JPS6370442A - Multilayer interconnection substrate - Google Patents

Multilayer interconnection substrate

Info

Publication number
JPS6370442A
JPS6370442A JP21535986A JP21535986A JPS6370442A JP S6370442 A JPS6370442 A JP S6370442A JP 21535986 A JP21535986 A JP 21535986A JP 21535986 A JP21535986 A JP 21535986A JP S6370442 A JPS6370442 A JP S6370442A
Authority
JP
Japan
Prior art keywords
layer
metal layer
insulating
signal
insulating layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21535986A
Other languages
Japanese (ja)
Inventor
Yasutoshi Iwata
康稔 岩田
Hiroyuki Kato
裕幸 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP21535986A priority Critical patent/JPS6370442A/en
Publication of JPS6370442A publication Critical patent/JPS6370442A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a highly reliable multilayer interconnection substrate capable of releasing gas in its insulating layers and free from the breakdown of signal layers which affects the semiconductor device functions by utilizing a specially designed meshed metal layer. CONSTITUTION:A metal layer 3 and a signal layer 4 as a ground layer or a power source layer are laminated on an insulating substrate 1 through an insulating layer 2 by a thin film growing technology in a multilayer interconnection substrate. The metal layer is formed in a mesh state so that the void ratio of the layer is 5-80%. Hole parts 3a are provided in the metal layer 3, and the mesh state is obtained. When the insulating layer 2 is heat-treated, and hardened, gas is released through the hole parts 3a in the metal layer 3 even if the gas is yielded in the insulating layer 2. Thus a gas well is not formed beneath the metal layer 3 and an upheaved part is not yielded on the insulating layer 2 at all. The breakdown of the signal layer 4 caused by the stress of the upheaved part is not yielded at all.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は多層配線基板の改良に関し、より詳細には半導
体集積回路素子を搭載するための多層配線基板の改良に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an improvement of a multilayer wiring board, and more particularly to an improvement of a multilayer wiring board for mounting semiconductor integrated circuit elements.

〔発明の背景〕[Background of the invention]

従来、半導体集積回路素子を搭載するための多層配線基
板は配線パターンが銀−パラジウム、タングステンもし
くはモリブデン等の導体ペーストをスクリーン印刷し、
焼成して形成するという厚膜生成技術が主であったが、
最小約100μmの導体幅のため集積回路の高密度化傾
向に適さなくなってきた。そこで真空蒸着、スパッタリ
ング等の薄膜生成技術及びエツチング技術を基板上の微
細な配線パターンの形成に適用すると導体幅が約25μ
mまで小さくでき、高密度で微細な配線パターンを有し
た多層配線基板が得られるようになった。
Conventionally, multilayer wiring boards for mounting semiconductor integrated circuit elements have wiring patterns formed by screen printing a conductive paste such as silver-palladium, tungsten, or molybdenum.
The main technology was to form a thick film by firing, but
The minimum conductor width of about 100 .mu.m has made it unsuitable for the trend toward higher densities in integrated circuits. Therefore, by applying thin film formation techniques such as vacuum evaporation and sputtering and etching techniques to the formation of fine wiring patterns on substrates, conductor widths of approximately 25 μm can be achieved.
It has become possible to obtain a multilayer wiring board with a high density and fine wiring pattern.

加うるに、半導体集積回路素子の高速化に伴い、前記配
線パターンの絶縁層は低誘電率であることが要求される
In addition, as the speed of semiconductor integrated circuit devices increases, the insulating layer of the wiring pattern is required to have a low dielectric constant.

即ち、線路を伝わる信号の伝搬遅延(Tpd)はTpd
=(1)Co)ノTT  L co=光の速度 εr:誘電体の比誘電率 L:線路の長さ で表わされ、そこでTpdを小さくし、信号の伝搬速度
を高めるためには誘電率の低い物質を絶縁体として用い
る必要があり、例えばポリイミド、ブタジェンゴム等の
有機高分子は2.5〜3.5の低い誘電率を示し、この
点優れている。
In other words, the propagation delay (Tpd) of the signal traveling through the line is Tpd
=(1)Co)ノTT L co=Speed of light εr: Relative permittivity of dielectric L: Expressed by the length of the line, so in order to reduce Tpd and increase the signal propagation speed, the permittivity is It is necessary to use a substance with a low dielectric constant as an insulator. For example, organic polymers such as polyimide and butadiene rubber exhibit a low dielectric constant of 2.5 to 3.5 and are excellent in this respect.

そこで、これらの有機高分子を絶縁層として使用し、真
空蒸着、スパッタリング等の薄膜生成技術及びエツチン
グ技術により微細な配線パターンを形成した多層配線基
板は高速デバイス用の半導体素子収納用パフケージ等に
好適に使用されるようになってきている。
Therefore, multilayer wiring boards that use these organic polymers as insulating layers and form fine wiring patterns using thin film formation techniques such as vacuum evaporation and sputtering, and etching techniques are suitable for puff cages for housing semiconductor elements in high-speed devices. It has come to be used in

〔従来の技術〕[Conventional technology]

第3図は従来の多層配線基板を高速デバイス用の半導体
素子収納用パッケージに適用した場合の要部構造を一部
切断して示す斜視図であり、第4図は第1図のX−X線
断面図である。
FIG. 3 is a partially cutaway perspective view showing the main structure when a conventional multilayer wiring board is applied to a package for storing semiconductor elements for high-speed devices, and FIG. FIG.

図において、11はアルミナセラミックス等の電気絶縁
材料から成る基板であり、その上面にグランド層または
電源層として使用される金属層13及び信号層14が絶
縁112を介し積層されている。
In the figure, reference numeral 11 denotes a substrate made of an electrically insulating material such as alumina ceramics, and a metal layer 13 and a signal layer 14, which are used as a ground layer or a power supply layer, are laminated on the upper surface of the substrate with an insulator 112 in between.

前記金属層13及び信号層14はその眉間に所定の誘電
率を有する絶縁層12を配することによって信号の導出
入配線を分布定数回路とし、インピーダンスの不整合に
よる信号の反射、減衰を防止し、信号に波形歪等が発生
するのを小となすようになっている。
The metal layer 13 and the signal layer 14 are provided with an insulating layer 12 having a predetermined dielectric constant between their eyebrows, thereby making the signal input/output wiring a distributed constant circuit to prevent signal reflection and attenuation due to impedance mismatch. , the generation of waveform distortion, etc. in the signal is minimized.

前記絶縁層12はポリイミド、ブタジェンゴム等の誘電
率が2.5〜3.5の有機高分子から成り、スピンナー
法、スプレー法、印刷法等によって絶縁基板11上に被
着される。
The insulating layer 12 is made of an organic polymer having a dielectric constant of 2.5 to 3.5, such as polyimide or butadiene rubber, and is deposited on the insulating substrate 11 by a spinner method, a spray method, a printing method, or the like.

また前記金属層13は銅(Cu)、金(Au)、アルミ
ニウム(AI)等の金属から成り、真空蒸着、スパッタ
リング等の薄膜生成技術により絶縁基板11上の絶縁層
12上面にその略全面にわたって被着形成され、信号層
14は金属N13と同様にして薄膜生成技術及びエツチ
ング技術により金属層13の上部で絶縁層12を介在さ
せて所定形状の微細な配線パターンに形成される。
The metal layer 13 is made of a metal such as copper (Cu), gold (Au), or aluminum (AI), and is formed on the upper surface of the insulating layer 12 on the insulating substrate 11 by using a thin film forming technique such as vacuum evaporation or sputtering. Similarly to the metal N13, the signal layer 14 is formed into a fine wiring pattern of a predetermined shape with the insulating layer 12 interposed above the metal layer 13 by thin film formation technology and etching technology.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし乍ら、この従来の半導体素子収納用パッケージは
グランド層または電源層として使用される金属層が絶縁
基板の上面に設けた絶縁層上にその略全面にわたって被
着形成されていることから絶縁層を硬化させるために熱
処理を行った場合、絶縁層より発生するガスの揮散が前
記金属層によて遮断され、金属層の下部にガスの溜りを
形成して絶縁層にフクレを発生してしまい、その結果、
微細配線パターンに形成された信号層が前記フクレによ
る応力によって断線を生じ、半導体素子収納用パッケー
ジとしての機能を喪失するという欠点を有していた。
However, in this conventional package for housing semiconductor elements, the metal layer used as the ground layer or power layer is deposited over almost the entire surface of the insulating layer provided on the top surface of the insulating substrate. When heat treatment is performed to harden the insulating layer, the volatilization of the gas generated from the insulating layer is blocked by the metal layer, and a gas pool is formed under the metal layer, causing blisters in the insulating layer. ,the result,
The problem is that the signal layer formed in the fine wiring pattern breaks due to the stress caused by the blisters, and loses its function as a package for housing semiconductor elements.

〔発明の目的〕[Purpose of the invention]

本発明は上記欠点に鑑み案出されたもので、その目的は
絶縁層から発生するガスの揮散を良好とし、半導体素子
収納用パッケージ等の機能に支障を来すような信号層の
断線を皆無となした高信頼性の多層配線基板を提供する
ことにある。
The present invention was devised in view of the above-mentioned drawbacks, and its purpose is to improve the volatilization of gas generated from the insulating layer, and to eliminate disconnections in the signal layer that would impede the functionality of semiconductor element housing packages, etc. The purpose of the present invention is to provide a highly reliable multilayer wiring board.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は絶縁基板上に薄膜生成技術によりグランド層も
しくは電源層としての金属層と信号層とを絶縁層を介し
て積層して成る多層配線基板において、前記金属層を空
隙率が5乃至80χのメツシュ状となしたことを特徴と
するものである。
The present invention provides a multilayer wiring board in which a metal layer serving as a ground layer or a power supply layer and a signal layer are laminated with an insulating layer interposed therebetween by thin film production technology on an insulating substrate. It is characterized by having a mesh shape.

〔実施例〕〔Example〕

次に、本発明を第1図及び第2図に示す実施例に基づき
詳細に説明する。
Next, the present invention will be explained in detail based on the embodiment shown in FIGS. 1 and 2.

第1図は本発明の多層配線基板を高速デバイス用の半導
体素子収納用パッケージに適用した場合の要部構造を一
部切断して示す斜視図であり、第2図は第1図のY−Y
4%断面図である。
FIG. 1 is a partially cutaway perspective view showing the main structure when the multilayer wiring board of the present invention is applied to a package for storing semiconductor elements for high-speed devices, and FIG. Y
It is a 4% cross-sectional view.

図において、1はアルミナセラミックス等の電気絶縁材
料から成る基板であり、その上面にグランド層もしくは
電源フとして使用される金属N3と信号層4が絶縁層2
を介し積層されている。
In the figure, 1 is a substrate made of an electrically insulating material such as alumina ceramics, and on its upper surface there is a metal N3 used as a ground layer or power source, and a signal layer 4 on which an insulating layer 2 is formed.
are laminated through.

前記絶縁基板1はアルミナ(AlzOa) 、シリカ(
SiO□)等のセラミック原料粉末に適当な溶剤、溶媒
を添加混合して泥漿物を作り、これを従来周知のドクタ
ーブレード法によりシート状となすとともに高温で焼成
することによって形成される。
The insulating substrate 1 is made of alumina (AlzOa), silica (
It is formed by adding and mixing a suitable solvent to ceramic raw material powder such as SiO□) to form a slurry, forming the slurry into a sheet by the conventionally well-known doctor blade method, and firing it at a high temperature.

また前記絶縁基板1の上面には絶縁層2を介して金属層
3が被着形成されており、該金属層3はグランド層もし
くは電源層として作用し、後述する信号層4とで信号の
渾出入配線を分布定数回路となし、インピーダンスの不
整合による信号の反射、減衰等を防止し、信号に波形歪
等が発生するのを小となす。
Further, a metal layer 3 is formed on the upper surface of the insulating substrate 1 via an insulating layer 2, and the metal layer 3 acts as a ground layer or a power supply layer, and forms a signal hub with a signal layer 4, which will be described later. Input/output wiring is configured as a distributed constant circuit to prevent signal reflection, attenuation, etc. due to impedance mismatch, and to minimize waveform distortion, etc. in the signal.

前記金属層3は金(Au)、銅(Cu)、アルミニウム
(AI)等の金属から成り、真空蒸着、スパッタリング
等の薄膜生成技術により形成される。
The metal layer 3 is made of a metal such as gold (Au), copper (Cu), or aluminum (AI), and is formed by a thin film forming technique such as vacuum evaporation or sputtering.

前記金属層3の上面には絶縁層2を介して信号層4が被
着形成されており、該信号層4は内部に収納する半導体
素子(不図示)の各電極を外部回路に接続する作用を為
す。
A signal layer 4 is formed on the upper surface of the metal layer 3 via an insulating layer 2, and the signal layer 4 serves to connect each electrode of a semiconductor element (not shown) housed inside to an external circuit. to do.

前記信号層4は絶縁基板1の上面中央部より外周部にか
けて多数放射状に設けられており、各信号層4の絶縁基
板1の上面中央部に位置する部位には半導体素子の各電
極がボンディングワイヤを介して接続され、また絶縁基
板1の外周部に位置する部位には外部リード端子(不図
示)が接合される。これにより外部リード端子を外部回
路に接続すると内部に収納する半導体素子の各電)jは
ボンディングワイヤ及び信号層4を介し外部回路に接続
されることとなる。
A large number of the signal layers 4 are provided radially from the center of the upper surface of the insulating substrate 1 to the outer periphery, and each electrode of the semiconductor element is connected to a bonding wire in a portion of each signal layer 4 located at the center of the upper surface of the insulating substrate 1. An external lead terminal (not shown) is connected to a portion located on the outer periphery of the insulating substrate 1. As a result, when the external lead terminals are connected to the external circuit, each electric current of the semiconductor element housed inside is connected to the external circuit via the bonding wire and the signal layer 4.

前記信号層4は金(Au) 、 li’l (Cu) 
、アルミニウム(A1)等の金属から成り、真空蒸着、
スパッタリング等の薄膜生成技術及びエツチング技術に
より金属層3の上部に絶縁層2を介して形成される。
The signal layer 4 is made of gold (Au), li'l (Cu)
, made of metal such as aluminum (A1), vacuum evaporated,
It is formed on top of the metal layer 3 with the insulating layer 2 interposed therebetween by a thin film forming technique such as sputtering and an etching technique.

また前記絶!!基板1の上面で金属層3と信号層4とを
絶縁するように配された絶縁層2はイ3号伝搬速度を高
めるために誘電率の低い物質、例えばポリイミドやブタ
ジェンゴム等の誘電率が2.5〜3.5の有機高分子か
ら成り、スピンナー法やスプレー法等により絶縁基板1
上に被着され、約350℃に加熱することによって硬化
される。
Unprecedented again! ! The insulating layer 2 disposed on the upper surface of the substrate 1 to insulate the metal layer 3 and the signal layer 4 is made of a material with a low dielectric constant, such as polyimide or butadiene rubber, with a dielectric constant of 2 to increase the propagation speed. The insulating substrate 1 is made of an organic polymer of .
It is deposited on top and cured by heating to about 350°C.

かくして絶縁基板1の上面中央部に半導体素子を搭載す
るとともに半導体素子の各電極を信号層4の夫々にボン
ディングワイヤを介し接続し、しかる後、絶縁基板1の
上面に半導体素子を内部に収納する如く椀状の蓋体を取
着し、かつ各信号層4に外部リード端子を接合すること
によって高速デバイス用の半導体装五が完成する。
In this manner, a semiconductor element is mounted on the center of the upper surface of the insulating substrate 1, and each electrode of the semiconductor element is connected to each of the signal layers 4 via bonding wires, and then the semiconductor element is housed inside the upper surface of the insulating substrate 1. By attaching a bowl-shaped lid and bonding external lead terminals to each signal layer 4, a semiconductor device 5 for a high-speed device is completed.

本発明の多層配線基板においてはグランド層もしくは電
源層として使用される金属層を空隙率が5乃至80χの
メツシュ状となすことが重要である。
In the multilayer wiring board of the present invention, it is important that the metal layer used as the ground layer or the power supply layer has a mesh shape with a porosity of 5 to 80χ.

このため第1図及び第2図に示すように金属層3には多
数の穴部3aが設けられておりメツシュ状となしである
。このように金属層3に穴部3aを設け、メソシュ状と
なすと絶縁層2を熱処理し硬化させる際、絶縁層2より
ガスが発生したとしても該ガスは前記金属層3の穴部3
aを介して揮敗し、金属N3のF部にガスの溜りを形成
して絶縁層2にラクレを発生7ることは一切なく、該フ
クレの応力に起因して信号層4に断線を発生させること
も皆無となる。
For this reason, as shown in FIGS. 1 and 2, the metal layer 3 is provided with a large number of holes 3a, one in mesh shape and one without. If the metal layer 3 is provided with the holes 3a in this manner and is made into a mesh shape, even if gas is generated from the insulation layer 2 when the insulation layer 2 is heat-treated and hardened, the gas will be absorbed into the holes 3 of the metal layer 3.
It volatilizes through the metal N3, forms a gas pocket in the F part of the metal N3, and does not cause a crack in the insulating layer 2, and the stress of the blister causes a disconnection in the signal layer 4. There will be nothing to do.

尚、前記メツシュ状の金属層3はその空隙率が5χ未満
であると絶縁層2が発生するガスを良好に揮散させるこ
とができなくなり、絶縁層2にガスの溜りによるフクレ
を発生してしまう。また8oz以上になると信号の導出
入配線を分布定数回路となすことが困難となり、インピ
ーダンスの不整合による信号の反射、減衰によって信号
に波形歪を起こし好ましくない。従って金属層3はその
空隙率が5乃至80Xの範囲に特定される。
Note that if the mesh-like metal layer 3 has a porosity of less than 5χ, it will not be able to volatilize the gas generated by the insulating layer 2 well, and the insulating layer 2 will develop blisters due to gas accumulation. . Moreover, if it exceeds 8 oz, it becomes difficult to form the signal output/input wiring into a distributed constant circuit, which is not preferable because signal reflection and attenuation due to impedance mismatch causes signal waveform distortion. Therefore, the porosity of the metal layer 3 is specified to be in the range of 5 to 80X.

〔発明の効果〕〔Effect of the invention〕

本発明の絶縁基板上に薄膜生成技術によりグランド層も
しくは電源層としての金属層と信号層とを絶縁層を介し
て積層して成る多層配線基板においては、金属層を空隙
率が5乃至8ozのメソシュ状と成したことから絶縁層
の加熱硬化時に発生するガスは前記メツシュ状金属層の
穴部を介して良好に揮散され、金属層の下部に溜まって
フクレを生じることは一切なく、該フクレの応力によっ
て信号層が断線することもない。これによって、本発明
の多層配線基板は信号層に断線がない極めて高品質のも
のとなすことが可能となる。
In the multilayer wiring board of the present invention in which a metal layer as a ground layer or a power supply layer and a signal layer are laminated via an insulating layer on an insulating substrate using thin film production technology, the metal layer is formed by laminating the metal layer with a porosity of 5 to 8 oz. Since the mesh-shaped metal layer is formed, the gas generated when the insulating layer is heated and hardened is well volatilized through the holes in the mesh-shaped metal layer, and does not accumulate at the bottom of the metal layer and cause blisters. The signal layer will not be disconnected due to stress. As a result, the multilayer wiring board of the present invention can be of extremely high quality and has no disconnections in the signal layer.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の多層配線基板を高速デバイス用の半導
体素子収納用パッケージに適用した場合の要部構造を一
部切断して示す斜視図、第2図は第1図のY−Y線断面
図、第3図は従来の多層配線基板を高速デバイス用の半
導体素子収納用パッケージに適用した場合の要部構造を
一部切断して示す斜視図、第4図は第3図のX−X線断
面図である。 1:絶縁基板     2:絶縁層 3:金属N      4:信号層 第8図 !3 第4図
Fig. 1 is a partially cutaway perspective view showing the main structure when the multilayer wiring board of the present invention is applied to a package for storing semiconductor elements for high-speed devices, and Fig. 2 is a perspective view taken along the line Y-Y in Fig. 1. 3 is a partially cutaway perspective view showing the main structure when a conventional multilayer wiring board is applied to a package for storing semiconductor elements for high-speed devices, and FIG. 4 is a cross-sectional view taken along It is an X-ray cross-sectional view. 1: Insulating substrate 2: Insulating layer 3: Metal N 4: Signal layer Figure 8! 3 Figure 4

Claims (1)

【特許請求の範囲】[Claims]  絶縁基板上に薄膜生成技術によりグランド層もしくは
電源層としての金属層と信号層とを絶縁層を介して積層
して成る多層配線基板において、前記金属層を空隙率が
5乃至80%のメッシュ状となしたことを特徴とする多
層配線基板。
In a multilayer wiring board in which a metal layer as a ground layer or a power supply layer and a signal layer are laminated with an insulating layer interposed therebetween using thin film production technology on an insulating substrate, the metal layer is formed into a mesh shape with a porosity of 5 to 80%. A multilayer wiring board characterized by the following.
JP21535986A 1986-09-11 1986-09-11 Multilayer interconnection substrate Pending JPS6370442A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21535986A JPS6370442A (en) 1986-09-11 1986-09-11 Multilayer interconnection substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21535986A JPS6370442A (en) 1986-09-11 1986-09-11 Multilayer interconnection substrate

Publications (1)

Publication Number Publication Date
JPS6370442A true JPS6370442A (en) 1988-03-30

Family

ID=16670987

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21535986A Pending JPS6370442A (en) 1986-09-11 1986-09-11 Multilayer interconnection substrate

Country Status (1)

Country Link
JP (1) JPS6370442A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09116091A (en) * 1995-10-17 1997-05-02 Hitachi Ltd Hybrid integrated circuit device
EP0880179A2 (en) * 1997-05-20 1998-11-25 Fujitsu Limited Venting hole designs for multilayer conductor-dielectric structures
US6448641B2 (en) * 1999-03-19 2002-09-10 Industrial Technology Research Institute Low-capacitance bonding pad for semiconductor device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09116091A (en) * 1995-10-17 1997-05-02 Hitachi Ltd Hybrid integrated circuit device
EP0880179A2 (en) * 1997-05-20 1998-11-25 Fujitsu Limited Venting hole designs for multilayer conductor-dielectric structures
EP0880179A3 (en) * 1997-05-20 1999-06-02 Fujitsu Limited Venting hole designs for multilayer conductor-dielectric structures
US6106923A (en) * 1997-05-20 2000-08-22 Fujitsu Limited Venting hole designs for multilayer conductor-dielectric structures
US6448641B2 (en) * 1999-03-19 2002-09-10 Industrial Technology Research Institute Low-capacitance bonding pad for semiconductor device

Similar Documents

Publication Publication Date Title
JP3283007B2 (en) Multilayer ceramic capacitor and method for manufacturing metal vias of the multilayer ceramic capacitor
US4439813A (en) Thin film discrete decoupling capacitor
US5227583A (en) Ceramic package and method for making same
KR19990029348A (en) Semiconductor devices
JPS6370442A (en) Multilayer interconnection substrate
TW200403885A (en) Semiconductor module structure incorporating antenna
JP2001339170A (en) Multilayer wiring board
JP3426988B2 (en) Multi-cavity wiring board
JP2001035990A (en) Semiconductor device
JP2000165003A (en) Multiple-piece yielding wiring board
JP3545934B2 (en) Wiring board
JPH11176998A (en) Wiring board
JPH11163192A (en) Ceramic multilayered coaxial signal wiring board, manufacture thereof, and electronic circuit device
WO2024024945A1 (en) Circuit board, semiconductor device, and electronic module
JP2002043762A (en) Multilayer wiring board
JP2003273270A (en) Wiring board
JP3940537B2 (en) Multilayer wiring board
JPH10135637A (en) Ceramic multilayer wiring substrate
JPH07202053A (en) Semiconductor device
JP3878878B2 (en) Wiring board
JP2000223614A (en) Ceramic multilayer wiring board
JP3792422B2 (en) Wiring board for mounting electronic components
JP2743524B2 (en) Hybrid integrated circuit device
JPS6316645A (en) Manufacture of package for housing semiconductor element
JP2005072508A (en) Circuit board