JPS6367605A - Servo method - Google Patents

Servo method

Info

Publication number
JPS6367605A
JPS6367605A JP21226386A JP21226386A JPS6367605A JP S6367605 A JPS6367605 A JP S6367605A JP 21226386 A JP21226386 A JP 21226386A JP 21226386 A JP21226386 A JP 21226386A JP S6367605 A JPS6367605 A JP S6367605A
Authority
JP
Japan
Prior art keywords
pass filter
low
signal
state value
controlled object
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21226386A
Other languages
Japanese (ja)
Inventor
Yoshio Umeda
善雄 梅田
Toru Oshima
亨 大島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP21226386A priority Critical patent/JPS6367605A/en
Publication of JPS6367605A publication Critical patent/JPS6367605A/en
Pending legal-status Critical Current

Links

Landscapes

  • Feedback Control In General (AREA)

Abstract

PURPOSE:To reduce the steady error against the target value by controlling a controlled system by means of the estimated state value of an electronic circuit serving as a state estimating device for the controlled system and an LPF. CONSTITUTION:The noise mixed into a detection signal 6 of a detector 2 is eliminated by an LPF 3 and this signal 6 is compared with an estimated signal corresponding to the output signal of the LPF 3 in the estimated state value of a state estimating device 13. Then an error produced from said comparison is fed back to the device 13 to always secure coincidence between the state value of a controlled system 1 and the estimated state value of the device 13. Therefore the phase delay of the estimated state value is greatly reduced compared with the output signal of the LPF 3 against the control performed by means of the said output signal by extracting the estimated state value corresponding to the state value of the controlled system 1 out of the device 13 and using it for control. The it is possible to increase the DC gains while the overall stability of a servo system is secured.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は機構を制御するサーボ方法に関するものである
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a servo method for controlling a mechanism.

従来の技術 近年、サーボ方式は例えば正確、高速、精密な動作を要
求される機構などにおいて広く用いられている。以下、
図面を参照しながら、上述した従来のサーボ方式の一例
について説明する。第3図は従来のサーボ方式のブロッ
ク図を示したものである。第3図において1.1は制御
対象、2は検出装置で制御対象1の状態量4を検出する
。3は検出装置2に直列に接続された低域ろ波器で、ノ
イズ5が混入した検出信号6からノイズ5を取り除く作
用をする。低域ろ波器3の出力信号である制御信号9と
目標値IOとを比較して、その誤差信号11から制御器
12を通して外乱8の混入した入力信号7が制御対象1
に入力される。この入力信号に従って制御対象1は応答
し、その結果状態量4は変化する。以降このような繰り
返しによって制御対象1が求める応答を行なうように従
来のサーボ方式は構成されていた。(例えばrDCモー
タの制御回路設計JCQ出版社、第4.1章)発明が解
決しようとする問題点 しかしながら、上記のようなサーボ方式では次のような
問題が生ずる。すなわち、混入したノイズ5を除去する
ために接続された低域ろ波器3は、一般に第4図に示す
ようにしゃ断周波数ωC以上で低域ろ波器3への入力信
号、に対し出力信号の位相が遅れる。従って第3図はサ
ーボ系においてその安定性を確保するためには制御器1
2中の直流ゲインをある程度以上には大きくできなくな
る。
BACKGROUND OF THE INVENTION In recent years, servo systems have been widely used, for example, in mechanisms that require accurate, high-speed, and precise movement. below,
An example of the conventional servo system mentioned above will be explained with reference to the drawings. FIG. 3 shows a block diagram of a conventional servo system. In FIG. 3, 1.1 is a controlled object, and 2 is a detection device that detects the state quantity 4 of the controlled object 1. Reference numeral 3 denotes a low-pass filter connected in series to the detection device 2, which functions to remove the noise 5 from the detection signal 6 mixed with the noise 5. The control signal 9, which is the output signal of the low-pass filter 3, is compared with the target value IO, and from the error signal 11, the input signal 7 mixed with the disturbance 8 is passed through the controller 12 to the control target 1.
is input. The controlled object 1 responds according to this input signal, and as a result, the state quantity 4 changes. The conventional servo system is configured such that the controlled object 1 responds to the desired response by repeating this process. (For example, rDC motor control circuit design JCQ Publishing, Chapter 4.1) Problems to be Solved by the Invention However, the following problems occur in the above-mentioned servo system. That is, the low-pass filter 3 connected to remove the mixed noise 5 generally reduces the output signal for the input signal to the low-pass filter 3 at a cutoff frequency ωC or higher, as shown in FIG. phase is delayed. Therefore, Figure 3 shows that in order to ensure stability in the servo system, the controller 1
The DC gain in 2 cannot be increased beyond a certain level.

(例えば「自動制御」井守出版 大島康次部著)従って
直流ゲインが小さいと相対的に制御対象の応答が遅くな
るとか、目標値10への追従精度が悪くなるあるいは外
乱抑圧特性が悪くなる、などの問題が生しる。また低域
ろ波器3による信号の位相遅れを低域あるいは回避する
ために、低域ろ波器3のしゃ断固波数ωCを大きくした
り、低域ろ波器3そのものを使用しなければ、検出装置
2に混入したノイズ5によって第3図のサーボ系全体の
動作が不安定になるか、あるいは安定であっても目標値
10への正確な追従は期待できなくなる。
(For example, "Automatic Control" written by Yasuji Oshima, Imori Publishing) Therefore, if the DC gain is small, the response of the controlled object will be relatively slow, the tracking accuracy to the target value 10 will be poor, or the disturbance suppression characteristics will be poor. Problems such as this arise. In addition, in order to avoid the phase delay of the signal caused by the low-pass filter 3, the blocking wave number ωC of the low-pass filter 3 must be increased, or the low-pass filter 3 itself must not be used. The noise 5 mixed into the detection device 2 causes the operation of the entire servo system shown in FIG. 3 to become unstable, or even if it is stable, accurate tracking to the target value 10 cannot be expected.

従って従来のサーボ方式では低域ろ波器3は必要であり
、それゆえ前記した直流ゲインの増加限度に伴う制御性
能の限界が生ずるという問題点を有していた。
Therefore, in the conventional servo system, the low-pass filter 3 is necessary, and therefore there is a problem in that there is a limit in control performance due to the above-mentioned limit on increase in DC gain.

問題点を解決するための手段 上記問題点を解決するために本発明のサーボ方法は、制
御対象の状態量を測定する検出装置と、前記検出装置に
直列に接続した低域ろ波器と、前記制御対象への入力信
号及び前記低域ろ波器の出力信号を入力として前記制御
対象及び前記低域ろ波器の動特性と同じ動特性を持ち、
かつ前記制御対象および前記低域ろ波器の状態推定器と
なるように構成した電子回路とを備え、前記電子回路の
推定状IIを用いて前記制in+対象を制御するように
したものである。
Means for Solving the Problems In order to solve the above problems, the servo method of the present invention includes: a detection device for measuring the state quantity of a controlled object; a low-pass filter connected in series to the detection device; having the same dynamic characteristics as the dynamic characteristics of the controlled object and the low-pass filter with the input signal to the controlled object and the output signal of the low-pass filter as input,
and an electronic circuit configured to serve as a state estimator for the control target and the low-pass filter, and the control target is controlled using estimation state II of the electronic circuit. .

作用 本発明は上記した方法によって、次のように前記問題点
を解決する。すなわち前記検出装置の検出信号に混入す
るノイズを前記低域ろ波器で除去し、その信号を前記状
態推定器の推定状態量の中の低域ろ波器の出力信号に相
当する推定信号と比較する。そしてその誤差を状態推定
器にフィードバックすることによって制御対象の状Bi
tと状態推定器の推定状態量が常に一敗するように構成
して、状態推定器から制御対象の状態量に相当する推定
状態量を取り出し、前記推定状態量を用いて制御すれば
前記した低域ろ波器の出力信号を用いて制御する場合に
較べて、推定状態量は位相遅れが前記低域ろ波器の出力
信号に較べて大幅に小さいために、結果的にサーボ系全
体の安定性を確保しながら前記した直流ゲインを大きく
できる。従って前記した従来の問題点を解決できる。
Operation The present invention solves the above problems as follows by using the method described above. That is, the noise mixed in the detection signal of the detection device is removed by the low-pass filter, and the signal is used as an estimated signal corresponding to the output signal of the low-pass filter in the estimated state quantity of the state estimator. compare. By feeding back the error to the state estimator, the state Bi of the controlled object is
If the configuration is configured such that t and the estimated state quantity of the state estimator are always equal to each other, the estimated state quantity corresponding to the state quantity of the controlled object is extracted from the state estimator, and the estimated state quantity is used for control. Compared to the case where control is performed using the output signal of the low-pass filter, the phase delay of the estimated state quantity is significantly smaller than the output signal of the low-pass filter, and as a result, the overall servo system is The DC gain described above can be increased while ensuring stability. Therefore, the above-mentioned conventional problems can be solved.

実施例 以下本発明の一実施例のサーボ方法について図面を参照
しながら説明する。
EXAMPLE A servo method according to an example of the present invention will be described below with reference to the drawings.

第1図は本発明の一実施例におけるサーボ系のブロック
図を示すものである。第1図においては、1は制御対象
、2は制御対象1の状態量4を検出する検出装置、3は
検出装置2に縦続に接続されノイズ5の混入した検出信
号6からノイズ5を除去する低域ろ波器、13は制御対
象1への入力信号7と低域ろ波器3の出力信号を入力と
する状態推定器13で9は状態量4に相当す為状態推定
器13の推定状態信号で制御信号として用いる。工2は
目標値10と制御信号9を比較して得られる誤差信号1
1から制御入力を生成し、制御対象lにはこの制御入力
と外乱8が入力信号7として入力される。
FIG. 1 shows a block diagram of a servo system in one embodiment of the present invention. In FIG. 1, 1 is a controlled object, 2 is a detection device that detects the state quantity 4 of the controlled object 1, and 3 is connected in series to the detection device 2 to remove noise 5 from a detection signal 6 mixed with noise 5. A low-pass filter, 13 is a state estimator 13 that receives the input signal 7 to the controlled object 1 and the output signal of the low-pass filter 3, and 9 corresponds to the state quantity 4, so the estimation of the state estimator 13 is This is a status signal and is used as a control signal. Step 2 is the error signal 1 obtained by comparing the target value 10 and the control signal 9.
A control input is generated from 1, and this control input and disturbance 8 are input as an input signal 7 to the controlled object l.

また第2図は状態推定器13の詳細図であり、第2図に
おいて14は制御対象1のモデルであり、入力信号7が
入力される。15は低域ろ波器3のモデル、16は低域
ろ波器のモデル15の出力と低域ろ波器3の出力を比較
した後の信号を増幅するゲインで増幅された信号は制御
対象のモデル14の低域ろ波器のモデル15にフィード
バックされる。以下第1図、第2図を参照しながら本発
明の方式の有効性を示す。制御対象1は、検出装置2、
低域ろ波器3の動特性を、状態変数X、出力変数yを用
いてと表わす。ここでA、B、Cは定数要素をもつ行列
またはベクトルである。Xは制御対象1、検出装置2、
低域ろ波器3の内部状態変数でyは低域ろ波器3の出力
信号、Uは制御対象1への入力信号7である。ここで制
御対象14と低域ろ波器のモデル15の内部推定状態変
数をX、低域ろ波器のモデル15の出力推定変数をy、
ゲイン16をgとして状態推定器13を次の動特性を持
つように構成する。
FIG. 2 is a detailed diagram of the state estimator 13. In FIG. 2, 14 is a model of the controlled object 1, to which the input signal 7 is input. 15 is a model of the low-pass filter 3, and 16 is a model of the low-pass filter.The signal amplified by the gain that amplifies the signal after comparing the output of the low-pass filter 15 and the output of the low-pass filter 3 is the control target. The model 14 is fed back to the low-pass filter model 15. The effectiveness of the method of the present invention will be explained below with reference to FIGS. 1 and 2. The controlled object 1 includes a detection device 2,
The dynamic characteristics of the low-pass filter 3 are expressed as follows using a state variable X and an output variable y. Here, A, B, and C are matrices or vectors with constant elements. X is controlled object 1, detection device 2,
In the internal state variables of the low-pass filter 3, y is the output signal of the low-pass filter 3, and U is the input signal 7 to the controlled object 1. Here, the internal estimated state variables of the controlled object 14 and the low-pass filter model 15 are X, the output estimated variables of the low-pass filter model 15 are y,
The state estimator 13 is configured to have the following dynamic characteristics, with the gain 16 being g.

すなわち、 のように構成する。That is, Configure as follows.

ここで制御対象1、検出装置2、低域ろ波器3の状態変
数Xと状態推定器13の推定状態変数Xの誤差をeとす
ると、 e=x−x=Ax+Bu−Ax−Bu −g(y−y) = (A−gc) x −(A−gc) x= (A 
 gc)(x−x) =(A−gc)e となるので、A−gcの固有値の実部が全て負になるよ
うにgを決めれば時間と共にe−oとなる。
Here, if the error between the state variables X of the controlled object 1, the detection device 2, and the low-pass filter 3 and the estimated state variable X of the state estimator 13 is e, then e=x−x=Ax+Bu−Ax−Bu−g (y-y) = (A-gc) x - (A-gc) x= (A
gc)(x-x) = (A-gc)e. Therefore, if g is determined so that the real parts of the eigenvalues of A-gc are all negative, e-o will become e-o over time.

すなわちx=xとなるため、ノイズ5の影響で直接検出
不可能な制御対象lの出力である状態量4に相当する推
定状態を量を状態推定器13から制御信号9として取り
出すことができる。この制御信号9は上記したように定
常的に状態量4に一敗しており、かつ検出部分での位相
遅れがないために制御器12の中の直流ゲインを高くと
ってもサーボ系全体の安定性を確保でき、従って前記し
た直流ゲインの増加限度を存在に伴う問題点を解決する
ことができる。
That is, since x=x, an estimated state corresponding to the state quantity 4 which is the output of the controlled object l which cannot be directly detected due to the influence of the noise 5 can be extracted from the state estimator 13 as the control signal 9. As described above, this control signal 9 is constantly defeated by the state quantity 4, and since there is no phase delay in the detection part, the stability of the entire servo system is maintained even if the DC gain in the controller 12 is set high. Therefore, it is possible to solve the problems associated with the above-mentioned limit on the increase in DC gain.

なお、第1の実施例において制御対象1への人力信号7
及び、制御対象からの出力である状MW4は単一であっ
ても複数であっても上記と同様である。また本発明の効
果は制御器12の構成とは独立であるので制御器12の
構成によって本発明が限定されるものではない。
In addition, in the first embodiment, the human power signal 7 to the controlled object 1
The same applies to whether there is a single output MW4 or a plurality of outputs from the controlled object. Further, since the effects of the present invention are independent of the configuration of the controller 12, the present invention is not limited by the configuration of the controller 12.

発明の効果 以上のように本発明のサーボ方法は制御対象の状態量を
測定する検出装置と前記検出装置に縦続に接続した低域
ろ波器と前記制御対象への入力信号及び前記低域ろ波器
の出力信号を入力とする前記制御対象及び前記低域ろ波
器の動特性と同じ動特性をもち、かつ前記制御対象及び
前記低域ろ波器の状態推定器となるように構成し状態推
定器の推定状態量を用いて前記制御対象を制御すること
により、前記低域ろ波器からの信号を用いて制御した場
合に較べて目標値に対する定常誤差を低域あるいは応答
特性を改善、外乱に対する抑圧特性を改善するなどの効
果を有する。
Effects of the Invention As described above, the servo method of the present invention includes a detection device for measuring the state quantity of a controlled object, a low-pass filter connected in series with the detection device, and an input signal to the controlled object and the low-pass filter. has the same dynamic characteristics as the dynamic characteristics of the controlled object and the low-pass filter, which input the output signal of the wave filter, and is configured to serve as a state estimator for the controlled object and the low-pass filter. By controlling the controlled object using the estimated state quantity of the state estimator, the steady-state error with respect to the target value can be reduced or the response characteristics can be improved, compared to the case where the control target is controlled using the signal from the low-pass filter. , it has effects such as improving the suppression characteristics against disturbances.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例におけるサーボ系のブロック
図、第2図は第1図の状態推定器13の詳細図、第3図
は従来のサーボ方式のブロック図、第4図は第3図にお
ける低域ろ波器3の周波数特性図である。 1・・・・・・制御対象、2・・・・・・検出装置、3
・・・・・・低域ろ波器、13・・・・・・状態推定器
FIG. 1 is a block diagram of a servo system in an embodiment of the present invention, FIG. 2 is a detailed diagram of the state estimator 13 in FIG. 1, FIG. 3 is a block diagram of a conventional servo system, and FIG. 4 is a block diagram of a conventional servo system. 4 is a frequency characteristic diagram of the low-pass filter 3 in FIG. 3. FIG. 1... Controlled object, 2... Detection device, 3
...Low pass filter, 13...State estimator.

Claims (1)

【特許請求の範囲】[Claims] 制御対象の状態量を測定する検出装置と、前記検出装置
に直列に接続した低域ろ波器と、前記制御対象への入力
信号および前記低域ろ波器の出力信号を入力として、前
記制御対象および前記低域ろ波器の動特性と同じ動特性
を持ち、かつ前記制御対象および前記低域ろ波器の状態
推定器となるように構成した電子回路とを備え、前記電
子回路から取りだした前記制御対象の推定状態量を用い
て前記制御対象を制御することを特徴とするサーボ方法
A detection device that measures a state quantity of a controlled object, a low-pass filter connected in series to the detection device, and an input signal to the controlled object and an output signal of the low-pass filter as inputs, and the control an electronic circuit having the same dynamic characteristics as the object and the low-pass filter and configured to serve as a state estimator for the object to be controlled and the low-pass filter; A servo method characterized in that the controlled object is controlled using estimated state quantities of the controlled object.
JP21226386A 1986-09-09 1986-09-09 Servo method Pending JPS6367605A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21226386A JPS6367605A (en) 1986-09-09 1986-09-09 Servo method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21226386A JPS6367605A (en) 1986-09-09 1986-09-09 Servo method

Publications (1)

Publication Number Publication Date
JPS6367605A true JPS6367605A (en) 1988-03-26

Family

ID=16619683

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21226386A Pending JPS6367605A (en) 1986-09-09 1986-09-09 Servo method

Country Status (1)

Country Link
JP (1) JPS6367605A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002048806A1 (en) * 2000-12-14 2002-06-20 Kabushiki Kaisha Yaskawa Denki Feedback control device
US7725201B2 (en) 2000-12-14 2010-05-25 Kabushiki Kaisha Yaskawa Denki Feedback control device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002048806A1 (en) * 2000-12-14 2002-06-20 Kabushiki Kaisha Yaskawa Denki Feedback control device
US7725201B2 (en) 2000-12-14 2010-05-25 Kabushiki Kaisha Yaskawa Denki Feedback control device

Similar Documents

Publication Publication Date Title
GB1320272A (en) Process cont'ol system
JPH0534682B2 (en)
JPS6367605A (en) Servo method
US4257364A (en) Method and system for controlling ignition timing
EP0217727A2 (en) Integral control of a dependent variable in a system having at least two independent variables which influence the dependent variable
GB1466288A (en) Discrimination circuit arrangements
US5072357A (en) Automatic reset circuit for integral control
JP2932444B2 (en) Motor servo control device
JPS6347066Y2 (en)
SU729549A1 (en) Method of determining regulator discreteness period
JP2001290504A (en) Controller
JPH11168381A (en) Control signal compensation method, compensation control system and analog/digital processing system
JPH1080173A (en) Digital filter and servomotor controller
JPS6345053Y2 (en)
CN112422005A (en) PI regulator for inhibiting overshoot and control method
JP2510344Y2 (en) Automatic amplitude controller
JPS6325917Y2 (en)
JPS6075113A (en) Automatic load level adjusting circuit
SU824142A2 (en) Automatic control system
JPS63237603A (en) Gain controlled circuit
JPH0394302A (en) Digital signal processor
JPH06165552A (en) Phase compensator for servo circuit
JPH05127701A (en) Controller
JPH0354702A (en) Read out circuit
CN115045769A (en) Engine load control system, method, electronic terminal and storage medium