WO2002048806A1 - Feedback control device - Google Patents

Feedback control device Download PDF

Info

Publication number
WO2002048806A1
WO2002048806A1 PCT/JP2001/010951 JP0110951W WO0248806A1 WO 2002048806 A1 WO2002048806 A1 WO 2002048806A1 JP 0110951 W JP0110951 W JP 0110951W WO 0248806 A1 WO0248806 A1 WO 0248806A1
Authority
WO
WIPO (PCT)
Prior art keywords
output
control
controller
observer
input
Prior art date
Application number
PCT/JP2001/010951
Other languages
French (fr)
Japanese (ja)
Inventor
Wennong Zhang
Yasuhiko Kaku
Original Assignee
Kabushiki Kaisha Yaskawa Denki
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2000379600A external-priority patent/JP3804060B2/en
Priority claimed from JP2001026766A external-priority patent/JP3804061B2/en
Application filed by Kabushiki Kaisha Yaskawa Denki filed Critical Kabushiki Kaisha Yaskawa Denki
Priority to US10/450,301 priority Critical patent/US7725201B2/en
Publication of WO2002048806A1 publication Critical patent/WO2002048806A1/en

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/04Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators

Definitions

  • the present invention relates to a feedback control method and apparatus in which a delay element exists in a controller or a controlled object, or a dead time exists in input / output of the controlled object.
  • Fig. 3 is a block diagram of an ordinary feedback control system.
  • 2 is a main controller (for example, a PID controller), 3 is a delay element of the controller, 4 is a delay element of the control target, and 5 is an element having no delay of the control target.
  • a main controller for example, a PID controller
  • 3 is a delay element of the controller
  • 4 is a delay element of the control target
  • 5 is an element having no delay of the control target.
  • phase lead compensating element 12 in series as shown in FIG. 4 to compensate for phase lag.
  • T a> T T a as b lever to appropriately set the T b, becomes the phase lead compensator 1 2 phase is advanced, that is increasing the gain of the main control unit 2, to increase the control performance it can. .
  • FIG. 8 is a block diagram of a conventional feedback control system.
  • reference numeral 22 denotes a normal controller (for example, a PID controller), and reference numeral 23 denotes a control object including dead time.
  • a normal controller for example, a PID controller
  • reference numeral 23 denotes a control object including dead time.
  • the phase of the dead time element is delayed, the gain of the controller cannot be increased, and sufficient response characteristics cannot be obtained.
  • compensation control for the dead time is required.
  • a Smith compensator as shown in Fig. 9 is often used to compensate for dead time.
  • reference numeral 25 denotes a prediction model of a control target
  • reference numeral 26 denotes a dead time element. Focusing on the control input and feedback signal, the control system in Fig. 9 is equivalent. It can be rewritten as shown in Figure 6. According to Fig. 6, the stability of the feedback system is the same as that of the system without dead time, the gain of the controller C (s) can be increased, and the control output y can accurately follow the target input r.
  • An object of the present invention is to provide a control device which increases a control gain and has good responsiveness.
  • Another object of the present invention is to compensate for the phase delay of a delay element in a control system having a delay element in a controller or a controlled object so as not to cause high-frequency vibration, and to accurately control a control output to a target input.
  • the objective is to provide a feedback control device that can follow well.
  • the present invention provides a controller, a control target controlled by the controller, a control output from the control target and an output of the controller, and a control target model output.
  • a feedback control device including an observer serving as a feedback signal
  • the observer includes: an observer compensator that inputs a difference between the control output and an output of an element model; an output of the observer compensator; and the controller
  • the control output follows the target input for the control system in which a delay element exists in the controller or the control target.
  • a difference between a control output and an output of an observer is input to a compensator of the observer, and the observer
  • the output of the compensator and the output of the main controller are added to the model of the element having no delay of the control target, and the output of the model of the element having no delay of the control target is output as the model of the delay element of the controller.
  • an observer configured to use a signal passed through the model of the delay element of the controlled object as an output of the observer, and subtracting an output of the model of the element having no delay of the controlled object from the target input to reduce the main output.
  • a controller that inputs the output of the main controller to a delay element of the controller as a control input, and controls a control target.
  • a feedback control device in which a control output is made to follow a target input for a control target having time, the difference between the control output and the output of a dead time element of the control target is determined by an error.
  • Input to the compensator of the buzzer add the output of the compensator of the observer and the control input, and input the result to the prediction model of the controlled object, and output the output of the predicted model of the controlled object.
  • the observer is configured to input the predicted value of the control output from the target input and input to the controller, and the output of the controller is output to the controller. It is characterized as a control input.
  • FIG. 1 is a block diagram showing a configuration principle of a first control system of the present invention
  • FIG. 2 is an equivalent block diagram of FIG. 1
  • FIG. 3 is a block diagram of a normal feedback control system
  • FIG. 4 is a block diagram of a conventional phase lead compensation control system
  • FIG. 5 is a block diagram showing a configuration principle of a second control system of the present invention
  • FIG. 6 is an equivalent block diagram of FIGS.
  • Fig. 7 is a block diagram of Fig. 5 when disturbance is considered
  • Fig. 8 is a block diagram of a conventional feedback control system
  • Fig. 9 is a Smith compensator.
  • FIG. 10 is a block diagram of the control system
  • FIG. 10 is a block diagram when disturbance is considered in FIG. '' ⁇ Best mode for carrying out the invention
  • FIG. 1 is a block diagram showing the configuration principle of the control system of the present invention.
  • 2 is the main controller
  • 3 is the delay element of the controller
  • 4 is the delay element of the control target
  • 5 is the element with no delay of the control target
  • 7 is the model of the element with no delay of the control target
  • 8 Is the model of the delay element of the controller
  • 9 is the model of the delay element to be controlled
  • 11 is the compensator of the observer.
  • the controller is divided into the main controller 2 and the controller delay element 3, and an observer including the controller delay element is constructed based on the main controller output ui and the control output y, and the observer delay An output having no is referred to as a feedback signal y f . More specifically, the output u of the main controller 2 and the output of the compensator 11 of the observer are added, and the result is input to the model 7 of the element having no delay of the control target.
  • the output of the model 7 delay of the control target is no element is a feedback signal y f of the control system is rectangular, inputs a signal obtained by subtracting the feedback signal y f subtractor 1 from the target input r to Mein controller 2,
  • the output u of the main controller 2 is passed through the delay element 3 of the controller, and then input to the control target to control the control target.
  • the model 8 of the delay element of the controller and the delay The signal subtracted from the control output y is input to the observer compensator 11 through the model 9 and input to the subtractor 10.
  • the output y can accurately follow the target input r by increasing the gain of the main controller 2.
  • FIG. 5 is a block diagram showing the configuration principle of the second control system of the present invention.
  • 22 is a controller
  • 23 is a controlled object including dead time
  • 25 is a prediction model of the controlled object
  • 26 is a dead time element
  • 28 is a compensator of the observer 20.
  • the control system in Fig. 5 can be rewritten equivalently as in Fig. 6. According to Fig. 5, the stability of the feedback system is the same as that of the system without dead time, and the gain of the controller C (s) can be increased.
  • the transfer function from the target input r to the control output y is
  • a disturbance d is inserted at the control input terminal as shown in Fig.7. From Fig. 7, the transfer function from the disturbance d to the control output y is
  • the present invention comprises an observer including a delay element of a controller, and an output without delay of an observer is used as a feedback signal, so that the control system includes a feedback control section and an observer section. Is separated into The stability of the feedback loop is the same as that of a system without delay, and the control gain can be increased, so that the response performance of the control system can be improved.
  • the observer loop has a delay element, but since the observer's compensator does not affect the input / output characteristics, the gain of the observer's compensator may be set low, so a stable observer can be easily configured. it can.
  • the present invention constitutes an observer of a dead time system and uses a predicted value of a control output as a feedback signal, so that the feedback control part and the observer part are separated, and the stability of the feedback loop has no dead time. It becomes the same as the system and the control gain can be raised, so the response performance of the control system can be improved. In addition, because it has an observer, it is not only stable but also resistant to disturbances. Industrial applicability
  • a control system having good response performance can be configured, and a stable observer can be easily configured.

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Evolutionary Computation (AREA)
  • Medical Informatics (AREA)
  • Software Systems (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Feedback Control In General (AREA)

Abstract

A feedback control device comprising a controller, a controlled object controlled by the controller, and an observer which receives the control output from the object and the output of the controller and makes the controlled model output a feedback signal. This observer and an observer compensator which receives the difference between the control output and the output of an element model can constitute a control system of excellent responsiveness by inputting the sum of the output of the observer compensator and the output of the controller in the controlled model, easily realizing a stable observer.

Description

明細書 フィードバック制御装置 技術分野  Description Feedback control device Technical field
本発明は、 制御器あるいは制御対象に遅れ要素が存在したり、 あるいは制御 対象の入出力にむだ時間が存在するフィードバック制御方法および装置に関す る。 背景技術  The present invention relates to a feedback control method and apparatus in which a delay element exists in a controller or a controlled object, or a dead time exists in input / output of the controlled object. Background art
サーボやプロセス制御などほとんどの制御系において制御器あるいは制御対 象にむだ時間ゃフィル夕などの遅れ要素が存在する。 図 3は普通のフィ一ドバ ック制御系のブロック線図である。  In most control systems such as servo and process control, there is a delay element such as dead time / fill time for the controller or control target. Fig. 3 is a block diagram of an ordinary feedback control system.
図 3において、 2はメイン制御器 (例えば P I D制御器など)、 3は制御器の 遅れ要素、 4は制御対象の遅れ要素、 5は制御対象の遅れがない要素である。 このような制御系では、 遅れ要素の位相が遅れるため、 制御器のゲインを上げ られなく十分な応答特性が得られない。 ここに、 位相遅れに対する補償制御が 必要になってくる。  In FIG. 3, 2 is a main controller (for example, a PID controller), 3 is a delay element of the controller, 4 is a delay element of the control target, and 5 is an element having no delay of the control target. In such a control system, since the phase of the delay element is delayed, sufficient gain cannot be obtained because the gain of the controller cannot be increased. Here, compensation control for phase lag is required.
従来、 位相遅れを補償するため図 4のように位相進み補償要素 1 2を直列に 加えることがよく用いられている。 T a〉T bのように T a、 T bを適当に設定す れば、 位相進み補償要素 1 2の位相が進みとなり、 メイン制御器 2のゲインを 上げられ、 制御性能をアップすることができる。 . Conventionally, it is often used to add a phase lead compensating element 12 in series as shown in FIG. 4 to compensate for phase lag. T a> T T a as b, lever to appropriately set the T b, becomes the phase lead compensator 1 2 phase is advanced, that is increasing the gain of the main control unit 2, to increase the control performance it can. .
しかしながら、 前記従来の位相補償制御法では、 位相進み補償要素の高周波 数域でのゲインが大きくなるので、 高周波数の振動を起こしやすいという問題 がある。  However, in the above-described conventional phase compensation control method, the gain of the phase lead compensating element in a high frequency range becomes large, so that there is a problem that high-frequency oscillation is likely to occur.
また、 サ一ポやプロセス制御などほとんどの制御系において入力あるいは出 力にむだ時間が存在する。 図 8は従来のフィードバック制御系のプロック線図 である。 図 8において、 2 2は通常の制御器 (例えば P I D制御器など)、 2 3 はむだ時間を含む制御対象である。 このような制御系では、 むだ時間要素の位 相が遅れるため、 制御器のゲインを上げられなく、 十分な応答特性が得られな い。 ここで、 むだ時間に対する補償制御が必要になってくる。  In addition, most control systems such as support systems and process control have dead time for input or output. Fig. 8 is a block diagram of a conventional feedback control system. In FIG. 8, reference numeral 22 denotes a normal controller (for example, a PID controller), and reference numeral 23 denotes a control object including dead time. In such a control system, since the phase of the dead time element is delayed, the gain of the controller cannot be increased, and sufficient response characteristics cannot be obtained. Here, compensation control for the dead time is required.
従来、 むだ時間に対する補償のために図 9のようなスミス補償器がよく用い られている。 図 9において、 2 5は制御対象の予測モデル、 2 6はむだ時間要 素である。 制御入力とフィードバック信号に注目すると、 図 9の制御系を等価 的に図 6のように書き直すことができる。 図 6により、 フィードバック系の安 定性はむだ時間がない系と同様になり、 制御器 C (s) のゲインを上げられ、 制御出力 yを目標入力 rに精度よく追従することができる。 Conventionally, a Smith compensator as shown in Fig. 9 is often used to compensate for dead time. In FIG. 9, reference numeral 25 denotes a prediction model of a control target, and reference numeral 26 denotes a dead time element. Focusing on the control input and feedback signal, the control system in Fig. 9 is equivalent. It can be rewritten as shown in Figure 6. According to Fig. 6, the stability of the feedback system is the same as that of the system without dead time, the gain of the controller C (s) can be increased, and the control output y can accurately follow the target input r.
前記従来のスミス法の外乱除去特性を考察してみる。 図 10のように制御入 力端に外乱 dが存在するとし、 外乱 dから制御出力 yまでの伝達関数は  Let us consider the disturbance elimination characteristics of the conventional Smith method. Assuming that a disturbance d exists at the control input end as shown in Fig. 10, the transfer function from the disturbance d to the control output y is
d(s) l+C(s)P(s) l+C(s)P(s) L J で与えられる。 ステップ外乱 d (s) = lZsに対する制御出力 yの定常値を ysdとすると、 =limバり =lim ) It is given by d (s) l + C (s) P (s) l + C (s) P (s) LJ . Assuming that the steady-state value of the control output y for the step disturbance d (s) = lZs is y sd , = lim = lim
=l 1ifim51il+C(5)P(5) l+C(s ()P(s) LJ 、 - JJ … (2) となる。 C (s) が積分器をもっていれば、 ysi =lim^)-^)e"is J=^lim^) · ' (3) が成り立つ。 もし、 P (s) が s = 0に極をもつならば、 ysd≠0となる。 す なわち、 前記スミス法では、 s =0の極をもつ制御対象に対して、 定常偏差が 生じる問題がある。 また、 式 (1) より、 P (s) が不安定ならば、 どのよう な小さな外乱があつても出力は発散してしまうという問題がある。 = l 1 ifim5 1 il + C (5) P (5) l + C (s () P (s) L "J, -. J J ... (2) become long with C (s) is the integrator , Y si = lim ^)-^) e " is J = ^ lim ^) · '(3). If P (s) has a pole at s = 0, then y sd ≠ 0. That is, in the Smith method, there is a problem that a steady-state error is generated for a controlled object having a pole of s = 0. Also, from Eq. (1), if P (s) is unstable, there is a problem that the output diverges regardless of any small disturbance.
この発明の目的は、 制御ゲインを上げ、 応答性の良好な制御装置を提供する ことである。  An object of the present invention is to provide a control device which increases a control gain and has good responsiveness.
この発明の他の目的は、 制御器あるいは制御対象に遅れ要素が存在する制御 システムに対して、 高周波数の振動を起こさないように遅れ要素の位相遅れを 補償し、 制御出力を目標入力に精度よく追従できるフィードバック制御装置を 提供することである。  Another object of the present invention is to compensate for the phase delay of a delay element in a control system having a delay element in a controller or a controlled object so as not to cause high-frequency vibration, and to accurately control a control output to a target input. The objective is to provide a feedback control device that can follow well.
この発明のさらに他の目的は、 s = 0の極をもつ制御対象に対して、 定常偏 差が生じず、 不安定な制御対象に対しても安定な制御系を構成できるむだ時間 補償フィードバック制御装置を提供することである。 発明の開示 Still another object of the present invention is to provide a dead-time compensated feedback control in which a steady-state deviation does not occur for a control target having a pole of s = 0 and a stable control system can be configured for an unstable control target. It is to provide a device. Disclosure of the invention
前記の目的を達成するために、 本発明は、 制御器と、 この制御器により制御 される制御対象と、 この制御対象からの制御出力と前記制御器の出力を入力し、 制御対象モデル出力をフィードバック信号とするオブザーバとから構成される フィードバック制御装置において、 前記オブザーバが、 前記制御出力と要素モ デルの出力との差を入力するオブザーバ補償器と、 このオブザーバ補償器の出 力と前記制御器からの出力との和を前記制御対象モデルに入力するようにした ことを特徴とし、 また、 制御器あるいは制御対象に遅れ要素が存在する制御シ ステムに対して、 制御出力を目標入力に追従きせるフィードバック制御を行う 制御装置において、 制御出力とオブザーバの出力の差を前記オブザーバの補償 器に入力し、 前記オブザーバの補償器の出力とメイン制御器の出力を加算して 制御対象の遅れがない要素のモデルに入力し、 前記制御対象の遅れがない要素 のモデルの出力を前記制御器の遅れ要素のモデルおよび前記制御対象の遅れ要 素のモデルに通した信号を前記オブザーバの出力とするようにオブザーバを構 成し、 前記目標入力から前記制御対象の遅れがない要素のモデルの出力を減じ て前記メイン制御器に入力し、 前記メイン制御器の出力を前記制御器の遅れ要 素に通した信号を制御入力とし、 制御対象を制御することを特徴とし、 また、 本発明は、 入力あるいは出力にむだ時間が存在する制御対象に対して、 制御出 力を目標入力に追従させるようにしたフィードバック制御装置において、 前記 制御出力と制御対象の無駄時間要素の出力との差をオブザーバの補償器に入力 し、 このオブザーバの補償器の出力と制御入力を加算して前記制御対象の予測 モデルに入力し、 前記制御対象の予測モデルの出力を、 一方では前記制御対象 のむだ時間要素に入力し、 他方では前記制御出力の予測値とするように前記ォ ブザーバを構成し、 前記目標入力から前記制御出力の予測値を減じて制御器に 入力し、 前記制御器の出力を前記制御入力とすることを特徴とする。 図面の簡単な説明  In order to achieve the above object, the present invention provides a controller, a control target controlled by the controller, a control output from the control target and an output of the controller, and a control target model output. In a feedback control device including an observer serving as a feedback signal, the observer includes: an observer compensator that inputs a difference between the control output and an output of an element model; an output of the observer compensator; and the controller The control output follows the target input for the control system in which a delay element exists in the controller or the control target. In a control device for performing feedback control, a difference between a control output and an output of an observer is input to a compensator of the observer, and the observer The output of the compensator and the output of the main controller are added to the model of the element having no delay of the control target, and the output of the model of the element having no delay of the control target is output as the model of the delay element of the controller. And an observer configured to use a signal passed through the model of the delay element of the controlled object as an output of the observer, and subtracting an output of the model of the element having no delay of the controlled object from the target input to reduce the main output. A controller that inputs the output of the main controller to a delay element of the controller as a control input, and controls a control target. In a feedback control device in which a control output is made to follow a target input for a control target having time, the difference between the control output and the output of a dead time element of the control target is determined by an error. Input to the compensator of the buzzer, add the output of the compensator of the observer and the control input, and input the result to the prediction model of the controlled object, and output the output of the predicted model of the controlled object. The observer is configured to input the predicted value of the control output from the target input and input to the controller, and the output of the controller is output to the controller. It is characterized as a control input. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明の第 1の制御系の構成原理を示すブロック線図、: 図 2は、 図 1の等価プロック線図、図 3は、通常のフィ一ドバック制御系のプロック線図、 図 4は、 従来の位相進み補償制御系のブロック線図、 図 5は、 本発明の第 2の 制御系の構成原理を示すブロック線図、 図 6は、 図 5および図 9の等価ブロッ ク線図、 図 7は、 図 5において外乱を考慮した場合のブロック線図、 図 8は、 従来のフィードバック制御系のブロック線図、 図 9は、 スミス補償器を用いた 制御系のブロック線図、 図 1 0は、 図 9において外乱を考慮した場合のプロッ ク線図である。 ' · 発明を実施するための最良の形態 FIG. 1 is a block diagram showing a configuration principle of a first control system of the present invention, FIG. 2 is an equivalent block diagram of FIG. 1, FIG. 3 is a block diagram of a normal feedback control system, FIG. 4 is a block diagram of a conventional phase lead compensation control system, FIG. 5 is a block diagram showing a configuration principle of a second control system of the present invention, and FIG. 6 is an equivalent block diagram of FIGS. Fig. 7 is a block diagram of Fig. 5 when disturbance is considered, Fig. 8 is a block diagram of a conventional feedback control system, and Fig. 9 is a Smith compensator. FIG. 10 is a block diagram of the control system, and FIG. 10 is a block diagram when disturbance is considered in FIG. '' · Best mode for carrying out the invention
本発明の実施形態を図において説明する。 図 1は本発明制御系の構成原理を 示すブロック線図である。 図 1において、 2はメイン制御器、 3は制御器の遅 れ要素、 4は制御対象の遅れ要素、 5は制御対象の遅れがない要素、 7は制御 対象の遅れがない要素のモデル、 8は制御器の遅れ要素のモデル、 9は制御対 象の遅れ要素のモデル、 1 1はオブザーバの補償器である。  An embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a block diagram showing the configuration principle of the control system of the present invention. In Fig. 1, 2 is the main controller, 3 is the delay element of the controller, 4 is the delay element of the control target, 5 is the element with no delay of the control target, 7 is the model of the element with no delay of the control target, 8 Is the model of the delay element of the controller, 9 is the model of the delay element to be controlled, and 11 is the compensator of the observer.
一般的に、 制御器を構成する際にノィズなど除去するためフィルタを入れて おく必要がある。 また、 制御対象において制御入力あるは制御出力にむだ時間 要素や一次遅れ要素などが存在している。 これらの遅れ要素を分離しないと、 安定性かつ制御性能を同時に満たすようにメイン制御器を構成することが困難 である。 そこで、 制御器をメイン制御器 2と制御器の遅れ要素 3に分け、 メィ ン制御器の出力 u iと制御出力 yに基づいて制御器の遅れ要素を含むォブザー バ'を構成し、 オブザーバの遅れがない出力をフィ一トバック信号 y f とする。 具体的に、 メィン'制御器 2の出力 u ,とオブザーバの捕償器 1 1の出力を加算 し、 制御対象の遅れがない要素のモデル 7に入力する。 制御対象の遅れがない 要素のモデル 7の出力は 方では制御系のフィードバック信号 y f とし、 目標入 力 rからフィードバック信号 y fを減算器 1で減算した信号をメィン制御器 2 に入力し、 メイン制御器 2の出力 u を、 制御器の遅れ要素 3に通してから制御 対象に入力して制御対象を制御し、 他方では制御器の遅れ要素のモデル 8およ ぴ制御対象の遅れ要素のモデル 9を通してから減算器 1 0に入力し、 制御出力 yから減算された信号をオブザーバの補償器 1 1に入力する。 Generally, it is necessary to insert a filter to remove noise when constructing a controller. In addition, there are dead time elements and first-order lag elements in the control input or control output of the control target. Unless these delay elements are separated, it is difficult to configure the main controller to satisfy both stability and control performance at the same time. Therefore, the controller is divided into the main controller 2 and the controller delay element 3, and an observer including the controller delay element is constructed based on the main controller output ui and the control output y, and the observer delay An output having no is referred to as a feedback signal y f . More specifically, the output u of the main controller 2 and the output of the compensator 11 of the observer are added, and the result is input to the model 7 of the element having no delay of the control target. The output of the model 7 delay of the control target is no element is a feedback signal y f of the control system is rectangular, inputs a signal obtained by subtracting the feedback signal y f subtractor 1 from the target input r to Mein controller 2, The output u of the main controller 2 is passed through the delay element 3 of the controller, and then input to the control target to control the control target. On the other hand, the model 8 of the delay element of the controller and the delay The signal subtracted from the control output y is input to the observer compensator 11 through the model 9 and input to the subtractor 10.
図 1より、 制御系の開ループにおいて、 メイン制御器 2の出力 からフィ一 ドバック信号 y £までの伝達関数は From Fig. 1, in the open loop of the control system, the transfer function from the output of the main controller 2 to the feedback signal y £ is
^ - P(s) · · · ( 4 ) ' であるため、 図 1の制御系を等価的に図 2のように書き直すことができる。 図 2により、 フィードバック制御系の安定性は遅れがない系と同様になり、 メイ ン制御器 2のゲインを上げることができる。 また、 目標入力 rから制御出力 y までの伝達関数は
Figure imgf000006_0001
^-P (s) · · · · (4) ', so the control system in Fig. 1 can be rewritten equivalently as in Fig. 2. According to FIG. 2, the stability of the feedback control system is the same as that of the system without delay, and the gain of the main controller 2 can be increased. The transfer function from the target input r to the control output y is
Figure imgf000006_0001
となるので、 メイン制御器 2のゲインを上げることにより出力 yを目標入力 r に精度よく追従することができる。 Therefore, the output y can accurately follow the target input r by increasing the gain of the main controller 2.
なお、 オブザーバのループには遅れ要素があるが、 式 5より、 入出力特性は オブザーバの補償器 1 1と関係しないため、 オブザーバの補償器 1 1のゲイン を低く設定しても構わない。 従って、 安定なオブザーバを容易に構成できる。 本発明の他の実施形態を図において説明する。 図 5は本発明の第 2の制御系 の構成原理を示すブロック線図である。 図 5において、 22は制御器、 23は むだ時間を含む制御対象、 25は制御対象の予測モデル、 26はむだ時間要素、 28はオブザーバ 20の補償器である。  Although the observer loop has a delay element, the input / output characteristics are not related to the compensator 11 of the observer from Equation 5, so the gain of the compensator 11 of the observer may be set low. Therefore, a stable observer can be easily configured. Another embodiment of the present invention will be described with reference to the drawings. FIG. 5 is a block diagram showing the configuration principle of the second control system of the present invention. In FIG. 5, 22 is a controller, 23 is a controlled object including dead time, 25 is a prediction model of the controlled object, 26 is a dead time element, and 28 is a compensator of the observer 20.
図 5より、 制御入力 uからフィードバック信号 y fまでの伝達関数は 5 that the transfer function from the control input u to the feedback signal y f
^= ( ) · · · (6)^ = () · · · (6)
s) であるため、 図 5の制御系を等価的に図 6のように書き直すことができる。 図 5により、 フィードバック系の安定性はむだ時間がない系と同様になり、 制御 器 C (s) のゲインを上げることができる。 また、 目標入力 rから制御出力 y までの伝達関数は  s), the control system in Fig. 5 can be rewritten equivalently as in Fig. 6. According to Fig. 5, the stability of the feedback system is the same as that of the system without dead time, and the gain of the controller C (s) can be increased. The transfer function from the target input r to the control output y is
As) C(s)P(s)e-Ls … (7) As) C (s) P (s) e- Ls … (7)
φ) l+C(s)P(s) となるので、 制御器 C (s) のゲインを上げることにより出力 yを目標入力 r に精度よく追従することができる。 φ) l + C (s) P (s), so the output y can accurately follow the target input r by increasing the gain of the controller C (s).
外乱除去特性を考察するため、 図 7のように制御入力端に外乱 dを入れる。 図 7より、 外乱 dから制御出力 yまでの伝達関数は  In order to consider the disturbance rejection characteristics, a disturbance d is inserted at the control input terminal as shown in Fig.7. From Fig. 7, the transfer function from the disturbance d to the control output y is
) '( P(s)e-Ls i C(s)P(s) . P(S)e~Ls …(8) d(s) l+C(s)P(s) l+C(s)P(s) l+C0(s)P(s)e-Ls ) '(P (s) e- Ls i C (s) P (s). P ( S ) e ~ Ls … (8) d (s) l + C (s) P (s) l + C (s ) P (s) l + C 0 (s) P (s) e- Ls
で与えられる。 ステップ外乱 d (s) = lZsに対する出力の定常値を ys dと すると、 ; irf=lim.v( =lim¾;(5)
Figure imgf000007_0001
となる。 制御器 C (s) とオブザーバ補償器 (:。 (s) がともに積分器をもって いれば、
Given by If the steady-state value of the output for the step disturbance d (s) = lZs is y sd , ; irf = lim.v (= lim¾ ; ( 5 )
Figure imgf000007_0001
Becomes If both the controller C (s) and the observer compensator (:. (S) have an integrator,
ySil =o · · · d o) となる。 すなわち、 s = 0の極をもつ制御対象に対しても、 定常偏差が生じな い。 また、 式 (6) より、 P (s) が不安定であっても、 C (s) が P (s) を、 C。 (s) が P (s) e を安定すれば、 出力は発散しない。 なお、 式 (7) より、 入出力特性は C。 (s) と関係しないので、 P (s) e— Lsを安定す.るよ うに C。 (s) のゲインを低く設定することができる。 y Sil = o · · · do). In other words, no steady-state deviation occurs even for a controlled object with a pole of s = 0. Also, from equation (6), even if P (s) is unstable, C (s) replaces P (s) with C. If (s) stabilizes P (s) e, the output does not diverge. From equation (7), the input / output characteristics are C. Because it does not related to the (s), P (s) e- Ls stable to. Ru by sea urchin C. The gain of (s) can be set low.
以上のように本発明は、 制御器の遅れ要素を含むオブザーバを構成し、 ォブ ザ一バの遅れない出力をフィ一ドバック信号とすることにより、 制御系がフィ ―ドバック制御部分とォブザーバ部分に分離される。 フィードバックループの 安定性は遅れがない系と同様となり、 制御ゲインを上げられるため、 制御系の 応答性能をアップすることができる。 一方、 オブザーバのループには遅れ要素 があるが、 オブザーバの補償器が入出力特性に影響しないため、 オブザーバの 補償器のゲインを低く設定しても構わないので、 安定なオブザーバを容易に構 成できる。  As described above, the present invention comprises an observer including a delay element of a controller, and an output without delay of an observer is used as a feedback signal, so that the control system includes a feedback control section and an observer section. Is separated into The stability of the feedback loop is the same as that of a system without delay, and the control gain can be increased, so that the response performance of the control system can be improved. On the other hand, the observer loop has a delay element, but since the observer's compensator does not affect the input / output characteristics, the gain of the observer's compensator may be set low, so a stable observer can be easily configured. it can.
また、 本発明は、 むだ時間システムのオブザーバを構成し、 制御出力の予測 値をフィードバック信号とすることにより、 フィードバック制御部分とォブザ ーバ部分に分離され、 フィードバックループの安定性はむだ時間がない系と同 様となり、 制御ゲインを上げられるため、 制御系の応答性能をアップすること ができる。 しかも、 オブザーバが構成されているので、 安定な対象に限らず、 外乱にも強い。 産業上の利用可能性  Further, the present invention constitutes an observer of a dead time system and uses a predicted value of a control output as a feedback signal, so that the feedback control part and the observer part are separated, and the stability of the feedback loop has no dead time. It becomes the same as the system and the control gain can be raised, so the response performance of the control system can be improved. In addition, because it has an observer, it is not only stable but also resistant to disturbances. Industrial applicability
本発明により、 応答性能の良好な制御系を構成することが可能となり、 安定 なオブザーバが容易に構成可能となる。  According to the present invention, a control system having good response performance can be configured, and a stable observer can be easily configured.

Claims

請求の範囲 The scope of the claims
1 . 制御器と、 この制御器により制御される制御対象と、 この制御対象からの 制御出力と前記制御器の出力を入力し、 制御対象モデル出力をフィードバック 信号とするオブザーバとから構成されるフィードバック制御装置において、 前 記オブザーバが、 前記制御出力と要素モデルの出力との差を入力するォブザー バ補償器と、 このオブザーバ補償器の出力と前記制御器からの出力との和を前 記制御対象モデルに入力するようにしたことを特徴とするフィ一ドバック制御 1. A feedback comprising a controller, a controlled object controlled by the controller, a control output from the controlled object and an output of the controller, and an observer using the output of the controlled object model as a feedback signal. In the control device, the observer may include: an observer compensator configured to input a difference between the control output and the output of the element model; and a sum of an output of the observer compensator and an output from the controller. Feedback control characterized by input to the model
2 . 制御器あるいは制御対象に遅れ要素が存在する制御システムに対して、 制 御出力を目標入力に追従させるフィードバック制御を行う制御装置において、 制御出力とオブザーバの出力の差を前記オブザーバの補償器 1 1に入力し、 前 記オブザーバの補償器 1 1の出力とメイン制御器 2の出力を加算して制御対象 の遅れがない要素のモデル 7に入力し、 前記制御対象の遅れがない要素のモデ ル 7の出力を前記制御器の遅れ要素のモデル 8および前記制御対象の遅れ要素 のモデル 9に通した信号を前記オブザーバの出力とするようにオブザーバを構 成し、 前記目標入力から前記制御対象の遅れがない要素のモデル 7の出力を減 じて前記メイン制御器 2に入力し、 前記メイン制御器 2の出力を前記制御器の 遅れ要素 3に通した信号を制御入力とし、 制御対象を制御することを特徴とす るフィードバック制御装置。 2. In a control device that performs feedback control that causes a control output to follow a target input in a control system in which a delay element exists in a controller or a control target, a difference between the control output and the output of the observer is used as a compensator of the observer. 1 Input to 1 and add the output of the observer's compensator 1 1 and the output of the main controller 2 to the model 7 of the element with no delay of the controlled object. An observer is configured so that a signal obtained by passing the output of the model 7 through the delay element model 8 of the controller and the control target delay element model 9 is used as the output of the observer, and the control is performed from the target input. The output of the model 7 of the element having no delay is subtracted and input to the main controller 2, and a signal obtained by passing the output of the main controller 2 to the delay element 3 of the controller is used as a control input. Feedback controller you and controlling the controlled object.
3 . 入力あるいは出力にむだ時間が存在する制御対象に対して、 制御出力を目 標入力に追従させるようにしたフィードバック制御装置において、 前記制御出 力と制御対象の無駄時間要素の出力との差をオブザーバの補償器に入力し、 こ のオブザーバの補償器の出力と制御入力を加算して前記制御対象の予測モデル に入力し、 前記制御対象の予測モデルの出力を、 一方では前記制御対象のむだ 時間要素に入力し、 他方では前記制御出力の予測値とするように前記ォブザー バを構成し、 前記目標入力から前記制御出力の予測値を減じて制御器に入力し、 前記制御器の出力を前記制御入力とすることを特徴とするフィードバック制御  3. In a feedback control device in which a control output follows a target input for a control target having a dead time in input or output, a difference between the control output and the output of a dead time element of the control target is provided. Is input to the compensator of the observer, the output of the compensator of the observer and the control input are added and input to the prediction model of the control target, and the output of the prediction model of the control target is used. The observer is configured to input to the dead time element and, on the other hand, to obtain the predicted value of the control output, to subtract the predicted value of the control output from the target input and input to the controller, and output the output of the controller. Is the control input.
PCT/JP2001/010951 2000-12-14 2001-12-13 Feedback control device WO2002048806A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/450,301 US7725201B2 (en) 2000-12-14 2001-12-13 Feedback control device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2000379600A JP3804060B2 (en) 2000-12-14 2000-12-14 Feedback control device
JP2000-379600 2000-12-14
JP2001-26766 2001-02-02
JP2001026766A JP3804061B2 (en) 2001-02-02 2001-02-02 Feedback control device

Publications (1)

Publication Number Publication Date
WO2002048806A1 true WO2002048806A1 (en) 2002-06-20

Family

ID=26605792

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/010951 WO2002048806A1 (en) 2000-12-14 2001-12-13 Feedback control device

Country Status (2)

Country Link
TW (1) TW569084B (en)
WO (1) WO2002048806A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102566430A (en) * 2012-01-11 2012-07-11 华北电力大学 Control method of dual-ring weighting
CN103853048A (en) * 2014-02-28 2014-06-11 西安费斯达自动化工程有限公司 Design method for man-machine closed loop combined frequency robust controller of air vehicle multi-loop model cluster
CN111515958A (en) * 2020-05-14 2020-08-11 重庆邮电大学 Network delay estimation and compensation method of robot remote control system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6367605A (en) * 1986-09-09 1988-03-26 Matsushita Electric Ind Co Ltd Servo method
JPS6448104A (en) * 1987-08-18 1989-02-22 Kiyoshi Oishi Robust controller
JPH07121205A (en) * 1993-10-26 1995-05-12 Kobe Steel Ltd State estimation observer device
JPH1185204A (en) * 1997-09-08 1999-03-30 Nippon Telegr & Teleph Corp <Ntt> Method and device for state signal detection and recording medium where state signal detection program is recorded
JPH11344983A (en) * 1998-06-03 1999-12-14 Honda Motor Co Ltd Active noise suppression control device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6367605A (en) * 1986-09-09 1988-03-26 Matsushita Electric Ind Co Ltd Servo method
JPS6448104A (en) * 1987-08-18 1989-02-22 Kiyoshi Oishi Robust controller
JPH07121205A (en) * 1993-10-26 1995-05-12 Kobe Steel Ltd State estimation observer device
JPH1185204A (en) * 1997-09-08 1999-03-30 Nippon Telegr & Teleph Corp <Ntt> Method and device for state signal detection and recording medium where state signal detection program is recorded
JPH11344983A (en) * 1998-06-03 1999-12-14 Honda Motor Co Ltd Active noise suppression control device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102566430A (en) * 2012-01-11 2012-07-11 华北电力大学 Control method of dual-ring weighting
CN103853048A (en) * 2014-02-28 2014-06-11 西安费斯达自动化工程有限公司 Design method for man-machine closed loop combined frequency robust controller of air vehicle multi-loop model cluster
CN111515958A (en) * 2020-05-14 2020-08-11 重庆邮电大学 Network delay estimation and compensation method of robot remote control system

Also Published As

Publication number Publication date
TW569084B (en) 2004-01-01

Similar Documents

Publication Publication Date Title
Matausek et al. On the modified Smith predictor for controlling a process with an integrator and long dead-time
Algreer et al. Adaptive PD+ I control of a switch-mode DC–DC power converter using a recursive FIR predictor
US20180062496A1 (en) Adaptive controller based on transient normalization
US20040054440A1 (en) Feedback control device
WO2007077420A2 (en) Enhanced feedback for plant control
JP2008310601A (en) Method for designing feedback control system, design program, and design support device
Kelly et al. A self-compensating adaptive digital regulator for switching converters based on linear prediction
JP3835528B2 (en) Speed control device
KR102430383B1 (en) Feedback control method, and feedback control device
JP3804061B2 (en) Feedback control device
WO2002048806A1 (en) Feedback control device
CN114460838A (en) Mechanical tail end jitter suppression method, position ring and driving device
KR100939754B1 (en) Control system
Mirkin et al. 2DOF controller parametrization for systems with a single I/O delay
Lanusse et al. Tuning of an active suspension system using a fractional controller and a closed-loop tuning
CN115685757A (en) Active disturbance rejection pre-estimation control method based on filtering in pure time lag system
US20210135453A1 (en) Method of configuring a closed-loop control system
JP2011078192A (en) Controller for motor
CN115425864B (en) Inverter virtual resistance compensation method, device and equipment integrated with active damper
KR20070043071A (en) Method for tunning gain of proportional-plus-integrate controller
CN114884384B (en) Grid-connected inverter control method and system
JPH1124708A (en) Servo controller
Wang et al. A two-degree-of-freedom Smith control for improved disturbance rejection
JP2003241839A (en) Position control apparatus
Visioli et al. Smith-predictor-based control

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 10450301

Country of ref document: US

122 Ep: pct application non-entry in european phase