JPS6367851A - Transmission system for frame synchronizing signal - Google Patents

Transmission system for frame synchronizing signal

Info

Publication number
JPS6367851A
JPS6367851A JP61212192A JP21219286A JPS6367851A JP S6367851 A JPS6367851 A JP S6367851A JP 61212192 A JP61212192 A JP 61212192A JP 21219286 A JP21219286 A JP 21219286A JP S6367851 A JPS6367851 A JP S6367851A
Authority
JP
Japan
Prior art keywords
signal
symbol
amplitude
adder
frame synchronizing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61212192A
Other languages
Japanese (ja)
Other versions
JPH0795760B2 (en
Inventor
Takanao Ochiai
孝直 落合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP61212192A priority Critical patent/JPH0795760B2/en
Publication of JPS6367851A publication Critical patent/JPS6367851A/en
Publication of JPH0795760B2 publication Critical patent/JPH0795760B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)
  • Synchronisation In Digital Transmission Systems (AREA)

Abstract

PURPOSE:To decode a multidimensional code by sending out an offset at a signal point position additionally from a transmission side at the time of a symbol indicating the transmission of a frame synchronizing signal and detecting the frame synchronizing signal on a reception side based on an error quantity from a reference signal point. CONSTITUTION:When the frame synchronizing signal is sent out on the transmission side, a constant offset a is added by adders 2 and 3 to an amplitude and a phase component at a sent signal point and the signal is sent out. A synchronous detecting circuit 24 on the reception side finds the quantities of errors between the amplitude and phase component of a received signal and the amplitude and phase component of a reference signal and integrates the sum of the absolute values of the error quantities by one symbol. Then it is decided that there is the frame synchronizing signal in a symbol which is larger than a reference value among successively generated 1-symbol integral values. Only when the frame signal is found, adders 25 and 26 subtract the offset alpha from the (x) component and (y) component of the position signal at a received signal point and when no frame synchronizing signal is found, 0 is subtracted and a decision device 27 decides the received signal point to decode the multidimensional code.

Description

【発明の詳細な説明】 〔概要〕 データ伝送用のモデムに於いて、送信側ではフレーム同
期信号を送出するシンボルの時は信号点位置に或るオフ
セットを加えて送出し、受信側では基準信号点からの誤
差量に基づきフレーム同期信号を検出する。
[Detailed Description of the Invention] [Summary] In a modem for data transmission, when a symbol is used to send a frame synchronization signal, the transmitting side adds a certain offset to the signal point position and sends it out, and the receiving side adds a certain offset to the signal point position and sends it out, and the receiving side uses a reference signal. A frame synchronization signal is detected based on the amount of error from the point.

〔産業上の利用分野〕[Industrial application field]

本発明は多次元符号化方式を採るデータ通信用モデムに
於けるフレーム同期信号の伝送方式に関するものである
The present invention relates to a frame synchronization signal transmission method in a data communication modem that employs a multidimensional encoding method.

〔従来の技術〕[Conventional technology]

高速モデムになると、一つの変調情報である一シンボル
中の信号点配置数が増加し、此のため信号点間の距離が
短くなり、従って雑音の影響を受は易くなることは周知
の通りである。
As is well known, when it comes to high-speed modems, the number of signal points arranged in one symbol, which is one piece of modulation information, increases, and as a result, the distance between signal points becomes shorter, making it easier to be affected by noise. be.

此れを防ぐために信号点間の距離を大きくする多次元符
号化方式(マルチディメンジョンコーディング方式)が
ある。
To prevent this, there is a multidimensional coding method that increases the distance between signal points.

第4図は多次元符号化方式の説明図である。FIG. 4 is an explanatory diagram of the multidimensional encoding method.

従来のコーディング方式がシンボル毎の伝送テあるが、
本方式では第4図の■に示す様に送信データはnシンボ
ル分(nは複数)を纏め、此のnシンボル間のデータに
或る規則性を持たせて伝送する。従って復調もnシンボ
ル単位で行われるので、受信側では第4図の■に示す様
にnシンボル毎のブロフクの開始を示すフレーム同期信
号が必要になる。此のフレーム同期信号がないと第4図
の■に示す様な受体データを復調することは出来ない。
Conventional coding methods transmit each symbol, but
In this system, as shown in (2) in FIG. 4, transmission data is collected into n symbols (n is plural) and transmitted with a certain regularity given to the data between these n symbols. Therefore, since demodulation is also performed in n-symbol units, the receiving side requires a frame synchronization signal indicating the start of a block every n symbols, as shown in (■) in FIG. Without this frame synchronization signal, it is not possible to demodulate receiver data as shown in (■) in FIG.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明は上記多次元符号化を実現するためのフレーム同
期信号方式を提供することである。
The object of the present invention is to provide a frame synchronization signal system for realizing the above-mentioned multidimensional encoding.

〔問題点を解決するための手段〕[Means for solving problems]

上記問題点は第1図の原理図に示す様に多次元符号化方
式を採るデータ通信用モデムであって、送信側に於いて
はフレーム同期信号を送出する時、送信信号点の振幅及
び位相成分に加算器2.3により夫々或る一定のオフセ
ットαを加えて送出し、受信側に於いては、受信信号の
振幅及び位相成分と基準信号の振幅及び位相成分間の誤
差量を求め、該誤差量の絶対値の和を求め、前記和を1
シンボル分積算し、連続して発生する複数個の該lシン
ボル分の積算値の内、基準値以上となるシンボルにフレ
ーム同期信号を在ると判定する同期検出回路24を設け
 ることにより解決される。
The above-mentioned problem is a data communication modem that uses a multidimensional encoding method as shown in the principle diagram in Figure 1, and on the transmitting side, when transmitting a frame synchronization signal, the amplitude and phase of the transmitting signal point An adder 2.3 adds a certain offset α to each component and sends it out, and on the receiving side, the amount of error between the amplitude and phase components of the received signal and the amplitude and phase components of the reference signal is determined, Find the sum of the absolute values of the error amounts, and set the sum to 1
This problem can be solved by providing a synchronization detection circuit 24 that integrates symbols and determines that a frame synchronization signal is present in a symbol that is equal to or higher than a reference value among the integrated values for a plurality of consecutively occurring l symbols. Ru.

〔作用〕[Effect]

本発明に依ると送信側に於いてはフレーム同期信号を送
出するシンボルの時は、送信信号点の位置信号の振幅及
び位相成分に加算器2.3により夫々或る一定のオフセ
ットαを加えて送出し、受信側では同期検出回路24に
よりフレーム同期信号を検出し、此の検出されたフレー
ム信号が出た時のみ加算器25.26により受信信号点
の位置信号のX成分、X成分からオフセットαを減算し
、フレーム同期信号が出ていない時は0を減算した後、
判定器27により受信信号点の判定を行い、多次元符号
の復号する。
According to the present invention, on the transmitting side, when a symbol is used to transmit a frame synchronization signal, the adder 2.3 adds a certain offset α to the amplitude and phase components of the position signal of the transmitting signal point. On the transmitting and receiving sides, the synchronization detection circuit 24 detects a frame synchronization signal, and only when this detected frame signal is output, the adders 25 and 26 offset the X component of the position signal of the received signal point and the X component. After subtracting α and subtracting 0 when the frame synchronization signal is not output,
The determiner 27 determines the received signal point and decodes the multidimensional code.

〔実施例〕〔Example〕

第2図(a)は本発明に依るフレーム信号伝送方式の送
信側機器構成の一実施例を示す図である。
FIG. 2(a) is a diagram showing an embodiment of the configuration of equipment on the transmitting side of the frame signal transmission method according to the present invention.

第2図(b)は本発明に依るフレーム信号伝送方式の受
信側機器構成の一実施例を示す図である。
FIG. 2(b) is a diagram showing an embodiment of the configuration of receiving side equipment of the frame signal transmission system according to the present invention.

第2図(C)は本発明に依る同期検出回路の一実施例を
示す図である。
FIG. 2(C) is a diagram showing an embodiment of the synchronization detection circuit according to the present invention.

第3図は本発明の説明図である。FIG. 3 is an explanatory diagram of the present invention.

図中、1は信号点発生回路、2.3は夫々加算器、4は
ロール・オフ・フィルタ(ROF) 、5は変調器、6
はフィルタ (FIL)、7はキャリア発生器、8は送
信ボーレート・クロツク、9は分周器、10はスイッチ
、20は復調器、21はロール・オフ・フィルタ(RO
F)、22は自動等信器、23はキャリアAPC回路、
24は同期検出回路、25.26は夫々加算器、27は
判定器、28は多次元符号復調器、30はバッファ、3
1.32は夫々加算器、33.34は夫々絶対値、35
は加算器、36.38.41は乗算器、37.39.4
2は加算器、40は遅延素子、43はフレーム信号出力
回路、50は積分回路である。
In the figure, 1 is a signal point generation circuit, 2 and 3 are adders, 4 is a roll-off filter (ROF), 5 is a modulator, and 6
is a filter (FIL), 7 is a carrier generator, 8 is a transmit baud rate clock, 9 is a frequency divider, 10 is a switch, 20 is a demodulator, 21 is a roll off filter (RO
F), 22 is an automatic isograph, 23 is a carrier APC circuit,
24 is a synchronization detection circuit, 25 and 26 are adders, 27 is a judger, 28 is a multidimensional code demodulator, 30 is a buffer, 3
1.32 is an adder, 33.34 is an absolute value, 35
is an adder, 36.38.41 is a multiplier, 37.39.4
2 is an adder, 40 is a delay element, 43 is a frame signal output circuit, and 50 is an integration circuit.

本発明ではフレーム同期信号を伝送する為に送信側でn
シンボル毎に、信号点位置に一定のオフセットを与えろ
In the present invention, in order to transmit a frame synchronization signal, n
Give a constant offset to the signal point position for each symbol.

第3図(a)、(b)は信号点配置数が4の場合の説明
図であり、第3図[alは通常状態の信号点位置を示し
、第3図(blは一定のオフセットを与えた信号点位置
を示す。尚第3図(blの×印は通常状態の信号点位置
を示す。
FIGS. 3(a) and 3(b) are explanatory diagrams when the number of signal points arranged is 4. The given signal point positions are shown in FIG. 3 (the x marks in bl indicate the signal point positions in the normal state).

一定のオフセットは例えば第3図(blに示す様に一定
の直流電圧αをX方向及びY方向に印加して信号点位置
をシフトすることにより実現出来る。
A constant offset can be realized, for example, by applying a constant DC voltage α in the X direction and the Y direction and shifting the signal point position as shown in FIG.

送信側では第2図(a)に示す様に送信データSDと送
信ボーレーI〜・クロック8出力のクロックが信号点発
生回路1に入力し、信号点発生回路1から送信データS
Dの信号のX成分、X成分を出力する。信号のX成分は
加算器2へ、信号のX成分は加算器3へ送られる。
On the transmitting side, as shown in FIG. 2(a), the transmitting data SD and the clock of the transmitting baud rate I~ clock 8 output are input to the signal point generating circuit 1, and the transmitting data S is inputted from the signal point generating circuit 1.
Outputs the X component and the X component of the D signal. The X component of the signal is sent to adder 2, and the X component of the signal is sent to adder 3.

一方送信ボーレート・クロック8の出力クロックは分周
器9へ送られ、分周されてnシンボルに1回スイッチ1
0を駆動する。
On the other hand, the output clock of the transmitting baud rate clock 8 is sent to the frequency divider 9, where it is frequency-divided and sent to the switch 1 once every n symbols.
Drive 0.

通常時、スイッチ10は“0”側に接続しているので加
算器2.3に定数Oを出力しているが、nシンボルに1
回スイッチ10が動作して“α”側に接続する。此の為
加算器2.3に定数αが送られる。
Normally, the switch 10 is connected to the "0" side, so it outputs a constant O to the adder 2.3.
The switch 10 operates to connect to the "α" side. For this purpose, a constant α is sent to adder 2.3.

従って加算器2.3は共に通常時、各信号のX成分、X
成分に定数0を加算して出力する(其の値出力する)が
、nシンボルに1回加算器2はX成分に定数αを加算し
て出力し、加算器3はX成分にαを加算して出力する。
Therefore, adders 2.3 and 2.3 both add the X component of each signal,
Add a constant 0 to the component and output it (output its value), but once every n symbols, adder 2 adds a constant α to the X component and outputs it, and adder 3 adds α to the X component. and output it.

加算器2の出力、及び加算器3の出力は共にROF4で
不要周波数成分が除去された後、変調器5で変調され、
FIL6を経由して受信側へ送られる。
Both the output of adder 2 and the output of adder 3 are modulated by modulator 5 after unnecessary frequency components are removed by ROF 4.
It is sent to the receiving side via FIL6.

此の様に送信側ではnシンボルに1回、信号に一定のオ
フセットを与えて送出する。
In this way, on the transmitting side, a fixed offset is given to the signal and transmitted once every n symbols.

受信側に於いては第2図(blに示す様に1シンボル毎
にコーディングを行う従来方式の受信側と同様に復調器
20で復調した後、ROF21で不要周波数成分を除去
し、自動等信器2Eで等化し、雑音の影響を除去する為
キャリアAPC回路23を通す。
On the receiving side, as shown in Figure 2 (bl), after demodulating with a demodulator 20, unnecessary frequency components are removed with an ROF 21, and automatic The signal is equalized by a circuit 2E and passed through a carrier APC circuit 23 to remove the influence of noise.

此の段階でフレーム同期信号を検出するため同期検出回
路24に入力する。
At this stage, the frame synchronization signal is input to the synchronization detection circuit 24 in order to detect it.

第2図(C)は本発明に依る同期検出回路24の一実施
例を示す図である。
FIG. 2(C) is a diagram showing an embodiment of the synchronization detection circuit 24 according to the present invention.

キャリアAPC回路23のX成分の出力は加算器31で
或る基準値x9.が減算される。同様にキャリアAPC
回路23のX成分の出力は加算器32で或る基準値yr
afが減算される。x−xr、f、及びY  Yr*t
は夫々絶対値33、及び34に送られ、此処で其の絶対
値が算出される。
The output of the X component of the carrier APC circuit 23 is converted to a certain reference value x9. is subtracted. Similarly carrier APC
The output of the X component of the circuit 23 is set to a certain reference value yr by the adder 32.
af is subtracted. x−xr, f, and Y Yr*t
are sent to absolute values 33 and 34, respectively, and their absolute values are calculated here.

両絶対値は加算器35で加算され、此の操作により受信
点の座標(x、y)と或る基準点(X□。
Both absolute values are added by an adder 35, and by this operation, the coordinates (x, y) of the receiving point and a certain reference point (X□.

、y□、)の間の誤差量が求められる。此の誤差量は積
分回路50に送られる。
, y□, ) is determined. This amount of error is sent to the integrating circuit 50.

積分回路50は第2(C)に示す様に3個の加算器37
.39.42.3個の乗算器36.38.41、及び遅
延素子40から構成され、各シンボルの誤差量を積分し
、1シンボル毎に積分値はクリアされる。
The integrating circuit 50 includes three adders 37 as shown in the second (C).
.. It is composed of 39, 42, and 3 multipliers 36, 38, and 41, and a delay element 40, and integrates the error amount of each symbol, and the integrated value is cleared for each symbol.

加算器35出力は乗算器36で乗算された後、■加算器
37で基準値Refが加算され、乗算器38で或る定数
α1が打トけられる。尚■の処理は次に行う積分処理に
於いて、積分値を希望する範囲内(遅延素子40がオー
バフローしない様にする)の値に保つための前処理であ
る。
After the output of the adder 35 is multiplied by a multiplier 36, a reference value Ref is added to it by an adder 37, and a certain constant α1 is added to it by a multiplier 38. Note that the process (2) is a preprocess for keeping the integral value within a desired range (to prevent the delay element 40 from overflowing) in the next integration process.

乗算器38出力は加算器39と遅延素子40からなる積
分回路に送られて積分される。
The output of the multiplier 38 is sent to an integrating circuit consisting of an adder 39 and a delay element 40, where it is integrated.

■加算器39出力の積分値は乗算器41に送られ、此処
で或る定数α2が掛けられた後、加算器42へ送られて
定数βが加算される。此の加算器42出力は前述した乗
算器36に送られ、加算器35出力と掛けられる。処理
■は係数補正のために行われる。
(2) The integral value of the output of the adder 39 is sent to a multiplier 41, where it is multiplied by a certain constant α2, and then sent to an adder 42, where a constant β is added. The output of this adder 42 is sent to the multiplier 36 described above and multiplied by the output of the adder 35. Processing (2) is performed for coefficient correction.

遅延素子40の出力は1シンボル毎にバッファ30に移
された後クリアされる。バッファ30はnシンボル分の
バッファを持ち、nシンボル分の積分値が次々に移され
る。
The output of the delay element 40 is transferred symbol by symbol to the buffer 30 and then cleared. The buffer 30 has a buffer for n symbols, and integral values for n symbols are transferred one after another.

此のため第3図(C1に示す様にリファレンス点から距
離の離れたシンボル−フレーム信号位置−のバッファだ
けが大きい値を示すようになる。従って図示する様にバ
ッファ30にフレーム信号出力回路43を接続し、此処
でバッファ30の各エレメントの値を或る一定のスレッ
ショルド(点線で示す)で切ることによりフレーム信号
を検出することが可能となる。
For this reason, as shown in FIG. 3 (C1), only the buffer of the symbol--frame signal position--that is far away from the reference point will show a large value.Therefore, as shown in FIG. It becomes possible to detect a frame signal by connecting the values of each element of the buffer 30 at a certain threshold (indicated by a dotted line).

此の様に同期検出回路24によりフレーム信号を検出し
、フレーム信号の発生した時、加算器25、及び加算器
26により信号点位置からオフセットαを減算すること
によりX成分、y成分共元に戻すことが出来る。尚フレ
ーム信号が出ていない時、分、y成分の信号が入力され
、此処で夫々の信号点位置が判定された後、フレーム信
号と共に多次元符号復号器28へ送られ、此処で受信デ
ータRDに戻される。
In this manner, the synchronization detection circuit 24 detects a frame signal, and when the frame signal is generated, the adder 25 and the adder 26 subtract the offset α from the signal point position to make the X component and the y component co-element. It can be returned. Note that when the frame signal is not output, minute and y component signals are input, and after the respective signal point positions are determined here, they are sent together with the frame signal to the multidimensional code decoder 28, where the received data RD will be returned to.

此の様に同期検出回路24により検出されたフレーム信
号のあるシンボルの時だけキャリアAPC回路23出力
の信号点からオフセットαを引くことにより正しい判定
・復号を行うことが出来る。
In this manner, correct determination and decoding can be performed by subtracting the offset α from the signal point of the carrier APC circuit 23 output only when a certain symbol of the frame signal detected by the synchronization detection circuit 24 is detected.

〔発明の効果〕〔Effect of the invention〕

以上詳細に説明した様に本発明によれば、モデムの本来
のデータレートを変更することなくフレーム信号を伝送
出来ると云う大きい効果がある。
As described above in detail, the present invention has the great effect of being able to transmit frame signals without changing the original data rate of the modem.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の原理図である。 第2図(alは本発明に依るフレーム信号伝送方式の送
信側機器構成の一実施例を糸す図である。 第2図(blは本発明に依るフレーム信号伝送方式の受
信側機器構成の一実施例を示す図である。 第2図(C)は本発明に依る同期検出回路24の一実施
例を示す図である。 第3図は本発明の説明図である。 第4図は多次元符号化方式の説明図である。 図中、1は信号点発生回路、2.3は夫々加算器、4は
ロール・オフ・フィルタ(ROF) 、5は変調器、6
はフィルタ(FIL)、7はキャリア発生器、8は送信
ボーレート・クロック、9は分周器、10はスイッチ、
20は復調器、21はロール・オフ・フィルタ(ROF
)、22は自動等化層、23はキャリアAPC回路、2
4は同期検出回路、25.26は夫々加算器、27は判
定器、28は多次元符号復号器、30はバッファ、31
.32は夫々加算器、33.34は夫々絶対値、35は
加算器、36.38.41は乗算器、37.39.42
は加算器、40は遅延素子、43はフレーム信号出力回
路、50は積分回路である。 送イ言イ則 (αジ Cb) 第  1  図 本号さ、日月にJるフレム48号・f云忙(2方犬の(
を二葡、貞シリオ要5・÷ぼ二構成の一尖うi全土介弓
漆  2  図 水路0月によろフL−へ、鋤・仏長方弐の受、イ言イ契
づオφ艶砦含究ネIr成の−5ミラ1CアイダリCb) 第 2図 」く発θ月によろ1司屓月相(8回;ト24の−lと施
・fりjCC) 第2図 (C) 第3図 幻次元恰号7化方式の官え明図 楽4 図
FIG. 1 is a diagram showing the principle of the present invention. Figure 2 (al is a diagram showing an example of the transmitting side equipment configuration of the frame signal transmission method according to the present invention. Figure 2 (bl is a diagram showing an example of the receiving side equipment configuration of the frame signal transmission method according to the present invention) FIG. 2(C) is a diagram showing an embodiment of the synchronization detection circuit 24 according to the present invention. FIG. 3 is an explanatory diagram of the present invention. FIG. It is an explanatory diagram of a multidimensional encoding system. In the figure, 1 is a signal point generation circuit, 2 and 3 are adders, 4 is a roll-off filter (ROF), 5 is a modulator, and 6
is a filter (FIL), 7 is a carrier generator, 8 is a transmission baud rate clock, 9 is a frequency divider, 10 is a switch,
20 is a demodulator, 21 is a roll-off filter (ROF)
), 22 is an automatic equalization layer, 23 is a carrier APC circuit, 2
4 is a synchronization detection circuit, 25 and 26 are adders, 27 is a determiner, 28 is a multidimensional code decoder, 30 is a buffer, 31
.. 32 is an adder, 33.34 is an absolute value, 35 is an adder, 36.38.41 is a multiplier, 37.39.42
is an adder, 40 is a delay element, 43 is a frame signal output circuit, and 50 is an integration circuit. Sending I Word I Rule (α Ji Cb) 1st Figure This issue, Sun Moon Juru Flem No. 48,
2, Teishiryo Kaname 5 ÷ 2 Composed of 1 pointed i Zenkakukyu lacquer 2 Zuzuzui 0 month Yorofu L-, spade and Butsucho 2 no Uke, Igo ii Katsuo φ Figure 2: Moon phase (8 times; 24 -l and 1C) Figure 2 ( C) Figure 3: Official diagram of the phantom dimension number 7 method Figure 4

Claims (1)

【特許請求の範囲】 多次元符号化方式を採るデータ通信用モデムであって、 送信側に於いてはフレーム同期信号を送出する時、送信
信号点の振幅及び位相成分に加算器(2、3)により夫
々或る一定のオフセット(α)を加えて送出し、 受信側に於いては、受信信号の振幅及び位相成分と基準
信号の振幅及び位相成分間の誤差量を求め、該誤差量の
絶対値の和を求め、前記和を1シンボル分積算し、連続
して発生する複数個の該1シンボル分の積算値の内、基
準値以上となる該シンボルに該フレーム同期信号を在る
と判定する同期検出回路(24)を設け、 該同期検出回路(24)の出力である該フレーム同期信
号が出た時だけ加算器(25、26)により該受信信号
の振幅及び位相成分から該オフセット(α)を減算した
後、 判定器(27)により受信信号点の判定を行い、多次元
符号の復号することを特徴とするフレーム同期信号伝送
方式。
[Claims] A data communication modem employing a multidimensional encoding method, in which, on the transmitting side, when transmitting a frame synchronization signal, an adder (2, 3) is added to the amplitude and phase components of the transmitting signal point. ), a certain offset (α) is added to each signal and the signals are sent out. On the receiving side, the amount of error between the amplitude and phase components of the received signal and the amplitude and phase components of the reference signal is determined, and the amount of error is Find the sum of the absolute values, integrate the sum for one symbol, and if the frame synchronization signal is present in the symbol that is equal to or greater than a reference value among the cumulative values for a plurality of consecutive symbols, A synchronization detection circuit (24) for determining is provided, and only when the frame synchronization signal which is the output of the synchronization detection circuit (24) is output, the adder (25, 26) calculates the offset from the amplitude and phase components of the received signal. A frame synchronization signal transmission system characterized in that after subtracting (α), a receive signal point is determined by a determiner (27) and a multidimensional code is decoded.
JP61212192A 1986-09-09 1986-09-09 Frame synchronization signal transmission device Expired - Lifetime JPH0795760B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61212192A JPH0795760B2 (en) 1986-09-09 1986-09-09 Frame synchronization signal transmission device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61212192A JPH0795760B2 (en) 1986-09-09 1986-09-09 Frame synchronization signal transmission device

Publications (2)

Publication Number Publication Date
JPS6367851A true JPS6367851A (en) 1988-03-26
JPH0795760B2 JPH0795760B2 (en) 1995-10-11

Family

ID=16618448

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61212192A Expired - Lifetime JPH0795760B2 (en) 1986-09-09 1986-09-09 Frame synchronization signal transmission device

Country Status (1)

Country Link
JP (1) JPH0795760B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0346862A (en) * 1989-07-12 1991-02-28 Internatl Business Mach Corp <Ibm> Synchronizing method
JPH04196942A (en) * 1990-11-28 1992-07-16 Nec Corp Multilevel modulating/demodulating communication system
JPH04196944A (en) * 1990-11-28 1992-07-16 Nec Corp Multilevel modulating/demodulating communication system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0346862A (en) * 1989-07-12 1991-02-28 Internatl Business Mach Corp <Ibm> Synchronizing method
US5058134A (en) * 1989-07-12 1991-10-15 International Business Machines Corp. Process of synchronizing a receiving modem after a training on data
JPH04196942A (en) * 1990-11-28 1992-07-16 Nec Corp Multilevel modulating/demodulating communication system
JPH04196944A (en) * 1990-11-28 1992-07-16 Nec Corp Multilevel modulating/demodulating communication system

Also Published As

Publication number Publication date
JPH0795760B2 (en) 1995-10-11

Similar Documents

Publication Publication Date Title
US5524127A (en) Unique word detector and method for detecting a unique word within one of several windows offset in time
US4355397A (en) Full duplex communication system for voice grade channels
KR960011125B1 (en) Tdma
EP0692895B1 (en) Demodulator using differential detection
JP4224152B2 (en) Symbol timing recovery apparatus and method
JP2004505505A (en) Transmission of main and auxiliary data using pulse width modulation
KR100542091B1 (en) Symbol timing recovery network for a carrierless amplitude phasecap signal
US20020034266A1 (en) Demodulator for demodulating digital modulated signals
JP3108364B2 (en) Data demodulator
JPS6367851A (en) Transmission system for frame synchronizing signal
EP0803999B1 (en) Demodulator device for data carried by subcarriers
US6665356B1 (en) Sample timing control for demodulation of phase-modulated signals
US4792952A (en) Signal receiver
JPS58194450A (en) Demodulator
US6959051B2 (en) Clock regenerator for use in demodulating digital modulated signals
EP0534180B1 (en) MSK signal demodulating circuit
JP3512916B2 (en) Data transmission system
KR0144828B1 (en) Qpsk demodulator
US6944241B1 (en) Apparatus and method of eliminating vestigial sideband pilot tone in vestigial sideband/quadrature amplitude modulation system
JPH11252032A (en) Rds data demodulator
JPH0583218A (en) Orthogonal frequency division multiplex system demodulator
JP2654535B2 (en) Reset method for automatic equalizer
JP3249546B2 (en) Decoding circuit
JP4180967B2 (en) Signal demodulator
WO1986000186A1 (en) Circuit for demodulating phase shift keyed signals