatigue cumulative damage coefficient calculation unit 26 are provided. The coefficient ratio and phase delay calculation unit 21 includes a database 27 that stores the data of the coefficient ratio M j and the phase delay Δθ j described above.

係数比及び位相遅れ算出部21は、上述した第1工程の演算処理を行うものである。具体的には、係数比及び位相遅れ算出部21は、上記(数4)式から係数比Mj及び位相遅れΔθjを算出し、算出した係数比Mj及び位相遅れΔθjをデータベース27に格納する。 The coefficient ratio and phase lag calculation unit 21 performs the arithmetic processing of the first step described above. Specifically, the coefficient ratio and phase delay calculation unit 21 calculates the coefficient ratio M j and the phase delay Δθ j from the above equation (4), and stores the calculated coefficient ratio M j and the phase delay Δθ j in the database 27. Store.

配管外面温度測定部22は、上述した第2工程を行うものであり、温度センサ17からの検出信号に基づき配管外面14の温度を測定する。   The pipe outer surface temperature measurement unit 22 performs the second step described above, and measures the temperature of the pipe outer surface 14 based on a detection signal from the temperature sensor 17.

配管内面温度算出部23は、上述した第3工程の演算処理を行うものである。具体的には、配管内面温度算出部23は、配管外面温度測定部22から配管外面14の測定温度データを受け取り、この配管外面14の測定温度データをフーリエ級数で展開して上記(数5)式を作成する。そして、配管内面温度算出部23は、データベース27に格納された係数比Mj及び位相遅れΔθjとを用いて、(数5)式における各フーリエ級数展開項の係数aj、bjに係数比Mを乗ずる処理、及び、(数5)式における各フーリエ級数展開項の位相をΔθjずらす処理を行うことにより、上記(数6)式、すなわち、配管内面12の温度の時間変化Tinを算出する。 The pipe inner surface temperature calculation unit 23 performs the arithmetic process of the third step described above. Specifically, the pipe inner surface temperature calculation unit 23 receives the measurement temperature data of the pipe outer surface 14 from the pipe outer surface temperature measurement unit 22, expands the measurement temperature data of the pipe outer surface 14 in Fourier series, and the above (Formula 5) Create an expression. Then, the pipe inner surface temperature calculation unit 23 uses the coefficient ratio M j and the phase delay Δθ j stored in the database 27 to calculate the coefficients a j and b j of the Fourier series expansion terms in the equation (5). By performing the process of multiplying by the ratio M j and the process of shifting the phase of each Fourier series expansion term in Expression (5) by Δθ j , the above-mentioned Expression (6), that is, the temperature change Tin of the pipe inner surface 12 is obtained. Is calculated.

配管内部温度算出部24は、上述した第4工程の演算処理を行うものである。具体的には、配管内部温度算出部24は、配管内面温度算出部23から配管内面温度の時間変化のデータを受け取り、このデータを境界条件として、熱伝導方程式を有限要素法等の数値計算により解くことにより、熱配管内部13の各点における温度の時間変化を算出する。   The pipe internal temperature calculation unit 24 performs the arithmetic process of the fourth step described above. Specifically, the pipe internal temperature calculation unit 24 receives data of time variation of the pipe inner surface temperature from the pipe inner surface temperature calculation unit 23, and uses this data as a boundary condition to calculate the heat conduction equation by numerical calculation such as a finite element method. By solving, the time change of the temperature at each point inside the heat pipe 13 is calculated.

熱応力算出部25は、上述した第5工程の演算処理を行うものであり、配管内部温度算出部24から配管内部温度の時間変化のデータを受け取り、このデータを用いて、上記(数7)式から配管10に発生する熱応力の時間変化を算出する。   The thermal stress calculation unit 25 performs the above-described calculation process of the fifth step. The thermal stress calculation unit 25 receives data of time variation of the pipe internal temperature from the pipe internal temperature calculation unit 24, and uses this data to calculate the above (Equation 7). The time change of the thermal stress generated in the pipe 10 is calculated from the equation.

疲労累積損傷係数算出部26は、上述した第6工程の演算処理を行うものであり、熱応力算出部25から熱応力データを受け取り、この熱応力データを用いて、上記(数8)式から配管10の所定部位における疲労累積損傷係数Uを算出する。 The fatigue cumulative damage coefficient calculation unit 26 performs the calculation process of the sixth step described above, receives the thermal stress data from the thermal stress calculation unit 25, and uses the thermal stress data, the above equation (8) A fatigue cumulative damage coefficient U f at a predetermined portion of the pipe 10 is calculated.

なお、解析装置20の各部において算出した値は、ディスプレイやプリンタ等の出力手段(図示せず)を通じて出力を行うことが可能である。   The values calculated in each part of the analysis device 20 can be output through output means (not shown) such as a display or a printer.

以上説明したように、実施例1の熱疲労評価方法では、まず、配管内面12の温度の時間変化及び配管外面14の温度の時間変化をフーリエ級数で展開した形式で表し、フーリエ級数の各展開項ごとに係数比Mj及び位相遅れΔθjについてのデータベースを予め作成する。そして、配管10の外面温度を温度センサで測定し、この外面測定温度をフーリエ級数で展開し、当該外面測定温度の各フーリエ級数展開項の係数に係数比Mjを乗じるとともに、各フーリエ級数展開項の位相をΔθjずらすことにより、配管内面12の温度の時間変化を推定する。このような手順を行うことで、従来のような膨大な計算を必要とせず、配管内面12の温度変化を短時間で且つ精度よく推定することが可能となる。その結果、配管10の熱疲労評価を従来に比して効率的に行うことが可能となる。 As described above, in the thermal fatigue evaluation method of the first embodiment, first, the time change of the temperature of the pipe inner surface 12 and the time change of the temperature of the pipe outer surface 14 are expressed in a form developed by Fourier series, and each development of the Fourier series is expressed. A database for the coefficient ratio M j and the phase delay Δθ j is created in advance for each term. Then, the outer surface temperature of the pipe 10 is measured by a temperature sensor, the outer surface measured temperature is expanded by a Fourier series, the coefficient of each Fourier series expansion term of the outer surface measured temperature is multiplied by the coefficient ratio M j , and each Fourier series expansion is performed. By shifting the phase of the term by Δθ j , the time change of the temperature of the pipe inner surface 12 is estimated. By performing such a procedure, it is possible to accurately estimate the temperature change of the pipe inner surface 12 in a short time without requiring a huge calculation as in the prior art. As a result, the thermal fatigue evaluation of the pipe 10 can be performed more efficiently than before.

[実施例2]
次に、実施例2の熱疲労評価方法について説明する。なお、実施例2の熱疲労評価方法の手順は上述した実施例1と同じであるため、図2のフローチャートを使用して説明する。また、実施例2の熱疲労評価方法を実行する解析装置は、図3に示した実施例1の解析装置20と同じ構成であるため、図3の解析装置20を使用して説明する。
[Example 2]
Next, the thermal fatigue evaluation method of Example 2 will be described. In addition, since the procedure of the thermal fatigue evaluation method of Example 2 is the same as that of Example 1 mentioned above, it demonstrates using the flowchart of FIG. Moreover, since the analyzer which performs the thermal fatigue evaluation method of Example 2 is the same structure as the analyzer 20 of Example 1 shown in FIG. 3, it demonstrates using the analyzer 20 of FIG.

上述した原子力プラントには、主配管から分岐する分岐管が多数設けられている。例えば主配管と分岐間の結合部など高温水と低温水とが合流する部位には、高温水と低温水の熱成層(高温流体と低温流体との間に形成される境界層)が形成され、この熱成層の界面の位置が分岐管内で時間とともに変動することが起こる。このため、配管内面の温度は一様ではなく、配管の中心軸線に垂直な断面において、配管周方向に温度分布が生じる。このような場合において、配管内面での周方向の温度分布を推定するために、以下の方法を適用する。   The nuclear power plant described above is provided with a number of branch pipes that branch from the main pipe. For example, thermal stratification (boundary layer formed between the high-temperature fluid and the low-temperature fluid) is formed at the portion where the high-temperature water and low-temperature water merge, such as the joint between the main pipe and the branch. In addition, the position of the interface of this thermal stratification varies with time in the branch pipe. For this reason, the temperature of the pipe inner surface is not uniform, and a temperature distribution is generated in the pipe circumferential direction in a cross section perpendicular to the central axis of the pipe. In such a case, the following method is applied to estimate the temperature distribution in the circumferential direction on the inner surface of the pipe.

(第1工程:係数比及び位相遅れの算出)
図4は、配管10を中心軸線に直交する面で切断した断面図である。図示は省略するが、配管10の中空部11には流体が流れているものとする。また、図4中の複数の矢印は、配管内面12の任意の点における温度が、配管内部13を通じて配管外面14の複数の点に伝わる様子を概念的に示している。
(First step: calculation of coefficient ratio and phase delay)
FIG. 4 is a cross-sectional view of the pipe 10 cut along a plane orthogonal to the central axis. Although illustration is omitted, it is assumed that a fluid flows in the hollow portion 11 of the pipe 10. In addition, the plurality of arrows in FIG. 4 conceptually show that the temperature at an arbitrary point on the pipe inner surface 12 is transmitted to a plurality of points on the pipe outer surface 14 through the pipe interior 13.

この実施例2では、配管10の中心軸線に垂直な断面内において、配管内面12で周方向に温度分布をもち、配管10の長さ方向(軸線に平行な方向)の温度分布は一様であると仮定する。また、配管外面14も同様に、配管10の中心軸線に垂直な断面において、配管外面14で周方向に温度分布をもち、配管10の長さ方向(軸線に平行な方向)の温度分布は一様であると仮定する。この場合、配管外面14での各点での温度は、配管内面12におけるすべての点の温度によって決まる。   In the second embodiment, in the cross section perpendicular to the central axis of the pipe 10, the pipe inner surface 12 has a temperature distribution in the circumferential direction, and the temperature distribution in the length direction (direction parallel to the axis) of the pipe 10 is uniform. Assume that there is. Similarly, the pipe outer surface 14 has a temperature distribution in the circumferential direction on the pipe outer surface 14 in a cross section perpendicular to the central axis of the pipe 10, and the temperature distribution in the length direction of the pipe 10 (direction parallel to the axis) is one. Assuming that In this case, the temperature at each point on the pipe outer surface 14 is determined by the temperatures of all points on the pipe inner surface 12.

図4に示すように、配管10の中心軸線に垂直な断面内において、配管外面14及び配管内面12の各周方向に複数の点を設ける。配管外面14のn箇所の点(温度測定点)をB(p=1,2,・・n)とし、それぞれの点での温度をTout(p=1,2,・・n)とする。さらに、配管内面12のm箇所の点(温度推定点)をA(q=1,2,・・m)とし、それぞれの点での温度をTinq(q=1,2,・・m)とする。 As shown in FIG. 4, a plurality of points are provided in each circumferential direction of the pipe outer surface 14 and the pipe inner surface 12 in a cross section perpendicular to the central axis of the pipe 10. The n points (temperature measurement points) on the pipe outer surface 14 are B p (p = 1, 2,... N), and the temperature at each point is T out p (p = 1, 2,... N). To do. Further, m points (temperature estimation points) on the pipe inner surface 12 are A q (q = 1, 2,... M), and the temperature at each point is Tin q (q = 1, 2,. ).

次に、上述した実施例1における第1工程(係数比及び位相遅れ算出工程)で適用した方法を拡張し、配管内面12の点Aqにおける温度の初期値からの増加量が、下記の(数9)式で表わすようにフーリエ級数で展開した形式で変化していると仮定する。

Figure 2011158362
Next, the method applied in the first step (coefficient ratio and phase lag calculation step) in Example 1 described above is expanded, and the amount of increase from the initial value of the temperature at the point A q of the pipe inner surface 12 is the following ( It is assumed that it is changed in a form expanded by a Fourier series as expressed by equation (9).
Figure 2011158362

そして、上記(数9)式を境界条件として熱伝導方程式を数値計算により解き、配管外面14の点Bにおける温度の時間変化を求める。そして、求めた配管外面14における温度の時間変化をフーリエ級数で展開した結果、下記の(数10)式で表せたとする。

Figure 2011158362
Then, the equation of equation (9) is used as a boundary condition to solve the heat conduction equation by numerical calculation, and the time change in temperature at the point B p on the pipe outer surface 14 is obtained. Then, as a result of developing the time change of the temperature at the pipe outer surface 14 by Fourier series, it can be expressed by the following equation (10).
Figure 2011158362

次に、(数9)式における点Aをフーリエ級数展開したj番目の項と、(数10)式における点Bをフーリエ級数展開したj番目の項とを比較することにより係数の比を求める。その結果、求めたj番目フーリエ級数項の係数の比(係数比)をMjpq(j=1,2,・・)とする。ここで係数比Mjpqは、配管内面12での点Aでの温度の振動が配管内部13を通じて配管外面14に伝わり、配管外面14の点Bでの温度の振動になったとき、振幅が1/Mjpqに減衰していることを表しており、係数比Mjpqの逆数は減衰率Rjpqに対応する。 Next, the ratio of the coefficients is obtained by comparing the j-th term obtained by Fourier series expansion of the point A q in the equation (9) and the j-th term obtained by Fourier series expansion of the point B p in the equation (10). Ask for. As a result, the ratio of the obtained j-th Fourier series term coefficient (coefficient ratio) is M jpq (j = 1, 2,...). Here, the coefficient ratio M jpq has an amplitude when the vibration of the temperature at the point A q on the pipe inner surface 12 is transmitted to the pipe outer surface 14 through the pipe inner 13 and becomes the temperature vibration at the point B p on the pipe outer surface 14. Is attenuated to 1 / M jpq , and the reciprocal of the coefficient ratio M jpq corresponds to the attenuation rate R jpq .

(数9)式と(数10)式とを用いて、減衰率Rjpq及び位相遅れΔθjpqを求める。さらに、減衰率Rjpq及び位相遅れΔθjpqとを用いて、複素係数Hjpqを下記の(数11)式で求める。

Figure 2011158362
The attenuation rate R jpq and the phase delay Δθ jpq are obtained using the formula (9) and the formula (10). Further, using the attenuation rate R jpq and the phase delay Δθ jpq , the complex coefficient H jpq is obtained by the following equation (11).
Figure 2011158362

そして、以上の方法により求めた複素係数Hjpqを、図3に示した解析装置20の記憶領域に格納し、データベース27を構築しておく。 Then, the complex coefficient H jpq obtained by the above method is stored in the storage area of the analysis apparatus 20 shown in FIG.

(第2工程:配管外面温度の測定)
図4に示すように、配管外面14の各点B(p=1,2,・・n)には温度センサ17が設けられている。そして、各温度センサ17により点B(p=1,2,・・n)の温度の時間変化を測定する。
(2nd step: Measurement of pipe outer surface temperature)
As shown in FIG. 4, a temperature sensor 17 is provided at each point B p (p = 1, 2,... N) on the pipe outer surface 14. And each temperature sensor 17 measures the time change of the temperature of the point B p (p = 1, 2,... N).

(第3工程:配管内面温度の算出)
上記の第2工程で求めた配管外面14の点Bでの測定温度をフーリエ級数で展開して、下記の(数12)式で表す。

Figure 2011158362
(Third step: Calculation of pipe inner surface temperature)
The temperature measured at the point B p of an outer surface of a pipe 14 obtained in the above second step to expand in Fourier series, expressed by equation (12) below.
Figure 2011158362

一方、配管内面12の点Aqの温度変化はフーリエ級数で展開して、下記の(数13)式で表されると仮定する。

Figure 2011158362
On the other hand, it is assumed that the temperature change at the point A q on the pipe inner surface 12 is expanded by a Fourier series and expressed by the following formula (13).
Figure 2011158362

配管内面12の点Aqのすべての点(q=1〜m)での温度の時間変化は、配管内面14の点Bの温度変化に表れることより、(数12)式はデータベース27に格納されている複素係数Hjpqを用い、下記の(数14)式で表される。

Figure 2011158362
Since the time change in temperature at all points (q = 1 to m) of the point A q on the pipe inner surface 12 appears in the temperature change at the point B p on the pipe inner surface 14, equation (12) is expressed in the database 27. Using the stored complex coefficient H jpq , it is expressed by the following equation (14).
Figure 2011158362

これは配管内面12の点Aqの全ての点のフーリエ級数の係数と配管外面14の点Bpの全ての点のフーリエ級数の係数との連立一次方程式になる。ここで、(数12)式と(数14)式のフーリエ級数の係数の関係は周波数領域で独立して算出することが可能であるので、j番目のフーリエ級数の係数だけの連立一次方程式になる。 This is a simultaneous linear equation of the coefficients of the Fourier series at all points A q on the pipe inner surface 12 and the coefficients of the Fourier series at all points B p on the pipe outer surface 14. Here, since the relationship between the coefficients of the Fourier series in the equations (12) and (14) can be calculated independently in the frequency domain, the simultaneous linear equations including only the coefficients of the j-th Fourier series are obtained. Become.

そこで、ΔToutjpをj番目のフーリエ級数を複素数(ajp+i・bjp)とし、ΔTinjqをj番目のフーリエ級数を複素数(cjq+i・djq)とすると、(数14)式は、下記の(数15)式のような形式で表すことができる。

Figure 2011158362
Therefore, if ΔTout jp is the j-th Fourier series as a complex number (a jp + i · b jp ) and ΔTin jq is the j-th Fourier series as a complex number (c jq + i · d jq ), Equation 14 Can be expressed in the form of the following (Equation 15).
Figure 2011158362

ここで、行列の成分Hjpq(p=1,2,・・n、q=1,2,・・m)は複素数であり、RjpqとΔθjpqとに相当する情報をもつ。そして、上記の第1工程(ステップS01)においてMjpq及びΔθjpqからなるデータベースを予め作成する工程は、Hjpqからなるデータベースを予め作成しておく工程に対応する。 Here, the matrix component H jpq (p = 1, 2,... N, q = 1, 2,... M ) is a complex number and has information corresponding to R jpq and Δθ jpq . The step of creating a database consisting of M jpq and Δθ jpq in advance in the first step (step S01) corresponds to the step of creating a database consisting of H jpq in advance.

ここで、配管外面14の点Bにおける温度は、配管内面12のすべての点における温度により決定されるが、Hjpqは、配管外面14の点Bpにおける温度の決定に、配管内面12の点Aqにおける温度が寄与する割合(クロスターム)を表わす量である。 Here, the temperature at the point B p on the pipe outer surface 14 is determined by the temperatures at all points on the pipe inner surface 12, but H jpq is used to determine the temperature at the point B p on the pipe outer surface 14. This is a quantity representing the ratio (cross term) to which the temperature at the point A q contributes.

さらに、上記の(数15)式を用いて、配管内面12の温度を以下のように求める。まず、(数15)式の行列Hを、対角成分のみを有する行列と非対角成分のみを有する行列とに分ける。

Figure 2011158362
Furthermore, the temperature of the pipe inner surface 12 is obtained as follows using the above equation (15). First, the matrix H of Equation (15) is divided into a matrix having only a diagonal component and a matrix having only a non-diagonal component.
Figure 2011158362

上記の(数16)式を下記の(数17)式のように変形する。

Figure 2011158362
The above equation (16) is transformed into the following equation (17).
Figure 2011158362

はじめにΔTinjqとして、適切な初期値を仮定する。そして、この初期値と測定で求めたΔToutjpとを(数17)式の右辺に代入し、左辺のΔTinjqを求める。求めたΔTinjqと、測定で求めたΔToutjpとを(数17)式の右辺に再び代入し、左辺のΔTinjqを求める。これを繰り返して、ΔTinjqが収束したことが確認されたならば、そのときの値をΔTinjqとする。通常は、上記操作を4、5回繰り返すことで、十分に収束する。 First , an appropriate initial value is assumed as ΔTin jq . Then, the initial value and ΔTout jp obtained by measurement are substituted into the right side of Equation (17) to obtain ΔTin jq on the left side. The obtained ΔTin jq and ΔTout jp obtained by the measurement are substituted again in the right side of Equation (17) to obtain ΔTin jq on the left side. If it is confirmed that ΔTin jq has converged by repeating this, the value at that time is set to ΔTin jq . Normally, the above operation is repeated 4 or 5 times to achieve sufficient convergence.

このような方法により、配管10の軸線に垂直な断面内において周方向に温度分布がある場合であっても、配管内面12の温度分布と温度変化を、短時間で且つ精度よく推定することが可能となる。   By such a method, even if there is a temperature distribution in the circumferential direction in a cross section perpendicular to the axis of the pipe 10, the temperature distribution and temperature change of the pipe inner surface 12 can be estimated in a short time with high accuracy. It becomes possible.

なお、配管10の軸線に垂直な断面内において配管内面12で周方向に温度分布をもち、さらに、配管10の長さ方向(軸線に平行な方向)にも温度分布を持つ場合には、上記の(数15)式を拡張し、ΔToutjp、ΔTinjqを2次元の行列に、また、Hjpqを3次元のテンソルに拡張すればよい。 If the pipe inner surface 12 has a temperature distribution in the circumferential direction in a cross section perpendicular to the axis of the pipe 10 and further has a temperature distribution in the length direction (direction parallel to the axis) of the pipe 10, (Equation 15) may be expanded to expand ΔTout jp and ΔTin jq to a two-dimensional matrix and H jpq to a three-dimensional tensor.

(第4工程:配管内部温度の算出)
上記の第3工程により配管内面12の温度分布と温度の時間変化を求めた後、求めた配管内面12の温度分布と時間変化を配管内面12における境界条件として、熱伝導方程式を数値計算により解き、配管内部13の各点における時間変化を求める。
(4th step: Calculation of pipe internal temperature)
After obtaining the temperature distribution of the pipe inner surface 12 and the time change of the temperature in the third step, the thermal conduction equation is solved by numerical calculation using the obtained temperature distribution and time change of the pipe inner surface 12 as boundary conditions in the pipe inner surface 12. The time change at each point in the pipe interior 13 is obtained.

(第5工程:熱応力算出)
上記の第4工程で求めた配管内部13の各点における温度の時間変化を用いて、配管10に発生する熱応力の分布と時間変化を算出する。熱応力分布と時間変化は、上記の(数6)式を用いる。
(5th step: thermal stress calculation)
The distribution and temporal change of the thermal stress generated in the pipe 10 are calculated using the temporal change in temperature at each point in the pipe interior 13 obtained in the fourth step. For the thermal stress distribution and the change with time, the above equation (6) is used.

(第6工程:熱疲労損傷計算)
上記の第5工程で求めた熱応力の時間変化に基づいて、評価対象部位の熱疲労損傷計算を行う。熱疲労損傷計算は、実施例1と同様にして、配管10が疲労限界に達しているか否かを判定する。疲労累積損傷係数Ufは、実施例1で説明した(数7)式を用いて算出する。
(6th step: Thermal fatigue damage calculation)
Based on the temporal change of the thermal stress obtained in the fifth step, the thermal fatigue damage calculation of the evaluation target part is performed. The thermal fatigue damage calculation is performed in the same manner as in Example 1 to determine whether or not the pipe 10 has reached the fatigue limit. The cumulative fatigue damage coefficient U f is calculated using the equation (Equation 7) described in the first embodiment.

以上の実施例2における第1工程〜第6工程(ステップS01〜S06)は、コンピュータと、そのコンピュータに実行させるプログラムによって実現することができ、そのプログラムは、コンピュータが読み取り可能なハードディスク、フレキシブルディスク(FD)、CD−ROM、MO、DVDなどの記録媒体に格納することができる。また、このプログラムは、インターネットなどのネットワークを介して配布することができる。   The first to sixth steps (steps S01 to S06) in the second embodiment can be realized by a computer and a program executed by the computer. The program can be a computer-readable hard disk or flexible disk. (FD), CD-ROM, MO, DVD and the like can be stored. This program can be distributed via a network such as the Internet.

次に、実施例2の熱疲労評価方法を実行する解析装置について説明する。なお、実施例2の熱疲労評価方法を実行する解析装置の構成は、上述した実施例1で使用する解析装置20と同じ構成であるため、以下では図3を用いて説明する。実施例2の熱疲労評価方法を実行する解析装置20は、実施例1と同様に、係数比及び位相遅れ算出部21と、配管外面温度測定部22と、配管内面温度算出部23と、配管内部温度算出部24と、熱応力算出部25と、疲労累積損傷係数算出部26とを備えている。係数比及び位相遅れ算出部21は、上述した係数比Mjpq及び位相遅れΔθjpqからなる複素係数Hjpqの各データを格納する記憶領域であるデータベース27を備えている。 Next, an analysis apparatus that executes the thermal fatigue evaluation method of Example 2 will be described. In addition, since the structure of the analyzer which performs the thermal fatigue evaluation method of Example 2 is the same structure as the analyzer 20 used in Example 1 mentioned above, it demonstrates below using FIG. Similar to the first embodiment, the analysis apparatus 20 that executes the thermal fatigue evaluation method of the second embodiment includes a coefficient ratio and phase lag calculating unit 21, a pipe outer surface temperature measuring unit 22, a pipe inner surface temperature calculating unit 23, and a pipe. An internal temperature calculation unit 24, a thermal stress calculation unit 25, and a fatigue cumulative damage coefficient calculation unit 26 are provided. The coefficient ratio and phase lag calculation unit 21 includes a database 27 that is a storage area for storing each data of the complex coefficient H jpq composed of the coefficient ratio M jpq and the phase lag Δθ jpq described above.

係数比及び位相遅れ算出部21は、上述した第1工程の演算処理を行うものである。具体的には、係数比及び位相遅れ算出部21は、上記(数11)式から係数比Mjpqと位相遅れΔθjpqからなる複素係数Hjpqを算出し、算出した係数比Mjpq及び位相遅れΔθjpqからなる複素係数Hjpqをデータベース27に格納する。 The coefficient ratio and phase lag calculation unit 21 performs the arithmetic processing of the first step described above. Specifically, the coefficient ratio and phase delay calculation unit 21 calculates a complex coefficient H jpq composed of the coefficient ratio M jpq and the phase delay Δθ jpq from the above equation (11), and calculates the calculated coefficient ratio M jpq and the phase delay. A complex coefficient H jpq composed of Δθ jpq is stored in the database 27.

配管外面温度測定部22は、上述した第2工程を行うものであり、温度センサ17からの検出信号に基づき配管外面14における各点Bの温度を測定する。 The pipe outer surface temperature measuring unit 22 performs the second step described above, and measures the temperature of each point B p on the pipe outer surface 14 based on the detection signal from the temperature sensor 17.

配管内面温度算出部23は、上述した第3工程の演算処理を行うものである。具体的には、配管内面温度算出部23は、配管外面温度測定部22から配管外面14における各点Bの測定温度データを受け取り、この測定温度データをフーリエ級数で展開して上記(数12)式を作成する。そして、配管内面温度算出部23は、データベース27に格納された係数比Mjpq及び位相遅れΔθjpqとを用いて、(数12)式における各フーリエ級数展開項の係数ajp、bjpに係数比Mjpqを乗ずる処理、及び、(数12)式における各フーリエ級数展開項の位相をΔθjpqずらす処理を行うことにより、上記(数17)式、すなわち、配管内面12の点Aqでの温度の時間変化を算出する。 The pipe inner surface temperature calculation unit 23 performs the arithmetic process of the third step described above. Specifically, the pipe inner surface temperature calculation unit 23 receives the measurement temperature data of each point B p on the pipe outer surface 14 from the pipe outer surface temperature measurement unit 22, expands the measurement temperature data in the Fourier series, ) Create an expression. Then, the pipe inner surface temperature calculation unit 23 uses the coefficient ratio M jpq and the phase delay Δθ jpq stored in the database 27 to calculate the coefficients a jp and b jp of the respective Fourier series expansion terms in the equation (12). By multiplying the ratio M jpq and processing for shifting the phase of each Fourier series expansion term in Equation (12) by Δθ jpq , the above Equation (17), that is, the point A q on the pipe inner surface 12 is obtained. Calculate the change in temperature over time.

配管内部温度算出部24は、上述した第4工程の演算処理を行うものである。具体的には、配管内部温度算出部24は、配管内面12の点Aqでの温度の時間変化配のデータを受け取り、このデータを境界条件として、熱伝導方程式を適用した有限要素法等の数値計算を実行することにより、配管内部13の各点における温度の時間変化を算出する。 The pipe internal temperature calculation unit 24 performs the arithmetic process of the fourth step described above. Specifically, the pipe internal temperature calculation unit 24 receives the data of the time-varying temperature distribution at the point A q on the pipe inner surface 12, and uses this data as a boundary condition for the finite element method or the like to which the heat conduction equation is applied. By performing the numerical calculation, the time change of the temperature at each point in the pipe interior 13 is calculated.

熱応力算出部25は、上述した第5工程の演算処理を行うものであり、配管内部温度算出部24から配管内部温度の時間変化のデータを受け取り、このデータを用いて、上記(数7)式から配管10に発生する熱応力の時間変化を算出する。   The thermal stress calculation unit 25 performs the above-described calculation process of the fifth step. The thermal stress calculation unit 25 receives data of time variation of the pipe internal temperature from the pipe internal temperature calculation unit 24, and uses this data to calculate the above (Equation 7). The time change of the thermal stress generated in the pipe 10 is calculated from the equation.

疲労累積損傷係数算出部26は、上述した第6工程の演算処理を行うものであり、熱応力算出部25から熱応力データを受け取り、この熱応力データを用いて、上記(数8)式から配管10の所定部位における疲労累積損傷係数Uを算出する。 The fatigue cumulative damage coefficient calculation unit 26 performs the calculation process of the sixth step described above, receives the thermal stress data from the thermal stress calculation unit 25, and uses the thermal stress data, the above equation (8) A fatigue cumulative damage coefficient U f at a predetermined portion of the pipe 10 is calculated.

以上説明したように、実施例2の熱疲労評価方法では、配管10の軸線に垂直な断面内において、配管外面14の温度を測定するための複数の温度測定点Bp(p=1,2,・・n)を配管外面14に設けるとともに、配管内面温度の時間変化を推定するための複数の温度推定点Aq(q=1,2,・・m)を配管内面12に設ける。そして、第1工程において、上述した手順により温度測定点Bpと温度推定点Aqとの間で係数比MjpqとΔθjpqを求め、第2工程において、配管外面14における複数の温度測定点Bpにおける温度を測定し、第3工程において、複数の温度測定点Bpにおける温度をフーリエ級数で展開し、各フーリエ級数展開項の係数に係数比Mjpqを掛けるとともに、各フーリエ級数展開項の位相をΔθjpqずらすことにより、配管内面12における複数の温度推定点Aqの温度の時間変化を推定する。このような手順を行うことで、配管10の軸線に垂直な断面において配管10の周方向に温度分布をもつ場合においても、従来のような膨大な計算を必要とせず、配管内面12の温度分布及び温度変化を短時間で且つ精度よく推定することが可能となる。 As described above, in the thermal fatigue evaluation method of the second embodiment, a plurality of temperature measurement points B p (p = 1, 2) for measuring the temperature of the pipe outer surface 14 in the cross section perpendicular to the axis of the pipe 10. ,... N) are provided on the pipe outer surface 14, and a plurality of temperature estimation points A q (q = 1, 2,... M) are provided on the pipe inner surface 12 for estimating the time variation of the pipe inner surface temperature. In the first step, the coefficient ratios M jpq and Δθ jpq are obtained between the temperature measurement point B p and the temperature estimation point A q by the procedure described above, and in the second step, a plurality of temperature measurement points on the pipe outer surface 14 are obtained. The temperature at B p is measured, and in the third step, the temperature at a plurality of temperature measurement points B p is expanded by Fourier series, the coefficient of each Fourier series expansion term is multiplied by the coefficient ratio M jpq , and each Fourier series expansion term Is shifted by Δθ jpq to estimate the time variation of the temperature at a plurality of temperature estimation points A q on the pipe inner surface 12. By performing such a procedure, even in the case where the temperature distribution is in the circumferential direction of the pipe 10 in a cross section perpendicular to the axis of the pipe 10, the temperature distribution of the pipe inner surface 12 is not required, as in the conventional case. In addition, it is possible to accurately estimate the temperature change in a short time.

以上のように、本発明に係る熱疲労評価方法は、発電プラント等の配管の熱疲労評価に有用に用いられる。   As described above, the thermal fatigue evaluation method according to the present invention is usefully used for the thermal fatigue evaluation of piping such as a power plant.

10 配管(構造物)
11 中空部
12 配管内面
13 配管内部
14 配管外面
17 温度センサ
20 解析装置
21 係数比及び位相遅れ算出部
22 配管外面温度測定部
23 配管内面温度算出部
24 配管内部温度算出部
25 熱応力算出部
26 疲労累積損傷係数算出部
10 Piping (structure)
DESCRIPTION OF SYMBOLS 11 Hollow part 12 Piping inner surface 13 Piping inside 14 Piping outer surface 17 Temperature sensor 20 Analyzing device 21 Coefficient ratio and phase delay calculation part 22 Piping outer surface temperature measurement part 23 Piping inner surface temperature calculation part 24 Piping internal temperature calculation part 25 Thermal stress calculation part 26 Fatigue damage factor calculator

Claims (3)

流体を流通させる中空部を有した管状の構造物の熱疲労を評価する方法であって、
前記構造物の内面温度の時間変化及び外面温度の時間変化を、熱伝導方程式を満たすようにフーリエ級数で展開した形式で表し、前記内面温度の時間変化と外面温度の時間変化の各フーリエ級数展開項を比較することにより、各フーリエ級数展開項の係数比Mj及び位相遅れΔθj(j=1,2,・・)とを求める第1工程と、
前記構造物の外面温度を温度センサで測定する第2工程と、
前記第2工程で測定した外面測定温度をフーリエ級数で展開し、当該外面測定温度の各フーリエ級数展開項の係数に前記第1工程で求めた係数比Mjを掛けるとともに、各フーリエ級数展開項の位相を、前記第1工程で求めた位相遅れΔθjだけずらすことにより、 前記構造物の内面温度の時間変化を推定する第3工程と、を有し、
前記第3工程で推定した前記内面温度の時間変化に基づいて前記構造物の熱疲労損傷度を判定することを特徴とする熱疲労評価方法。
A method for evaluating thermal fatigue of a tubular structure having a hollow portion through which a fluid flows,
The time variation of the inner surface temperature of the structure and the time variation of the outer surface temperature are expressed in a form expanded by Fourier series so as to satisfy the heat conduction equation, and each Fourier series expansion of the time variation of the inner surface temperature and the time variation of the outer surface temperature. A first step of determining the coefficient ratio M j and phase delay Δθ j (j = 1, 2,...) Of each Fourier series expansion term by comparing the terms;
A second step of measuring the outer surface temperature of the structure with a temperature sensor;
The outer surface measurement temperature measured in the second step is expanded by a Fourier series, the coefficient of each Fourier series expansion term of the outer surface measurement temperature is multiplied by the coefficient ratio M j obtained in the first step, and each Fourier series expansion term. And a third step of estimating a time change of the inner surface temperature of the structure by shifting the phase of the phase by the phase delay Δθ j obtained in the first step,
The thermal fatigue evaluation method characterized by determining the thermal fatigue damage degree of the said structure based on the time change of the said internal surface temperature estimated at the said 3rd process.
前記構造物の軸線に垂直な断面内において、前記外面測定温度を測定するための複数の温度測定点Bp(p=1,2,・・n)を前記構造物の外面に設けるとともに、前記内面温度の時間変化を推定するための複数の温度推定点Aq(q=1,2,・・m)を前記構造物の内面に設け、
前記第1工程において、任意の前記温度測定点Bpと任意の前記温度推定点Aqとの間で係数比Mjpq及び位相遅れΔθjpqとを求め、前記第2工程において、前記複数の温度測定点Bpにおける温度を測定し、前記第3工程において、前記係数比Mjpq及び前記位相遅れΔθjpqを用いて、前記複数の温度推定点Aqの温度の時間変化を推定することを特徴とする請求項1に記載の熱疲労評価方法。
In a cross section perpendicular to the axis of the structure, a plurality of temperature measurement points B p (p = 1, 2,... N) for measuring the outer surface measurement temperature are provided on the outer surface of the structure. A plurality of temperature estimation points A q (q = 1, 2,... M) for estimating temporal changes in the inner surface temperature are provided on the inner surface of the structure,
In the first step, a coefficient ratio M jpq and a phase delay Δθ jpq are obtained between the arbitrary temperature measurement point B p and the arbitrary temperature estimation point A q, and in the second step, the plurality of temperatures The temperature at the measurement point B p is measured, and the time change of the temperature at the plurality of temperature estimation points A q is estimated using the coefficient ratio M jpq and the phase delay Δθ jpq in the third step. The thermal fatigue evaluation method according to claim 1.
前記第3工程で推定した前記内面温度の時間変化を用いて前記構造物内部の温度の時間変化を求める第4工程と、当該構造物内部の温度の時間変化を用いて前記構造物内部に発生する熱応力の時間変化を求める第5工程と、当該熱応力の時間変化に基づき疲労累積損傷係数を求める第6工程とを有することを特徴とする請求項1又は2に記載の熱疲労評価方法。   A fourth step of obtaining a time change of the temperature inside the structure using the time change of the inner surface temperature estimated in the third step, and generated inside the structure using a time change of the temperature inside the structure. The thermal fatigue evaluation method according to claim 1 or 2, further comprising: a fifth step for obtaining a temporal change in thermal stress to be performed and a sixth step for obtaining a fatigue cumulative damage coefficient based on the temporal change in the thermal stress. .
JP2010020787A 2010-02-01 2010-02-01 Thermal fatigue evaluation method Pending JP2011158362A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010020787A JP2011158362A (en) 2010-02-01 2010-02-01 Thermal fatigue evaluation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010020787A JP2011158362A (en) 2010-02-01 2010-02-01 Thermal fatigue evaluation method

Publications (1)

Publication Number Publication Date
JP2011158362A true JP2011158362A (en) 2011-08-18

Family

ID=44590431

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010020787A Pending JP2011158362A (en) 2010-02-01 2010-02-01 Thermal fatigue evaluation method

Country Status (1)

Country Link
JP (1) JP2011158362A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2501701A (en) * 2012-04-30 2013-11-06 Gm Global Tech Operations Inc A method of evaluating the thermal fatigue of a cylinder head of an internal combustion engine
CN104655513A (en) * 2013-11-20 2015-05-27 珠海格力电器股份有限公司 Soft pipe head bending reliability detection method
KR101696278B1 (en) * 2015-09-07 2017-01-13 한서대학교 산학협력단 Apparatus for heating test piece for performance test and method for controlling the same
CN110068514A (en) * 2019-03-07 2019-07-30 中国矿业大学 The tension-torsion composite fatigue test device and its test method of heavily loaded drag conveyor round-link chain
CN110443006A (en) * 2019-08-29 2019-11-12 江西理工大学 A method of two phase transition volume ratio of metal material is calculated by measurement area
WO2023093246A1 (en) * 2021-11-25 2023-06-01 青岛海尔空调器有限总公司 Early warning method, apparatus, and system for air conditioner compressor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6371644A (en) * 1986-09-16 1988-04-01 Shinku Riko Kk Method for measuring thermal diffusivity
JPH1096704A (en) * 1996-09-24 1998-04-14 Mitsubishi Heavy Ind Ltd Monitering device for fatigue
JPH11173490A (en) * 1997-12-11 1999-06-29 Hitachi Ltd Heat fatigue prevention method for pipe or the like

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6371644A (en) * 1986-09-16 1988-04-01 Shinku Riko Kk Method for measuring thermal diffusivity
JPH1096704A (en) * 1996-09-24 1998-04-14 Mitsubishi Heavy Ind Ltd Monitering device for fatigue
JPH11173490A (en) * 1997-12-11 1999-06-29 Hitachi Ltd Heat fatigue prevention method for pipe or the like

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6014012436; 恩地紗弥子,久保司郎,井岡誠司: 'スラグ流に伴う内面温度履歴の外面からの推定に関する逆解析手法' 日本機械学会第22回計算力学講演会CD-ROM論文集 , 20091010, p.121-122 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2501701A (en) * 2012-04-30 2013-11-06 Gm Global Tech Operations Inc A method of evaluating the thermal fatigue of a cylinder head of an internal combustion engine
CN104655513A (en) * 2013-11-20 2015-05-27 珠海格力电器股份有限公司 Soft pipe head bending reliability detection method
KR101696278B1 (en) * 2015-09-07 2017-01-13 한서대학교 산학협력단 Apparatus for heating test piece for performance test and method for controlling the same
CN110068514A (en) * 2019-03-07 2019-07-30 中国矿业大学 The tension-torsion composite fatigue test device and its test method of heavily loaded drag conveyor round-link chain
CN110068514B (en) * 2019-03-07 2021-08-24 中国矿业大学 Tension-torsion composite fatigue testing device and method for circular chain of heavy-duty scraper conveyor
CN110443006A (en) * 2019-08-29 2019-11-12 江西理工大学 A method of two phase transition volume ratio of metal material is calculated by measurement area
CN110443006B (en) * 2019-08-29 2022-11-29 江西理工大学 Method for calculating two-phase transformation volume ratio of metal material by measuring area
WO2023093246A1 (en) * 2021-11-25 2023-06-01 青岛海尔空调器有限总公司 Early warning method, apparatus, and system for air conditioner compressor

Similar Documents

Publication Publication Date Title
Zhang et al. Multivariable wavelet finite element-based vibration model for quantitative crack identification by using particle swarm optimization
JP2011158362A (en) Thermal fatigue evaluation method
Kamaya et al. Thermal stress analysis for fatigue damage evaluation at a mixing tee
Attia et al. Distortion in thermal field around inserted thermocouples in experimental interfacial studies, part 4: End effect
Taler et al. Thermal stress monitoring in thick walled pressure components of steam boilers
Pinilla et al. Adiabatic wall temperature evaluation in a high speed turbine
Lee et al. Estimation of temperature distributions and thermal stresses in a functionally graded hollow cylinder simultaneously subjected to inner-and-outer boundary heat fluxes
CN110909505B (en) Transient temperature field calculation method of nuclear power plant fatigue monitoring and life evaluation system
Feli et al. Finite element simulation of welding sequences effect on residual stresses in multipass butt-welded stainless steel pipes
Haldeman et al. Fully Cooled Single Stage HP Transonic Turbine—Part II: Influence of Cooling Mass Flow Changes and Inlet Temperature Profiles on Blade and Shroud Heat-Transfer
Beesley et al. A novel simulation for the design of a low cycle fatigue experimental testing programme
JP4006014B2 (en) System and method for determining fluctuating pressure loads on components of a reactor steam dome
Nirmalan et al. The measurement of full-surface internal heat transfer coefficients for turbine airfoils using a nondestructive thermal inertia technique
Chao et al. Effect of the heat transfer coefficient reference temperatures on validating numerical models of supercritical CO2
Okrajni et al. Influence of a variable in time heat transfer coefficient on stresses in model of power plant components
Liu et al. Distribution and relaxation of welding residual stress in U-rib-to-deck joints considering actual material properties
Dong et al. Numerical investigation on residual stresses of the safe-end/nozzle dissimilar metal welded joint in CAP1400 nuclear power plants
Booten et al. Discrete Green’s function measurements in internal flows
Straub et al. Temporal variability in corrosion modeling and reliability updating
Okrajni et al. Computer models of steam pipeline components in the evaluation of their local strength
JP5492057B2 (en) Damage prediction method for heat-resistant steel welds
JP2005315581A (en) Thermal fatigue evaluation system for piping
Guo et al. Online monitoring of wall temperature fluctuations of horizontal mixing T-junction pipe
Rout et al. Transient Response Characteristics and Performance Assessment of a Calorimetric Surface Junction Probe Under Impulsive Thermal Loading
JP2015190950A (en) Life evaluation method and life evaluation device

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20121204

Free format text: JAPANESE INTERMEDIATE CODE: A621

A131 Notification of reasons for refusal

Effective date: 20140325

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140722